国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

ATG14調(diào)控家兔毛囊毛乳頭細(xì)胞自噬進(jìn)程的功能探究

2024-09-30 00:00:00曹馨予蔡佳煒鮑志遠(yuǎn)姚漱玉李云鵬陳陽(yáng)吳信生趙博昊
畜牧獸醫(yī)學(xué)報(bào) 2024年8期
關(guān)鍵詞:自噬家兔毛囊

摘 要: 旨在探究自噬相關(guān)蛋白14(autophagy-related protein 14,ATG14)調(diào)控家兔毛囊毛乳頭細(xì)胞(dermal papilla cells,DPCs)自噬進(jìn)程對(duì)毛囊發(fā)育生長(zhǎng)的影響。本試驗(yàn)選取健康6月齡長(zhǎng)毛兔,采集背部皮膚分離培養(yǎng)DPCs,通過(guò)克隆ATG14基因的編碼序列(coding sequence,CDS),利用生物信息學(xué)對(duì)ATG14的生物學(xué)特性進(jìn)行初步分析,在家兔DPCs中過(guò)表達(dá)或敲減ATG14對(duì)自噬相關(guān)蛋白和毛囊生長(zhǎng)發(fā)育相關(guān)基因的表達(dá)及DPCs增殖水平的影響進(jìn)行探究。結(jié)果表明,ATG14基因CDS長(zhǎng)度為1 479 bp,共編碼492個(gè)氨基酸,不存在潛在信號(hào)肽及跨膜區(qū),屬于定位于細(xì)胞核的不穩(wěn)定蛋白,在不同哺乳動(dòng)物中存在同源性。家兔DPCs中過(guò)表達(dá)或敲減ATG14后,WB結(jié)果顯示ATG14能夠上調(diào)自噬標(biāo)志蛋白LC3和Beclin1的蛋白表達(dá),抑制自噬抑制蛋白P62表達(dá)水平。ATG14能夠增加細(xì)胞中pEGFP-LC3B熒光標(biāo)記表達(dá),表明ATG14能夠激活細(xì)胞中LC3B的表達(dá)。同時(shí),在DPCs中過(guò)表達(dá)ATG14能夠顯著上調(diào)CCND1、FGF2、LEF1、BCL2和 WNT2的mRNA表達(dá)水平,顯著下調(diào)SFRP2和TGFβ-1的基因表達(dá)水平(Plt;0.05),敲減ATG14能夠顯著下調(diào)CCND1、FGF2、LEF1、BCL2和WNT2的基因表達(dá)水平,顯著上調(diào)SFRP2和TGFβ-1的mRNA水平(Plt;0.05)。ATG14能夠上調(diào)LEF1和CCND1的蛋白表達(dá)水平。此外,DPC中過(guò)表達(dá)ATG14能夠顯著促進(jìn)DPCs細(xì)胞增殖(Plt;0.01)。本研究通過(guò)對(duì)家兔ATG14基因調(diào)控DPCs自噬進(jìn)程的功能進(jìn)行分析,為闡明家兔毛囊生長(zhǎng)發(fā)育的調(diào)控機(jī)制提供理論依據(jù)。

關(guān)鍵詞: ATG14;自噬;毛囊;家兔;毛乳頭細(xì)胞

中圖分類號(hào): S829.1

文獻(xiàn)標(biāo)志碼:A

文章編號(hào):0366-6964(2024)08-3472-10

收稿日期:2024-01-29

基金項(xiàng)目:國(guó)家自然科學(xué)基金(32072724;32102529);財(cái)政部和農(nóng)業(yè)農(nóng)村部:國(guó)家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系資助(CARS-43-A-1);揚(yáng)州大學(xué)大學(xué)生科創(chuàng)基金(XCX20230720)

作者簡(jiǎn)介:曹馨予 (2002-),女,江蘇溧陽(yáng)人,本科生,主要從事動(dòng)物遺傳育種與繁殖的研究,E-mail: 3263694549@qq.com

通信作者:趙博昊,主要從事動(dòng)物遺傳育種與繁殖的研究,E-mail:bhzhao@yzu.edu.cn

The Function Analysis of ATG14 Regulates the Autophagy Process in Rabbit Hair Follicle

Dermal Papilla Cells

CAO" Xinyu, CAI" Jiawei, BAO" Zhiyuan, YAO" Shuyu, LI" Yunpeng, CHEN" Yang, WU" Xinsheng,

ZHAO" Bohao*

(College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China)

Abstract:" The study aimed to investigate the effect of autophagy-related protein 14 (ATG14) regulate hair follicles growth and development by autophagy progress in rabbit dermal papilla cells (DPCs). In this study, healthy 6-month-old long-hairAngora rabbits were selected to collect backdorsal skin to isolate and culture DPCs. The coding sequence (CDS) of ATG14 was cloned, and biological characteristics of ATG14 was analyzed by bioinformatics. After the overexpressed and knockdown of ATG14 in DPCs, and the expression of autophagy related protein and hair follicle growth and development related genes was detected, and the influenceeffect of ATG14 regulatedon the cell proliferation was investigated. The results showed that the length of CDS was 1 479 bp for the ATG14 gene, which could code 492 amino acids. Bioinformatics analyses indicated that the ATG14 protein didn′t have potential signal peptides and transmembrane regions, which belong to the unstable proteins localized in the nucleus, and exhibited high homology in different mammals. After the overexpression and knockdown of ATG14 in DPCs, the WB results showed that ATG14 could upregulate the protein expression of autophagy related protein LC3 and Beclin1, but downregulate the autophagy inhibitor P62 protein expression. ATG14 could increase the fluorescent labelingexpression of pEGFP-LC3B in DPCs, indicating that ATG14 could activate the expression of LC3B. What′s more, the overexpression of ATG14 could upregulate the mRNA expression of BCL2, CCND1, FGF2, WNT2 and LEF1, downregulate the gene expression of SFRP2 and TGFβ-1 (Plt;0.05), the knockdown of ATG14 could downregulate the gene expression of BCL2, CCND1, FGF2, WNT2 and LEF1, upregulate the mRNA expression of SFRP2 and TGFβ-1 (Plt;0.05). ATG14 could upregulate the expression of LEF1 and CCND1. The overexpression of ATG14 could promote the cell proliferation in DPCs (Plt;0.01). In this study, the rabbit ATG14 gene regulating the autophagy process in DPCs was analyzed, which provided the theoretical basis for elucidating the regulatory mechanism of hair follicle growth and development in rabbit.

Key words: ATG14; autophagy; hair follicle; rabbit; dermal papilla cells

*Corresponding author:ZHAO Bohao, E-mail:bhzhao@yzu.edu.cn

作為哺乳動(dòng)物特有的微器官,毛囊具有獨(dú)特的生物特性,能夠在機(jī)體生命活動(dòng)中具有保持體溫、物理防護(hù)、社交互動(dòng)和偽裝保護(hù)的作用[1]。毛囊具有周期性生長(zhǎng)的特性,并不斷經(jīng)歷著生長(zhǎng)期、退行期和休止期的周期循環(huán)[2-4]。產(chǎn)毛量則作為毛用型兔的重要經(jīng)濟(jì)性狀,為人類生產(chǎn)提供毛紡織原料,而毛囊的生長(zhǎng)發(fā)育決定了家兔被毛密度、兔毛品質(zhì)等相關(guān)性狀。

自噬作為一種生物自我降解的過(guò)程,能夠在細(xì)胞受到營(yíng)養(yǎng)脅迫、病原體入侵和蛋白質(zhì)聚集的反應(yīng)中起著重要作用[5-8]。已有研究表明,自噬進(jìn)程參與了毛囊的生長(zhǎng)發(fā)育和周期循環(huán)。在人類毛囊離體培養(yǎng)試驗(yàn)中,處于生長(zhǎng)期的毛囊基質(zhì)角質(zhì)細(xì)胞呈現(xiàn)活躍的自噬流狀態(tài),而自噬流的減弱,促使毛囊進(jìn)入休止期[9]。另外,誘導(dǎo)細(xì)胞自噬能夠激活處于休止期的毛囊,使毛囊進(jìn)入毛囊周期的生長(zhǎng)期,由藥物刺激的自噬能夠挽救脫發(fā)的發(fā)生[10]。肉豆蔻腦酸促進(jìn)了毛囊毛乳頭細(xì)胞(dermal papilla cells,DPCs)的增殖,并通過(guò)調(diào)控Wnt蛋白信號(hào)活性和自噬進(jìn)程促進(jìn)毛囊生長(zhǎng)[11]。

自噬相關(guān)蛋白14(autophagy-related protein 14,ATG14)是PtdIns 3激酶復(fù)合物的特定亞基之一,也被稱為ATG14L或Beclin1相關(guān)自噬關(guān)鍵調(diào)節(jié)因子(beclin-1-associated autophagy-related key regulator,Barkor),能夠調(diào)節(jié)自噬體的形成,增強(qiáng)PIK3C3活性并誘導(dǎo)細(xì)胞自噬的發(fā)生[12-14]。但目前對(duì)于ATG14在家兔毛囊生長(zhǎng)發(fā)育過(guò)程中的調(diào)控作用尚未見(jiàn)報(bào)道。

本研究通過(guò)克隆兔ATG14基因編碼序列(coding sequence,CDS),利用生物信息學(xué)對(duì)其潛在生物學(xué)特性進(jìn)行初步分析,在DPCs中過(guò)表達(dá)和敲減ATG14,探究ATG14對(duì)DPCs細(xì)胞自噬進(jìn)程的調(diào)控作用,同時(shí)檢測(cè)毛囊生長(zhǎng)發(fā)育相關(guān)基因的表達(dá)水平變化,以期了解ATG14對(duì)毛囊生長(zhǎng)發(fā)育的調(diào)控作用。

1 材料與方法

1.1 試驗(yàn)動(dòng)物

選擇6月齡長(zhǎng)毛兔公兔用于DPCs的分離,長(zhǎng)毛兔由江蘇省揚(yáng)州市江都區(qū)褚家巷朝陽(yáng)養(yǎng)殖場(chǎng)提供。試驗(yàn)所用的長(zhǎng)毛兔飼養(yǎng)在相同條件下,包括溫度、飼料和環(huán)境。

1.2 主要試劑

MSCM完全培養(yǎng)基購(gòu)自美國(guó)Sciencell公司,lipofectamineTM2000轉(zhuǎn)染試劑購(gòu)自Invitrogen公司,HiScript III 1st Strand cDNA Synthesis Kit(+gDNA wiper)、Phanta Max Super-Fidelity DNA Polymerase、ClonExpress Ⅱ One Step Cloning試劑盒、HiScript II Q Select RT SuperMix for qPCR、AceQ qPCR SYBR Green Master Mix、CCK8檢測(cè)試劑盒購(gòu)自南京諾唯贊生物科技有限公司。RNAsimple總RNA提取試劑盒購(gòu)自北京天根生化科技有限公司,Kpn Ⅰ和EcoR Ⅴ,E. coli DH5α感受態(tài)細(xì)胞購(gòu)自購(gòu)自TaKaRa公司。Western細(xì)胞裂解液和BCA蛋白濃度測(cè)定試劑盒購(gòu)自碧云天公司,Anti-ATG14兔多克隆抗體購(gòu)自江蘇親科生物研究中心有限公司、Anti-GAPDH鼠單克隆抗體、Anti-LEF1兔多克隆抗體、Anti-CCND1鼠單克隆抗體、Anti-P62兔多克隆抗體、Anti-Beclin1兔多克隆抗體、Anti-LC3兔多克隆抗體購(gòu)自武漢三鷹公司。

1.3 家兔DPCs培養(yǎng)與轉(zhuǎn)染

采集6月齡健康長(zhǎng)毛兔背部皮膚,根據(jù)課題組已報(bào)道方法分離獲取DPCs[15],分離得到的DPCs培養(yǎng)于MSCM完全培養(yǎng)基中,并在37 ℃含有5% CO2的培養(yǎng)箱中培養(yǎng)。轉(zhuǎn)染前,將DPCs接種于24孔板中,待細(xì)胞匯合度達(dá)到80%時(shí),使用lipofectamineTM2000轉(zhuǎn)染試劑根據(jù)試劑盒說(shuō)明書(shū)進(jìn)行轉(zhuǎn)染。

1.4 總RNA的提取與反轉(zhuǎn)錄

使用RNAsimple總RNA提取試劑盒提取試驗(yàn)中細(xì)胞總RNA。經(jīng)Nanodrop 2000檢測(cè)RNA濃度與純度。使用HiScript III 1st Strand cDNA Synthesis Kit(+gDNA wiper)進(jìn)行全長(zhǎng)cDNA一鏈的合成。

1.5 ATG14過(guò)表達(dá)載體和干擾載體的構(gòu)建

根據(jù)GenBank數(shù)據(jù)庫(kù)中ATG14基因轉(zhuǎn)錄本(XM_002718262.4)設(shè)計(jì)CDS序列擴(kuò)增引物,送至擎科生物公司合成引物(表1)。利用Phanta Max Super-Fidelity DNA Polymerase進(jìn)行PCR產(chǎn)物,產(chǎn)物經(jīng)1%瓊脂糖凝膠電泳鑒定PCR產(chǎn)物長(zhǎng)度。pcDNA3.1(+)載體經(jīng)Kpn Ⅰ和EcoR Ⅴ雙酶切后,切膠回收,使用ClonExpress Ⅱ One Step Cloning試劑盒進(jìn)行一步克隆試驗(yàn),連接產(chǎn)物轉(zhuǎn)化至E. coli DH5α感受態(tài)細(xì)胞,過(guò)夜培養(yǎng)后挑取陽(yáng)性菌落進(jìn)行鑒定,鑒定成功后的菌液通過(guò)無(wú)內(nèi)毒素大提質(zhì)粒試劑盒提取質(zhì)粒。小干擾RNA(small interference RNA,siRNA)購(gòu)自上海吉瑪制藥有限公司,序列信息如表1所示。

1.6 生物信息學(xué)分析

利用在線軟件ProtParam(http:∥web.expasy.org/protparam/)進(jìn)行ATG14理化性質(zhì)的預(yù)測(cè)分析[16];SignalP 4.1(https:∥services.healthtech.dtu.dk/services/SignalP-4.1/)對(duì)ATG14的潛在信號(hào)肽進(jìn)行預(yù)測(cè)[17];TMHMM 2.0(https:∥services.healthtech.dtu.dk/services/TMHMM-2.0/)對(duì)ATG14的跨膜區(qū)和分泌蛋白進(jìn)行預(yù)測(cè)[18]。NetPhos 3.1 Server (https:∥services.healthtech.dtu.dk/services/NetPhos-3.1/)對(duì)磷酸化位點(diǎn)進(jìn)行預(yù)測(cè)[19];NetOGlyc 4.0 Server (https:∥services.healthtech.dtu.dk/services/NetOGlyc-4.0/)和NetNGlyc 1.0 Server(https:∥services.healthtech.dtu.dk/services/NetNGlyc-1.0/)分別對(duì)糖基化位點(diǎn)進(jìn)行預(yù)測(cè)[20-21];PSORT II(https:∥www.genscript.com/psort.html?src=leftbar)進(jìn)行亞細(xì)胞定位的預(yù)測(cè)[22];利用MEGA X軟件進(jìn)行進(jìn)化樹(shù)分析[23];Hopfield(http:∥npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_gor4.html)進(jìn)行蛋白質(zhì)二級(jí)結(jié)構(gòu)分析[24];SWISS-MODEL 用于蛋白質(zhì)三級(jí)結(jié)構(gòu)預(yù)測(cè)[25]。通過(guò)STRING數(shù)據(jù)庫(kù)對(duì)ATG14蛋白的蛋白互作網(wǎng)絡(luò)進(jìn)行預(yù)測(cè)[26]。

1.7 實(shí)時(shí)熒光定量PCR(qRT-PCR)

收集轉(zhuǎn)染后的DPCs提取細(xì)胞總RNA,通過(guò)HiScript II Q Select RT SuperMix for qPCR進(jìn)行cDNA第一鏈合成。使用AceQ qPCR SYBR Green Master Mix進(jìn)行qRT-PCR試驗(yàn),試驗(yàn)所用特異性引物如表2所示,家兔GAPDH(glyceraldehyde 3-phosphate dehydrogenase)作為內(nèi)參基因,所得試驗(yàn)結(jié)果通過(guò)2-ΔΔCt法計(jì)算相對(duì)表達(dá)水平[27]。

1.8 蛋白免疫印跡

使用Western細(xì)胞裂解液對(duì)樣品提取總蛋白。BCA蛋白濃度測(cè)定試劑盒測(cè)定樣品蛋白濃度。利用全自動(dòng)蛋白質(zhì)印跡定量分析(Wes automated Western blotting system)進(jìn)行蛋白表達(dá)水平的檢測(cè),分別配制DTT、Fluorescent 5×Master Mix、Biotinylated Ladder、0.1×Sample Buffer,根據(jù)樣品原液濃度配制終濃度為0.2 μg·μL-1的待檢蛋白樣本,置于95℃變性5 min。使用Antibody Diluent II稀釋配制一抗和二抗,并配制發(fā)光液。將配置好的試劑根據(jù)試驗(yàn)分組依次加入板內(nèi)。使用Compass for SW軟件上機(jī)操作,完成后收集數(shù)據(jù)并處理。

1.9 細(xì)胞增殖檢測(cè)

通過(guò)CCK8法檢測(cè)細(xì)胞增殖水平。細(xì)胞計(jì)數(shù)后,將細(xì)胞接種于96孔板中,每孔100 μL,預(yù)培養(yǎng)24 h。在每個(gè)測(cè)定時(shí)間點(diǎn)(0、24、48、72 h)沿細(xì)胞板壁向孔中加入CCK-8 Solution(10 μL·孔-1),輕輕晃勻,細(xì)胞培養(yǎng)箱中孵育4 h,酶標(biāo)儀450 nm測(cè)定吸光值。

1.10 數(shù)據(jù)統(tǒng)計(jì)與分析

數(shù)據(jù)分析采用SPSS 25.0統(tǒng)計(jì)軟件,根據(jù)不同的試驗(yàn)對(duì)數(shù)據(jù)進(jìn)行成對(duì)T檢驗(yàn)分析,試驗(yàn)中至少設(shè)計(jì)3個(gè)生物學(xué)重復(fù),結(jié)果使用“平均值±標(biāo)準(zhǔn)差”表示。Plt;0.05表示差異顯著,Plt;0.01表示差異極顯著。

2 結(jié) 果

2.1 ATG14的克隆和生物信息學(xué)分析

通過(guò)PCR擴(kuò)增和克隆測(cè)序獲得ATG14基因CDS長(zhǎng)度為1 479 bp,共編碼492個(gè)氨基酸。利用ProtParam軟件預(yù)測(cè)可知,ATG14蛋白的分子量為55.24 ku,分子式為C2387H3803N699O761S24,理論等電位為6.72,不穩(wěn)定系數(shù)為50.26,屬于不穩(wěn)定蛋白,親水性平均系數(shù)為-0.700。SignalP 4.1軟件預(yù)測(cè)結(jié)果表明ATG14不存在潛在信號(hào)肽(圖 1A)。TMHMM預(yù)測(cè)結(jié)果顯示ATG14蛋白不包含跨膜區(qū)(圖1B)。Netphos 3.1 server預(yù)測(cè)結(jié)果表明ATG14蛋白存在58個(gè)磷酸化位點(diǎn):38個(gè)絲氨酸(Ser)、17個(gè)蘇氨酸(Thr)和3個(gè)酪氨酸(Tyr)。NetOGlyc 4.0 server預(yù)測(cè)結(jié)果表明ATG14蛋白有18個(gè)O-糖基化位點(diǎn)和2個(gè)N-糖基化位點(diǎn)。亞細(xì)胞定位在線預(yù)測(cè)工具PSORT II結(jié)果顯示ATG14蛋白定位于細(xì)胞核的概率為69.6%,細(xì)胞質(zhì)為21.7%,過(guò)氧化物酶體為4.3%,線粒體為4.3%。

2.2 ATG14蛋白的結(jié)構(gòu)預(yù)測(cè)

ATG14蛋白的二級(jí)結(jié)構(gòu)預(yù)測(cè)表明,α-螺旋占37.80%,延伸鏈占14.63%,無(wú)規(guī)則卷曲占47.56%(圖1C)。利用SWISSMODEL在線工具對(duì)ATG14的三級(jí)結(jié)構(gòu)預(yù)測(cè)結(jié)果顯示呈一條螺旋鏈(圖1D)。STRING數(shù)據(jù)庫(kù)對(duì)ATG14蛋白互作網(wǎng)絡(luò)進(jìn)行分析表明,ATG14蛋白與ATG13、BECN1、PIK3R4、PIK3C3和STX17等蛋白存在互作關(guān)系(圖1E)。

2.3 ATG14基因系統(tǒng)進(jìn)化樹(shù)分析

對(duì)ATG14基因在不同物種中的同源性進(jìn)行分析,利用MEGA X軟件構(gòu)建蘇門答臘猩猩(Pongo abelii)、人(Homo sapiens)、家兔(Oryctolagus cuniculus)、綿羊(Ovis aries)、豬(Sus scrofa)、犬(Canis lupus familiaris)、大鼠(Rattus norvegicus)、小鼠(Mus musculus)、雞(Gallus gallus)9個(gè)物種的系統(tǒng)進(jìn)化樹(shù),結(jié)果表明家兔ATG14基因與人類和蘇門答臘猩猩構(gòu)成一個(gè)分支,具有同源性(圖1F)。

2.4 ATG14對(duì)毛乳頭細(xì)胞自噬進(jìn)程的激活

在DPCs中過(guò)表達(dá)或敲減ATG14,qRT-PCR結(jié)果表明pcDNA3.1-ATG14能夠極顯著上調(diào)ATG14的mRNA表達(dá)水平(圖2A,Plt;0.01),siRNA-ATG14能夠極顯著下調(diào)ATG14的mRNA表達(dá)水平(圖2B,Plt;0.01)。WB結(jié)果表明,pcDNA3.1-ATG14能夠極顯著上調(diào)ATG14的蛋白表達(dá)水平,siRNA-ATG14能夠極顯著下調(diào)ATG14的蛋白表達(dá)水平(圖2C)。DPCs中ATG14的過(guò)表達(dá)能夠顯著上調(diào)自噬標(biāo)志蛋白LC3和Beclin1的蛋白表達(dá),抑制自噬抑制蛋白P62表達(dá)水平(圖2C)。

進(jìn)一步探究ATG14對(duì)DPCs自噬進(jìn)程的激活,在DPCs中過(guò)表達(dá)或敲減ATG14的同時(shí)共轉(zhuǎn)染pEGFP-LC3B質(zhì)粒,細(xì)胞熒光觀察顯示,過(guò)表達(dá)ATG14能夠增加細(xì)胞中pEGFP-LC3B熒光標(biāo)記,表明ATG14能夠激活細(xì)胞中LC3B的表達(dá)(圖2D)。

2.5 ATG14對(duì)毛囊發(fā)育相關(guān)基因的調(diào)控作用

進(jìn)一步探究ATG14對(duì)毛囊發(fā)育相關(guān)基因的影響,在DPCs中過(guò)表達(dá)ATG14能夠顯著上調(diào)CCND1、FGF2、LEF1、BCL2和 WNT2的mRNA表達(dá)水平,顯著下調(diào)SFRP2和TGFβ-1的基因表達(dá)水平(圖3A,Plt;0.05);敲減ATG14能夠顯著下調(diào)CCND1、FGF2、LEF1、BCL2和WNT2的基因表達(dá)水平,顯著上調(diào)SFRP2和TGFβ-1的mRNA表達(dá)水平(圖3B,Plt;0.05)。WB結(jié)果表明ATG14過(guò)表達(dá)能夠上調(diào)LEF1和CCND1的蛋白表達(dá)水平(圖3C)。

2.6 ATG14對(duì)DPCs細(xì)胞增殖的影響

利用CCK8檢測(cè)ATG14對(duì)DPCs細(xì)胞增殖的影響,結(jié)果表明,過(guò)表達(dá)ATG14能夠在轉(zhuǎn)染后24~72 h顯著促進(jìn)DPCs細(xì)胞增殖(圖4A,Plt;0.01),敲減ATG14能夠在轉(zhuǎn)染后24~72 h顯著抑制DPCs細(xì)胞增殖(圖4B,Plt;0.01)。

3 討 論

自噬作為真核生物的重要生物進(jìn)程,能夠調(diào)控毛囊周期,影響毛囊生長(zhǎng)發(fā)育與再生[28]。已有研究表明,自噬抑制劑通過(guò)影響氧化應(yīng)激途徑誘導(dǎo)人DPCs細(xì)胞早衰,使得DPCs遷移能力降低,生物活性因子表達(dá)下調(diào)[29]。硬脂酰輔酶A飽和酶1通過(guò)介導(dǎo)PI3K-AKT-mTOR通路抑制自噬進(jìn)程,從而抑制對(duì)毛發(fā)生長(zhǎng)產(chǎn)生的影響[30]?;羯绞軌蛏险{(diào)自噬關(guān)鍵因子LC3Ⅱ和抑凋亡因子BCL2的表達(dá),通過(guò)激活自噬和抑制凋亡促進(jìn)毛發(fā)生長(zhǎng),緩解脫發(fā)[31]。目前,超過(guò)30個(gè)自噬相關(guān)蛋白(autophagy related proteins,ATG)家族中的ATG基因在酵母中被發(fā)現(xiàn),其中至少18個(gè)基因是參與自噬進(jìn)程中自噬體形成的必要因子,大多數(shù)ATG在哺乳動(dòng)物中呈現(xiàn)高度保守,并且他們構(gòu)成自噬體的機(jī)制也大致保守[32-33]。作為ATG家族的一員,ATG14是決定PtdIns 3-激酶復(fù)合物功能的關(guān)鍵因子,通過(guò)調(diào)節(jié)復(fù)合物I的定位來(lái)指導(dǎo)復(fù)合物I在自噬中發(fā)揮作用[34]。

本研究克隆得到了家兔ATG14的編碼序列,其可編碼492個(gè)氨基酸,生物信息學(xué)分析顯示,ATG14蛋白屬于不穩(wěn)定親水蛋白,且不存在信號(hào)肽和跨膜區(qū)。糖基化在信號(hào)轉(zhuǎn)導(dǎo)、免疫反應(yīng)、受體激活、細(xì)胞粘附和內(nèi)吞作用等眾多生物過(guò)程中起著重要作用[35]。ATG14含有18個(gè)O-糖基化位點(diǎn)和2個(gè)N-糖基化位點(diǎn),表明其可通過(guò)潛在的糖基化作用于生物調(diào)控作用。ATG14蛋白為定位于細(xì)胞核的不穩(wěn)定蛋白,且能夠與ATG13[36]、BECN1[37]、PIK3R4[38]、PIK3C3[39]和STX17[40]等自噬相關(guān)蛋白存在互作關(guān)系。自噬的誘導(dǎo)與液泡的存在有關(guān),液泡的特征標(biāo)記為L(zhǎng)C3蛋白[41]。Beclin1是一種與BCL2或PI3KIII類相互作用的蛋白,在自噬和細(xì)胞死亡的調(diào)控中起關(guān)鍵作用[42]。P62是自噬的選擇性底物之一,在胞質(zhì)蛋白包含物的形成中起著關(guān)鍵作用[43]。研究結(jié)果中,ATG14的過(guò)表達(dá)能夠促進(jìn)DPCs中LC3和Beclin1蛋白的表達(dá),抑制P62蛋白的表達(dá),表明ATG14能夠在DPCs中參與自噬相關(guān)蛋白的表達(dá)調(diào)控,促進(jìn)DPCs的自噬發(fā)生。

Wnt2、LEF1和CCND1能夠通過(guò)Wnt/β-catenin信號(hào)通路影響毛乳頭細(xì)胞的活性,調(diào)控毛囊生長(zhǎng)發(fā)育[44-45]。BCL2在毛囊周期與形態(tài)發(fā)生過(guò)程中起著重要作用[46]。FGF2能夠促進(jìn)DPCs的細(xì)胞增殖,維持毛發(fā)的誘導(dǎo)能力[47]。SFRP2在毛囊生長(zhǎng)的不同時(shí)期呈現(xiàn)差異表達(dá),對(duì)毛囊再生起抑制作用[48-49]。TGFβ-1與雄性激素導(dǎo)致的脫發(fā)密切相關(guān)[50]。本研究中,在DPCs中過(guò)表達(dá)與敲減ATG14能夠調(diào)控毛囊生長(zhǎng)發(fā)育相關(guān)基因CCND1、FGF2、LEF1、BCL2、Wnt2、SFRP2和TGFβ-1的基因表達(dá)水平,表明ATG14能夠參與家兔毛囊的生長(zhǎng)發(fā)育。

4 結(jié) 論

本研究成功克隆了家兔ATG14基因編碼序列,長(zhǎng)度為1 479 bp,共編碼492個(gè)氨基酸,生物信息學(xué)預(yù)測(cè)表明ATG14蛋白為不穩(wěn)定親水蛋白,含有18個(gè)O-糖基化位點(diǎn)和2個(gè)N-糖基化位點(diǎn)。ATG14在DPCs細(xì)胞中的過(guò)表達(dá)能夠上調(diào)自噬相關(guān)蛋白的表達(dá),同時(shí)引起CCND1、FGF2和LEF1等毛囊生長(zhǎng)發(fā)育相關(guān)基因表達(dá)水平的變化,并具有促進(jìn)DPCs細(xì)胞增殖的作用。

參考文獻(xiàn)(References):

[1] STENN K S,PAUS R.Controls of hair follicle cycling[J].Physiol Rev,2001,81(1):449-494.

[2] SCHNEIDER M R,SCHMIDT-ULLRICH R,PAUS R.The hair follicle as a dynamic miniorgan[J].Curr Biol,2009,19(3): R132-R142.

[3] JI S F,ZHU Z Y,SUN X Y,et al.Functional hair follicle regeneration:an updated review[J].Signal Transduct Target Ther,2021, 6(1):66.

[4] 李玉娟,張?jiān)懀瑥埍庇?,?飼糧賴氨酸水平對(duì)安哥拉兔產(chǎn)毛性能及毛囊發(fā)育的影響[J].畜牧獸醫(yī)學(xué)報(bào),2023, 54(5):2013-2019.

LI Y J,ZHANG Y M,ZHANG B Y,et al.Effects of dietary lysine supplementation on hair production performance and hair follicle development of angora rabbits[J].Acta Veterinaria et Zootechnica Sinica,2023,54(5):2013-2019.(in Chinese)

[5] CAO W Y,LI J H,YANG K P,et al.An overview of autophagy:Mechanism,regulation and research progress[J].Bull Cancer,2021,108(3):304-322.

[6] YAMAMOTO H,ZHANG S D,MIZUSHIMA N.Autophagy genes in biology and disease[J].Nat Rev Genet,2023,24(6): 382-400.

[7] VARGAS J N S,HAMASAKI M,KAWABATA T,et al.The mechanisms and roles of selective autophagy in mammals[J].Nat Rev Mol Cell Biol,2023,24(3):167-185.

[8] 李鈺浚,何翃閎,楊麗雪,等.線粒體自噬調(diào)控哺乳動(dòng)物胚胎發(fā)育的研究進(jìn)展[J].畜牧獸醫(yī)學(xué)報(bào),2024,55(3):905-912.

LI Y J,HE H H,YANG L X,et al.Advances in regulation of mammalian embryonic development by mitochondrial autophagy[J].Acta Veterinaria et Zootechnica Sinica,2024,55(3):905-912.(in Chinese)

[9] PARODI C,HARDMAN J A,ALLAVENA G,et al.Autophagy is essential for maintaining the growth of a human (mini-)organ: evidence from scalp hair follicle organ culture[J].PLoS Biol,2018,16(3):e2002864.

[10] CHAI M,JIANG M S,VERGNES L,et al.Stimulation of hair growth by small molecules that activate autophagy[J].Cell Rep,2019,27(12):3413-3421.e3.

[11] CHOI Y K,KANG J I,HYUN J W,et al.Myristoleic acid promotes anagen signaling by autophagy through activating Wnt/β-catenin and ERK pathways in dermal papilla cells[J].Biomol Ther,2021,29(2):211-219.

[12] OBARA K,OHSUMI Y.Atg14:a key player in orchestrating autophagy[J].Int J Cell Biol,2011,2011:713435.

[13] DIAO J J,LIU R,RONG Y G,et al.ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes[J]. Nature,2015,520(7548):563-566.

[14] ZHAO Y T,ZOU Z J,SUN D X,et al.GLIPR2 is a negative regulator of autophagy and the BECN1-ATG14-containing phosphatidylinositol 3-kinase complex[J].Autophagy,2021,17(10):2891-2904.

[15] LI J L,ZHAO B H,ZHANG X Y,et al.Establishment and functional characterization of immortalized rabbit dermal papilla cell lines[J].Anim Biotechnol,2023,34(8):4050-4059.

[16] GASTEIGER E,HOOGLAND C,GATTIKER A,et al.Protein identification and analysis tools on the ExPASy server[M]∥ WALKER J M.The Proteomics Protocols Handbook.Humana Totowa:Springer,2005:571-607.

[17] PETERSEN T N,BRUNAK S,VON HEIJNE G,et al.SignalP 4.0:discriminating signal peptides from transmembrane regions[J].Nat Methods,2011,8(10):785-786.

[18] M?LLER S,CRONING M D R,APWEILER R.Evaluation of methods for the prediction of membrane spanning regions[J].Bioinformatics,2001,17(7):646-653.

[19] BLOM N,GAMMELTOFT S,BRUNAK S.Sequence and structure-based prediction of eukaryotic protein phosphorylation sites[J].J Mol Biol,1999,294(5):1351-1362.

[20] STEENTOFT C,VAKHRUSHEV S Y,JOSHI H J,et al.Precision mapping of the human O-GalNAc glycoproteome through SimpleCell technology[J].EMBO J,2013,32(10):1478-1488.

[21] GUPTA R,BRUNAK S.Prediction of glycosylation across the human proteome and the correlation to protein function[J].Pac Symp Biocomput,2002,7(3):310-322.

[22] NAKAI K,HORTON P.PSORT:a program for detecting sorting signals in proteins and predicting their subcellular localization[J].Trends Biochem Sci,1999,24(1):34-35.

[23] KUMAR S,STECHER G,LI M,et al.MEGA X:molecular evolutionary genetics analysis across computing platforms[J].Mol Biol Evol,2018,35(6):1547-1549.

[24] DELéAGE G.ALIGNSEC:viewing protein secondary structure predictions within large multiple sequence alignments[J]. Bioinformatics,2017,33(24):3991-3992.

[25] WATERHOUSE A,BERTONI M,BIENERT S,et al.SWISS-MODEL:homology modelling of protein structures and complexes[J].Nucleic Acids Res,2018,46(W1):W296-W303.

[26] HORTON P,PARK K J,OBAYASHI T,et al.WoLF PSORT:protein localization predictor[J].Nucleic Acids Res,2007,35(S2): W585-W587.

[27] SCHMITTGEN T D,LIVAK K J.Analyzing real-time PCR data by the comparative CT method[J].Nat Protoc,2008,3(6): 1101-1108.

[28] 黃雨馨,梁文姿,陳秀文,等.自噬在毛發(fā)再生中的作用[J].中國(guó)組織工程研究,2024,28(7):1112-1117.

HUANG Y X,LIANG W Z,CHEN X W,et al.Role of autophagy in hair regeneration[J].Chinese Journal of Tissue Engineering Research,2024,28(7):1112-1117.(in Chinese)

[29] 萬(wàn) 梅,鐘 意,翁祖銓,等.自噬抑制劑通過(guò)氧化應(yīng)激誘導(dǎo)人頭皮毛乳頭細(xì)胞早衰進(jìn)程[J].中國(guó)皮膚性病學(xué)雜志,2023,37(7):748-754.

WAN M,ZHONG Y,WENG Z Q,et al.Autophagy inhibitors induce premature senescence of human scalp dermal papilla cells by oxidative stress[J].The Chinese Journal of Dermatovenereology,2023,37(7):748-754.(in Chinese)

[30] 羅 怡.SCD1通過(guò)抑制自噬對(duì)毛囊生長(zhǎng)的調(diào)控作用及機(jī)制研究[D].重慶:重慶醫(yī)科大學(xué),2022.

LUO Y.Role and mechanism of SCD1 by inhibiting autogpagy on hair follice[D].Chongqing:Chongqing Medical University,2022.(in Chinese)

[31] 張 敏,黃 蓉,段亞君,等.霍山石斛通過(guò)激活自噬和抑制凋亡促進(jìn)脫發(fā)模型小鼠生發(fā)作用[J].合肥工業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,45(6):844-848.

ZHANG M,HUANG R,DUAN Y J,et al.Dendrobium huoshanense promotes hair growth in mouse model of alopecia by activating autophagy and inhibiting apoptosis[J].Journal of Hefei University of Technology (Natural Science),2022,45(6):844-848.(in Chinese)

[32] NAKATOGAWA H,SUZUKI K,KAMADA Y,et al.Dynamics and diversity in autophagy mechanisms:lessons from yeast[J].Nat Rev Mol Cell Biol,2009,10(7):458-467.

[33] YANG Z F,KLIONSKY D J.An overview of the molecular mechanism of autophagy[M]∥LEVINE B,YOSHIMORI T,DERETIC V.Autophagy in Infection and Immunity.Berlin:Springer,2009:1-32.

[34] OBARA K,SEKITO T,OHSUMI Y.Assortment of phosphatidylinositol 3-kinase complexes—Atg14p directs association of complex I to the pre-autophagosomal structure in Saccharomyces cerevisiae[J].Mol Biol Cell,2006,17(4):1527-1539.

[35] OHTSUBO K,MARTH J D.Glycosylation in cellular mechanisms of health and disease[J].Cell,2006,126(5):855-867.

[36] CHANG Y Y,NEUFELD T P.An Atg1/Atg13 complex with multiple roles in TOR-mediated autophagy regulation[J].Mol Biol Cell,2009,20(7):2004-2014.

[37] MEI Y,GLOVER K,SU M F,et al.Conformational flexibility of BECN1:essential to its key role in autophagy and beyond[J]. Protein Sci,2016,25(10):1767-1785.

[38] LIU Y,WEI C H,LI C,et al.Phosphoinositide-3-kinase regulatory subunit 4 participates in the occurrence and development of amyotrophic lateral sclerosis by regulating autophagy[J].Neural Regen Res,2022,17(7):1609.

[39] WANG Y D,LI J H,ZHENG H T,et al.Cezanne promoted autophagy through PIK3C3 stabilization and PIK3C2A transcription in lung adenocarcinoma[J].Cell Death Discov,2023,9(1):302.

[40] SHEN Q H,SHI Y,LIU J Q,et al.Acetylation of STX17 (syntaxin 17) controls autophagosome maturation[J].Autophagy,2021, 17(5):1157-1169.

[41] TANIDA I,UENO T,KOMINAMI E.LC3 and Autophagy[M]∥DERETIC V.Autophagosome and Phagosome.Humana Totowa:Springer,2008:77-88.

[42] FU L L,CHENG Y,LIU B.Beclin-1:autophagic regulator and therapeutic target in cancer[J].Int J Biochem Cell Biol,2013, 45(5):921-924.

[43] ICHIMURA Y,KOMATSU M.Selective degradation of p62 by autophagy[J].Semin Immunopathol,2010,32(4):431-436.

[44] HWANG J H,LEE H Y,CHUNG K B,et al.Non-thermal atmospheric pressure plasma activates Wnt/β-catenin signaling in dermal papilla cells[J].Sci Rep,2021,11(1):16125.

[45] TIAN Y Z,YANG X M,DU J W,et al.Differential methylation and transcriptome integration analysis identified differential methylation annotation genes and functional research related to hair follicle development in sheep[J].Front Genet,2021,12:735827.

[46] MLLER-R?VER S,ROSSITER H,LINDNER G,et al.Hair follicle apoptosis and Bcl-2[J].J Investig Dermatol Symp Proc,1999,4(3):272-277.

[47] KISO M,HAMAZAKI T S,ITOH M,et al.Synergistic effect of PDGF and FGF2 for cell proliferation and hair inductive activity in murine vibrissal dermal papilla in vitro[J].J Dermatol Sci,2015,79(2):110-118.

[48] 孫露露,石福岳,秦立志,等.皖系長(zhǎng)毛兔不同周齡Wnt10b、SFRP2基因在皮膚中的表達(dá)規(guī)律[J].中國(guó)畜牧雜志,2013, 49(13):4-8.

SUN L L,SHI F Y,QIN L Z.The expressions rules of Wnt10b and SFRP2 gene in skin of Wanxi Angora rabbit[J].Chinese Journal of Animal Science,2013,49(13):4-8.(in Chinese)

[49] KIM B K,YOON S K.Expression of sfrp2 is increased in catagen of hair follicles and inhibits keratinocyte proliferation[J].Ann Dermatol,2014,26(1):79-87.

[50] INUI S,F(xiàn)UKUZATO Y,NAKAJIMA T,et al.Androgen-inducible TGF-β1 from balding dermal papilla cells inhibits epithelial cell growth:a clue to understanding paradoxical effects of androgen on human hair growth[J].FASEB J,2002,16(14):1967-1969.

(編輯 郭云雁)

猜你喜歡
自噬家兔毛囊
首個(gè)人工毛囊問(wèn)世
軍事文摘(2023年2期)2023-02-17 09:20:24
家兔“三催”增效飼養(yǎng)法
中西醫(yī)結(jié)合治療毛囊閉鎖三聯(lián)征2例
自噬在糖尿病腎病發(fā)病機(jī)制中的作用
亞精胺誘導(dǎo)自噬在衰老相關(guān)疾病中的作用
科技視界(2016年11期)2016-05-23 08:10:09
治療脫發(fā)趕在毛囊萎縮前
保健與生活(2016年1期)2016-04-12 18:29:44
家兔常見(jiàn)皮膚病的防治
家兔便秘的防治辦法
自噬在不同強(qiáng)度運(yùn)動(dòng)影響關(guān)節(jié)軟骨細(xì)胞功能中的作用
家兔胰島分離純化方法的改進(jìn)
饶平县| 额尔古纳市| 收藏| 大洼县| 万安县| 苍南县| 从江县| 湘乡市| 佳木斯市| 平遥县| 松阳县| 来宾市| 黄龙县| 广平县| 泰兴市| 安徽省| 广水市| 临高县| 田林县| 竹山县| 河池市| 凌云县| 金堂县| 德江县| 曲阜市| 杭锦旗| 青河县| 富源县| 金山区| 疏附县| 大庆市| 旬邑县| 渑池县| 佛学| 洛阳市| 渭南市| 凌源市| 芜湖县| 富阳市| 乌兰察布市| 五河县|