摘 要: 雙核酸性離子液體以雙核陽離子結(jié)構(gòu)為基礎(chǔ),通過嫁接2個(gè)磺酸基使其具有較強(qiáng)的催化活性和較高的穩(wěn)定性,在取代強(qiáng)腐蝕性的工業(yè)傳統(tǒng)酸方面具有較大的應(yīng)用潛力。設(shè)計(jì)合成了以三乙烯二胺為雙核陽離子的5種雙核酸性離子液體,并通過核磁共振光譜(NMR)和紅外光譜(FT-IR)確定了離子液體的結(jié)構(gòu),進(jìn)一步利用紫外分光光度計(jì)(UV-vis)測(cè)定其酸度(),并探究了雙核離子液體結(jié)構(gòu)與酸度之間的關(guān)系。
關(guān) 鍵 詞:雙核酸性離子液體;結(jié)構(gòu)表征;酸度()
中圖分類號(hào):O643.36 文獻(xiàn)標(biāo)志碼: A 文章編號(hào): 1004-0935(2024)09-1391-04
離子液體作為一種新型的環(huán)保催化劑和綠色溶劑,由于其結(jié)構(gòu)多樣性、可重復(fù)使用性以及豐富的分子間相互作用(如氫鍵、π-π疊加、庫(kù)侖相互作用等)[1-2],近年來廣泛應(yīng)用于有機(jī)合成反應(yīng)領(lǐng)域。相較于傳統(tǒng)催化劑,離子液體催化劑綠色高效、性質(zhì)穩(wěn)定、可循環(huán)使用,進(jìn)一步降低了成本和污染[3-5],已成為極具前景的發(fā)展方向。
在離子液體中,含磺酸基(—SOH)的酸性離子液體因其酸性強(qiáng)、不揮發(fā)不腐蝕、耐高溫等特點(diǎn),而引起了廣泛的關(guān)注[6-8]。磺酸基(—SOH)功能化的酸性離子液體是新興的催化劑,它兼具液態(tài)酸的高活性和固態(tài)酸的可分離性,在化學(xué)反應(yīng)中已成功替代傳統(tǒng)酸(如硫酸和鹽酸)[9-11]。例如,2022年LIU等[12]合成了烷烴鏈和含磺酸基咪唑型離子液體,替代傳統(tǒng)無機(jī)酸催化劑應(yīng)用于催化二酯化反應(yīng)。在此報(bào)道中,系統(tǒng)研究了離子液體結(jié)構(gòu)與性質(zhì)(例如酸度)對(duì)二酯化反應(yīng)活性的影響。此外,基于1個(gè)或2個(gè)磺酸基的離子液體作為環(huán)境友好型、可循環(huán)使用的催化劑已經(jīng)成功應(yīng)用于有機(jī)反應(yīng)合成中,如烷基化反應(yīng)[13]、酯化反應(yīng)[14-15]、多組分反應(yīng)[16]、Beckmann重排反應(yīng)[17]、Ritter反應(yīng)[18]、生物柴油合成反應(yīng)[19]、Pechmann縮合反應(yīng)[20]、纖維素水解[21]和Biginelli反應(yīng)[22]。
為進(jìn)一步提高離子液體的強(qiáng)酸性和催化活性,設(shè)計(jì)合成了以三乙烯二胺為雙核陽離子結(jié)構(gòu)的5種雙核磺酸基酸性離子液體,并對(duì)其進(jìn)行結(jié)構(gòu)及酸度()表征。
1 實(shí)驗(yàn)部分
1.1 試劑與儀器
實(shí)驗(yàn)主要涉及的離子液體合成原料、分析測(cè)試所用試劑等,均采購(gòu)于阿拉丁試劑有限公司,均為分析純,未做進(jìn)一步純化。
采用Bruker-AVANCEIIIHD-600MHz型核磁共振儀對(duì)合成的5種雙核酸性離子液體進(jìn)行1H NMR和13C NMR光譜表征,四甲基硅烷(TMS)被用作內(nèi)部標(biāo)準(zhǔn),氧化氘(DO)被用作離子液體的分析溶劑。用Thermo-Nicolet-IS50紅外光譜儀表征離子液體催化劑的官能團(tuán)結(jié)構(gòu)。采用紫外分光光度計(jì)(UV-2550)檢測(cè)離子液體在不同波長(zhǎng)下的吸光度。
1.2 雙核酸性離子液體的合成
采用兩步法[23]合成雙核磺酸基酸性離子液體,合成了以三乙烯二胺的雙核陽離子結(jié)構(gòu)為基礎(chǔ),濃硫酸、甲磺酸、對(duì)甲苯磺酸、三氟甲磺酸、三氟乙酸為陰離子的5種雙核酸性離子液體。合成路線如圖1所示。
1.2.1 離子液體前體[DA-2SO-]的合成
稱取0.05 mol的三乙烯二胺于250 mL三口燒瓶中,加入100 mL無水乙醇,攪拌槳攪拌至反應(yīng)物溶解。25 ℃油浴加熱,每4~5 s緩慢滴入0.1 mol的1,3-丙烷磺內(nèi)酯,滴完后升溫至60 ℃,反應(yīng)3 h,反應(yīng)過程中快速出現(xiàn)大量白色固體。反應(yīng)結(jié)束停止加熱后,抽濾反應(yīng)液得到白色沉淀粗產(chǎn)品。用無水乙醇洗滌3次,抽濾后,80 ℃真空干燥2 h。最終得到白色粉末前體[DA-2SO-],收率在70%左右。1.2.2 雙核酸性離子液體[DA-2SOH][2X]的合成
用不同的傳統(tǒng)酸酸化合成離子液體。分別將濃硫酸、甲烷磺酸、對(duì)甲苯磺酸、三氟甲烷磺酸、三氟乙酸(0.01 mol)加入離子液體前驅(qū)體[DA-2SO-](0.005 mol)的水溶液中,80 ℃油浴加熱,反應(yīng)8 h。反應(yīng)結(jié)束后停止加熱,將反應(yīng)混合物在85 ℃下旋轉(zhuǎn)蒸發(fā)除去水分,得到黏性液體。然后使用乙醚將旋蒸后的混合物洗滌3次,洗去殘余酸。80 ℃真空干燥2 h,最后得到相應(yīng)的5種雙核酸性離子液體,分別為[DA-2SOH][2HSO]、[DA-2SOH][2CHSO]、[DA-2SOH][2p-TsOH]、[DA-2SOH][2CFSO]和[DA-2SOH][2CFCOO]。
2 雙核酸性離子液體的表征
2.1 結(jié)構(gòu)表征
雙核酸性離子液體的氫譜如圖2所示,離子液體[DA-2SOH][2HSO]的紅外光譜如圖3所示。
由離子液體的核磁數(shù)據(jù)得出,主要結(jié)構(gòu)正確,但由于1,3-丙基磺內(nèi)酯不純,造成合成的離子液體含有一點(diǎn)雜質(zhì)。結(jié)合其中一個(gè)離子液體所測(cè)的紅外色譜,確定離子液體結(jié)構(gòu)中磺酸基的位置。
離子液體[DA-2SOH][2HSO]的FT-IR光譜出現(xiàn)以2998、2807 cm-1為中心的峰,這些峰分別與三乙烯二胺上的—C—H、—C—N伸縮振動(dòng)有關(guān),而集中在1191、1027 cm-1的特征峰歸因于—SOH基團(tuán)的S=O和S—O伸縮振動(dòng)。在1229、881 cm-1處的特征峰是陰離子HSO-對(duì)應(yīng)的S=O和S—O伸縮振動(dòng)。因此,5種雙核酸性離子液體的光譜數(shù)據(jù)如下所示。
[DA-2SOH][2HSO]:1H NMR (600 MHz, DO) 3.95 (m,12H), 3.67-3.64 (m,4H), 2.91-2.88 (m,4H), 2.19-2.16 (m,4H)。13C NMR (151 MHz, DO) 68.66, 68.40, 66.15, 63.32, 63.22, 51.14, 50.70, 47.91, 46.92, 46.85, 43.85, 43.36, 24.22, 17.75, 17.74, 14.05, 11.21。 FI-IR (/cm-1): 2 998, 2807, 1309, 1229, 1166, 1027, 881, 851, 605, 590。
[DA-2SOH][2CHSO]:1H NMR (600 MHz, DO) 3.97 (m, 12H), 3.68-3.66 (m, 4H), 2.93-2.90 (m, 4H), 2.70 (m, 6H), 2.21-2.18 (m, 4H)。13C NMR (151 MHz, DO) 68.67, 68.41, 66.15, 63.33, 63.23, 60.13, 51.14, 50.69, 47.92, 46.86, 43.86, 38.44, 38.42, 26.93, 24.23, 17.76, 14.06, 11.21。FI-IR (/cm-1):2998, 2807, 1309, 1229, 1166, 1027, 881, 851, 605, 590。
[DA-2SOH][2p-TsOH]:1H NMR (600 MHz, DO) 7.59-7.58 (m, 4H), 7.27-7.25 (m, 4H), 3.95 (m, 12H), 3.66-3.64 (m, 4H), 2.91-2.88 (m, 4H), 2.28 (m, 6H), 2.20-2.16 (m, 4H)。13C NMR (151 MHz, DO) 142.49, 139.41, 132.07, 131.62, 129.45, 126.67, 125.93, 125.31, 68.69, 68.42, 66.16, 63.33, 63.22, 60.15, 51.13, 50.67, 47.93, 46.89, 46.83, 43.84, 26.94, 24.25, 20.45, 19.48, 17.76, 17.74, 14.07。FI-IR (/cm-1):2998, 2807, 1309, 1229, 1166, 1027, 881, 851, 605, 590。
[DA-2SOH][2CFSO]:1H NMR (600 MHz, DO) 3.97 (m, 12H), 3.69-3.66 (m, 4H), 2.93-2.91 (m, 4H), 2.22-2.19 (m, 4H)。13C NMR (151 MHz, DO) 122.77, 120.67, 118.57, 116.46, 68.69, 63.36, 63.25, 60.15, 51.16, 50.71, 47.93, 46.91, 46.85, 43.86, 26.94, 24.25, 17.77。FI-IR (/cm-1): 2998, 2807, 1309, 1229, 1166, 1027, 881, 851, 605, 590。
[DA-2SOH][2CFCOO]: 1H NMR (600 MHz, DO) 4.00 (m, 12H), 3.72-3.69 (m, 4H), 2.96-2.93 (m, 4H), 2.70 (m, 6H), 2.25-2.22 (m, 4H)。13C NMR (151 MHz, DO) 162.78, 117.29, 68.72, 68.46, 66.21, 63.34, 63.26, 60.17, 55.51, 51.18, 50.79, 50.78, 50.76, 47.97, 46.96, 46.90, 43.90, 26.99, 24.29, 17.81, 17.79, 14.11。FI-IR (/cm-1): 2998, 2807, 1309, 1229, 1166, 1027, 881, 851, 605, 590.
2.2 酸度()表征
以4-硝基苯胺為指示劑,測(cè)試了5種雙核酸性離子液體的吸光度,計(jì)算其Hammett酸度函數(shù)[23],從而表征離子液體的酸度()。配制2 mmol·L-1的4-硝基苯胺指示劑溶液,分別稱取0.5 mmol的5種雙核酸性離子液體至10 mL的容量瓶中,用一次性注射器抽取2 mL的指示劑溶液至上述容量瓶,使用去離子水定容配制成待測(cè)溶液。使用紫外分光光度計(jì)對(duì)5種離子液體待測(cè)溶液進(jìn)行全波長(zhǎng)掃描,結(jié)果如圖4所示。
這5種雙核酸性離子液體酸度值如表1所示。未酸化的4-硝基苯胺在水中的最大吸光波長(zhǎng)為380 nm。以磺酸基三乙烯二胺為相同陽離子,離子液體的酸度由其陰離子結(jié)構(gòu)決定。5種雙核酸性離子液體酸度由小到大順序:[DA-2SOH][2HSO] 、[DA-2SOH][2p-TsOH] 、[DA-2SOH][2CFSO]、 [DA-2SOH][2CHSO] 、[DA-2SOH][2CFCOO]。酸度越小,對(duì)應(yīng)的離子液體酸性越大[24]。其中,陰離子為HSO-的雙核離子液體表現(xiàn)出最強(qiáng)的酸性,值為1.19。陰離子為CHSO-、p-TsOH-、CFSO-的離子液體的酸度值分別為1.32、1.31、1.31,酸性相近。離子液體[DA-2SOH][2CFCOO]的酸性最小,其值為1.90。這表明了陰離子的類型影響離子液體的酸度性質(zhì)。
3 結(jié) 論
合成了以三乙烯二胺為雙核陽離子結(jié)構(gòu)的5種雙核酸性離子液體。通過核磁共振光譜和紅外光譜確定了離子液體的結(jié)構(gòu),綜合表征結(jié)果顯示合成的結(jié)構(gòu)是正確的。通過建立以4-硝基苯胺作為探針的UV-Hammett方法,測(cè)定了離子液體的酸度(),發(fā)現(xiàn)具有不同陰離子的雙核酸性離子液體的值存在明顯差異,即陰離子的類型對(duì)其酸度有顯著影響。
參考文獻(xiàn):
[1] LIU Y M, TIAN Z Q, QU F, et al.Tuning ion-pair interaction in cuprous-based protic ionic liquids for significantly improved CO capture[J]. ,2019, 7(13): 11894-11900.
[2] CHEN S X, ZENG G X, LI Y W, et al. Epoxide ring-opening reaction promoted by ionic liquid reactivity: Interplay of experimental and theoretical studies[J]. , 2019, 9(20): 5567-5571.
[3] TAO D J, DONG Y, CAO Z J, et al. Tuning the acidity of sulfonic functionalized ionic liquids for highly efficient and selective synthesis of terpene esters[J]. , 2016, 41: 122-129.
[4] AMARASEKARA A S. Acidic ionic liquids[J]. , 2016, 116(10): 6133-6183.
[5] 張娜娜,李圓圓,賈文,等. 幾種離子液體的制備及性能表征[J]. 遼寧化工,2021,50(12):1781-1784.
[6] COLE A C, JENSEN J L, NTAI I, et al. Novel Br?nsted acidic ionic liquids and their use as dual solvent-catalysts[J]. , 2002, 124(21): 5962-5963.
[7] YAN N, YUAN Y, DYKEMAN R, et al. Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with Br?nsted acidic ionic liquids[J]. (. ), 2010, 49(32): 5549-5553.
[8] YANG Y Y, FAN H L, WU T B, et al. Complete degradation of high-loaded phenol using tungstate-based ionic liquids with long chain substituent at mild conditions[J]. , 2023, 8(2): 452-458.
[9] TAO D J, WU J, WANG Z Z, et al. SOH-functionalized Br?nsted acidic ionic liquids as efficient catalysts for the synthesis of isoamyl salicylate[J]. , 2014, 4(1): 1-7.
[10] HAN M H, YI W L, WU Q, et al. Preparation of biodiesel from waste oils catalyzed by a Br?nsted acidic ionic liquid[J]. , 2009, 100(7): 2308-2310.
[11] SINGH S K, DHEPE P L. Ionic liquids catalyzed lignin liquefaction: mechanistic studies using TPO-MS, FT-IR, RAMAN and 1D, 2D-HSQC/NOSEY NMR[J]. , 2016, 18(14): 4098-4108.
[12] LIU Y M, CHEN S X, AN R, et al. Development of a correlation equation between the diesterification of maleic anhydride and the acidic ionic liquids nature[J]. , 2023, 4(1): 57-63.
[13] ZHENG W Z, SHA J L, SUN W Z, et al. Understanding the interfacial properties of benzene alkylation with 1-dodecene catalyzed by immobilized chloroaluminate ionic liquids using molecular dynamics simulation[J]. , 2023, 4(3): 338-345.
[14] FORBES D. Br?nsted acidic ionic liquids: the dependence on water of the Fischer esterification of acetic acid and ethanol[J]. : , 2004, 214(1): 129-132.
[15] WANG X, MA S G, CHEN B H, et al. Swelling acidic poly(ionic liquid)s as efficient catalysts for the esterification of cyclohexene and formic acid[J]. , 2020, 5(2): 138-146.
[16] ANJOS N S, CHAPINA A I, SANTOS A R, et al. Groebke-Blackburn- bienaymé multicomponent reaction catalysed by reusable Br?nsted-acidic ionic liquids[J]. , 2022, 2022(40): e202200615.
[17] QIAO K, YOKOYAMA C. Novel acidic ionic liquids catalytic systems for Friedel-Crafts alkylation of aromatic compounds with alkenes[J]. , 2004, 33(4): 472-473.
[18] KALKHAMBKAR R G, WATERS S N, LAALI K K. Highly efficient synthesis of amides Ritter chemistry with ionic liquids[J]. , 2011, 52(8): 867-871.
[19] LIANG X Z, YANG J G. Synthesis of a novel multi–SOH functionalized ionic liquid and its catalytic activities for biodiesel synthesis[J]. , 2010, 12(2): 201-204.
[20] GU Y L, ZHANG J, DUAN Z Y, et al. Pechmann reaction in non-chloroaluminate acidic ionic liquids under solvent-free conditions[J]. , 2005, 347(4): 512-516.
[21] CHENG X L, LIU Y, WANG K, et al. High-efficient conversion of cellulose to levulinic acid catalyzed via functional Br?nsted–lewis acidic ionic liquids[J]. , 2022, 152(4): 1064-1075.
[22] FANG D, LUO J, ZHOU X L, et al. One-pot green procedure for Biginelli reaction catalyzed by novel task-specific room-temperature ionic liquids[J]. : , 2007, 274(1-2): 208-211.
[23] 蘇玉. 雙核酸性離子液體的合成及其催化制備生物柴油的性能研究[D]. 撫州:東華理工大學(xué),2016.
[24] LEI Y, YU L M, SHEN M C, et al. Condensation of 9-fluorenone and phenol using an ionic liquid and a mercapto compound synergistic catalyst[J]. , 2019, 43(39): 15700-15705.
Synthesis and Characterization ofDual-Core Acidic Ionic Liquids
XIE Jingxue1,2, WANG Heng2, FENG Mi2, XU Fei2, WANG Zhumin1
(1. Shenyang University of Chemical Technology, Shenyang Liaoning 110142,China;
2. Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China)
Abstract:Dual-coreacidic ionic liquid is based on Dual-corecation structure, and it has strong catalytic activity and high stability by grafting two sulfonic acid groups, so it has great application potential in replacing strong corrosive industrial traditional acids.Five dual-core sulfonic acidic ionic liquids with triethylenediamine as the cation were designed and synthesized, theywere characterized by nuclear magnetic resonance spectroscopy (NMR) and infrared spectroscopy (FT-IR). In addition, their acidity () was determined by UV spectrophotometry, and the relationship between the structures and acidity of the ionic liquids was investigated.
Key words:Dual-core acidic ionic liquids; Structural characterization; Acidity ()