收稿日期: 2023-03-20; 修回日期: 2023-05-21; 網(wǎng)絡(luò)出版時間: 2024-05-23
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.TH.20240522.1043.024
基金項目: 國家自然科學(xué)基金資助項目(51879122,51779108,51779106);鎮(zhèn)江市重點研發(fā)計劃項目(GY2017001,GY2018025);西華大學(xué)流體及動力機械教育部重點實驗室開放課題(szjj2017-094);江蘇高校優(yōu)勢學(xué)科建設(shè)工程項目(PAPD);江蘇省“六大人才高峰”高層次人才項目(GBZB-017)
第一作者簡介: 胡思源(1998—),男,江蘇鎮(zhèn)江人,博士研究生(husiyuan9805@163.com),主要從事泵故障診斷及壽命預(yù)測研究.
通信作者簡介: 董亮(1981—),男,江蘇鎮(zhèn)江人,研究員,博士生導(dǎo)師(dongliang@ujs.edu.cn),主要從事泵監(jiān)測及故障診斷研究.
摘要: 為了給立式離心泵的故障診斷提供試驗和理論依據(jù),搭建立式離心泵仿真試驗臺,進行立式離心泵典型故障的仿真復(fù)現(xiàn)試驗,分析了轉(zhuǎn)子不平衡、轉(zhuǎn)子不對中和支座連接松動等故障的振動特性及其頻譜特征.結(jié)果表明:機腳處的振動位移信號對支座連接松動故障的振動特性敏感性更高,軸系的振動信號對轉(zhuǎn)子故障的振動特性敏感性更高;轉(zhuǎn)子不平衡故障和轉(zhuǎn)子不對中故障表現(xiàn)出不同的頻譜特征,轉(zhuǎn)子不平衡故障的頻譜特征表現(xiàn)為1倍振動主要頻率(amplitude power frequency,APF)幅值增大,且隨著故障程度的增加,幅值呈現(xiàn)了逐漸減小的趨勢,轉(zhuǎn)子不對中故障的頻譜特征表現(xiàn)為產(chǎn)生新的振動特征頻率2APF,且隨著故障程度的增大,信號幅值逐漸增大;支座連接松動故障表現(xiàn)為頻譜圖中的主頻變?yōu)?APF,并出現(xiàn)新的2APF和1/2分?jǐn)?shù)諧波頻率.
關(guān)鍵詞: 立式離心泵;故障復(fù)現(xiàn);轉(zhuǎn)子不平衡;轉(zhuǎn)子不對中;支座連接松動
中圖分類號: TH212;TH213" 文獻標(biāo)志碼: A" 文章編號: 1674-8530(2024)06-0563-07
DOI:10.3969/j.issn.1674-8530.23.0052開放科學(xué)(資源服務(wù))標(biāo)識碼(OSID):
胡思源,董亮,朱建成,等.立式離心泵典型故障復(fù)現(xiàn)試驗研究[J].排灌機械工程學(xué)報,2024,42(6):563-569.
HU Siyuan, DONG Liang, ZHU Jiancheng, et al. Experimental study on typical faults recurrence in vertical centrifugal pump[J]. Journal of drainage and irrigation machinery engineering(JDIME),2024,42(6):563-569.(in Chinese)
Experimental study on typical faults recurrence in
vertical centrifugal pump
HU Siyuan1, DONG Liang1*, ZHU Jiancheng1, CHEN Yudang2, CHENG Maosheng3
(1. National Research Center of Pumps, Jiangsu University, Zhenjiang, Jiangsu 212013, China; 2. Liaoning Hengxing Pump-Industry Co., Ltd., Dandong, Liaoning 118017, China; 3. Anhui Line Electric Pump Co., Ltd., Ningguo, Anhui 242300, China)
Abstract: In order to provide experimental and theoretical reference for diagnosing faults in vertical centrifugal pumps, a simulated test bench for vertical centrifugal pumps was constructed, after which simulated reproduction tests of typical faults in vertical centrifugal pumps were conducted, and the vibration characteristics together with spectrum features of faults such as rotor unbalance, rotor misalignment, as well as pedestal looseness were analyzed. The results indicate that the vibration displacement signal at the foot of the machine is more sensitive to the vibration characteristics of pedestal looseness, while the vibration signal of the shaft system is more sensitive to the vibration characteristics of rotor faults. Rotor unbalance faults and rotor misalignment faults exhibit different spectrum features. The spectrum feature of rotor unbalance faults shows an increase in the amplitude of the 1× amplitude power frequency (1APF), and as the fault severity increases, the amplitude gradually decreases. The spectrum feature of rotor misalignment faults shows the generation of a new characteristic frequency, which is the 2× amplitude power frequency (2APF), and as the fault severity increases, the signal amplitude gradually increases. Pedestal looseness faults are manifested by the main frequency in the spectrum shifting to 3× amplitude power frequency (3APF), along with the appearance of new 2APF and 1/2 fractional harmonic frequencies.
Key words: vertical centrifugal pump;fault recurrence;rotor unbalance;rotor misalignment;pedestal looseness
離心泵廣泛應(yīng)用于能源開采、排水消防、交通運輸、工農(nóng)業(yè)生產(chǎn)等領(lǐng)域,占泵產(chǎn)品總量的70%.近年來,為提高生產(chǎn)效率,減少安全隱患,工業(yè)設(shè)備的故障識別、健康診斷受到研究者的廣泛關(guān)注.在導(dǎo)致離心泵異常的故障類型中,轉(zhuǎn)子故障占比40%,其中,轉(zhuǎn)子不對中、轉(zhuǎn)子不平衡占轉(zhuǎn)子故障的60%[1-2],如果異常振動時間較長而不采取維護措施,將導(dǎo)致離心泵零部件疲勞、裂紋或者松動,從而破壞機械結(jié)構(gòu),造成重大事故[3-4].
在轉(zhuǎn)子不對中故障的研究方面,宣元等[5]對聯(lián)軸器不對中故障下的液壓泵組振動特性進行了理論分析與試驗研究.HUANG[6]研究了平行不對中轉(zhuǎn)子系統(tǒng)的扭轉(zhuǎn)振動,發(fā)現(xiàn)當(dāng)轉(zhuǎn)子不對中時,轉(zhuǎn)子系統(tǒng)存在明顯的1APF的扭轉(zhuǎn)振動.PENNACCHI等[7]基于有限元法研究了剛性聯(lián)軸器不對中故障下轉(zhuǎn)子系統(tǒng)的非線性動力學(xué)行為.TUCKMANTEL等[8]建立了聯(lián)軸器不對中轉(zhuǎn)子系統(tǒng)的高階有限元模型,利用全譜圖和軌道圖分析不對中轉(zhuǎn)子系統(tǒng)的扭轉(zhuǎn)和軸向振動特性,提出了可以通過全譜圖中顯示的轉(zhuǎn)子渦動特征診斷不對中故障.肖漢等[9]建立了不對中-碰摩耦合故障的轉(zhuǎn)子系統(tǒng)動力學(xué)模型,基于有限元法分析系統(tǒng)振動響應(yīng)并模擬轉(zhuǎn)子耦合故障驗證仿真結(jié)果.
在轉(zhuǎn)子不平衡故障的研究方面,尹江南等[10]分析影響轉(zhuǎn)子失衡的因素,發(fā)現(xiàn)離心泵轉(zhuǎn)子旋轉(zhuǎn)不平衡會產(chǎn)生較大的軸向振動.張德勝等[11]應(yīng)用有限元法,通過對葉輪質(zhì)量分布進行控制,研究了高壓多級離心泵轉(zhuǎn)子系統(tǒng)的轉(zhuǎn)子不平衡響應(yīng)特性.轉(zhuǎn)子不平衡和不對中造成的軸系附加激勵力是引起離心泵振動的原因之一[12].
支座松動故障的研究以試驗方式為主.佟延文[13]對臥式離心泵的故障進行試驗,發(fā)現(xiàn)基座松動主要增大泵的垂直振動.馬輝等[14]對振動信號進行了分析,發(fā)現(xiàn)支架松動故障時會出現(xiàn)擬周期、分岔等現(xiàn)象.關(guān)少亞等[15]通過轉(zhuǎn)子運行信號,開發(fā)轉(zhuǎn)子系統(tǒng)的自檢和預(yù)警系統(tǒng).ZHANG等[16]發(fā)現(xiàn)離心泵內(nèi)部流體流動與其外轉(zhuǎn)子結(jié)構(gòu)振動之間的聯(lián)系,可為離心泵減振和安全監(jiān)測策略設(shè)計提供理論參考.
綜上所述,目前關(guān)于離心泵故障的仿真研究很多,但關(guān)于立式離心泵故障狀態(tài)下運行特性,特別是振動特性的研究較為匱乏.文中對立式離心泵的轉(zhuǎn)子不平衡、轉(zhuǎn)子不對中以及支座連接松動等典型故障進行研究.首先,對比分析不同測點對轉(zhuǎn)子不對中、轉(zhuǎn)子不平衡和支座連接松動3種故障的敏感度;然后,對不同轉(zhuǎn)速比下的振動數(shù)據(jù)進行振動頻譜特性分析,探究不同故障在不同運行工況下對機組振動特性的影響.該研究旨在為3種故障的識別和診斷提供依據(jù),為維護立式離心泵的安全穩(wěn)定運行、完善水力機械故障診斷的理論體系提供試驗和數(shù)據(jù)支撐.
1" 故障仿真試驗方法及方案設(shè)計
1.1" 故障仿真試驗對象
文中采用的模型泵是1臺比轉(zhuǎn)數(shù)ns=67.09的單級單吸立式離心泵,其主要設(shè)計參數(shù)如下:額定流量Qd=100 m3/h;額定轉(zhuǎn)速n=2 950 r/min;葉輪進口直徑D1=100 mm;葉輪出口直徑D2=260 mm;葉片數(shù)Z=6;葉片包角θ=130°;葉片出口寬度b1=13 mm;蝸殼基圓直徑D3=270 mm;蝸殼進口寬度b2=25 mm;蝸殼出口直徑D4=80 mm.
1.2" 故障仿真試驗裝置
試驗在江蘇振華??蒲b備科技股份有限公司的標(biāo)準(zhǔn)振動試驗臺上進行,試驗臺主要由立式離心泵試驗臺和高、低頻數(shù)據(jù)采集系統(tǒng)組成.離心泵試驗臺主要包括立式離心泵、進出口壓力表、電磁流量計、水箱等.試驗采用了江蘇大學(xué)流體機械工程技術(shù)研究中心自主研發(fā)的高、低頻數(shù)據(jù)采集系統(tǒng)并搭載相應(yīng)采集軟件、上海勒振檢測技術(shù)有限公司的通用單軸電壓型(IEPE)LZD1加速度傳感器、上海勒振檢測技術(shù)有限公司生產(chǎn)的LD980-Y一體化電渦流位移傳感器,其響應(yīng)頻率為0~10 kHz.故障仿真試驗臺的整體構(gòu)成如圖1所示.
傳感器測點布置如圖2所示,其中振動位移測點主要是非驅(qū)動端軸系測點M2,振動加速度測點主要是離心泵機腳測點M6,其他測點(M1,M3,M4,M5)均為輔助測點.
1.3" 故障復(fù)現(xiàn)試驗方案
1) 轉(zhuǎn)子不平衡試驗方法:轉(zhuǎn)子不平衡故障的仿真試驗是通過在立式離心泵非驅(qū)動端(泵端)的聯(lián)軸器上分別集中添加墊片.加入墊片后,擰緊聯(lián)軸器螺栓,使離心泵的軸系產(chǎn)生轉(zhuǎn)子不平衡的故障.分別在不同墊片質(zhì)量(5,10,15 g)下重復(fù)試驗.
2) 轉(zhuǎn)子不對中試驗方法:轉(zhuǎn)子不對中故障的仿真試驗是通過在電動機支架底部和泵體支架之間的間隙添加鋼尺,使離心泵的軸系形成綜合不對中.文中試驗設(shè)置不對中程度分別為300,400和500 μm的故障工況.
3) 支座連接松動試驗方法:支座連接松動故障的仿真試驗是通過釋放離心泵機腳測點M6的地腳螺栓模擬支座連接松動故障.
1.4" 試驗參數(shù)設(shè)置
根據(jù)奈奎斯特采樣定律[17],通常將采樣頻率的值設(shè)為分析頻率的2倍以上,因此,將所有振動傳感器的采樣頻率設(shè)為32 kHz,采樣時間設(shè)為30 s.
為分析立式離心泵不同工況(正常工況、轉(zhuǎn)子不平衡故障工況、轉(zhuǎn)子不對中故障工況、支座連接松動故障工況)在不同轉(zhuǎn)速(1 770,2 065,2 360,2 655,2 950 r/min)下的振動特性情況,通過變頻器控制電動機的轉(zhuǎn)速,轉(zhuǎn)速比n′/n(n′為試驗設(shè)定轉(zhuǎn)子轉(zhuǎn)速)設(shè)為0.6~1.0,分別采集不同轉(zhuǎn)速下每個測點的振動數(shù)據(jù)各20組.
2" 不同測點敏感性分析
在相同的轉(zhuǎn)速和流量工況下,對上述6個振動測點采集的振動信號進行分析.以正常工況下振動信號頻譜圖中各頻段的幅值為基準(zhǔn),將轉(zhuǎn)子不平衡、轉(zhuǎn)子不對中和支座連接松動故障工況下對應(yīng)頻段的振動幅值變化率的絕對值r作為衡量不同測點對故障變化的敏感性指標(biāo).
圖3為轉(zhuǎn)子不平衡工況下各測點敏感性分析.圖中f/fn為軸頻倍數(shù)(f為頻率, fn為軸頻).如圖所示,發(fā)生轉(zhuǎn)子不平衡故障前后,軸系測點M2在轉(zhuǎn)子轉(zhuǎn)速頻率處的幅值變化率較其他測點變化明顯,說明在轉(zhuǎn)子不平衡故障下,軸系測點M2對故障表現(xiàn)出較高的敏感性.
圖4為轉(zhuǎn)子不對中工況下各測點敏感性分析.由圖可知,在立式離心泵發(fā)生轉(zhuǎn)子不對中故障前后,軸系測點M2在1APF,2APF處的幅值變化率較其他測點變化明顯,說明在轉(zhuǎn)子不對中故障下,軸系測點M2對故障表現(xiàn)出較高的敏感性.
圖5為支座連接松動工況下各測點敏感性分析,由圖可知,在立式離心泵發(fā)生支座連接松動故障前后,試驗臺支架處離心泵機腳測點M6較其他測點變化明顯,說明機腳測點M6對支座連接松動故障表現(xiàn)出較高的敏感性.
綜上所述,通過對比各測點在不同故障工況下的敏感性分析結(jié)果,選擇轉(zhuǎn)子不平衡和不對中故障工況下軸系測點M2的振動位移信號以及支座連接松動故障工況下機腳測點M6的振動加速度信號作為下一步故障特征提取的信號源.
3" 離心泵典型故障振動特性分析
3.1" 轉(zhuǎn)子不平衡振動特性分析
文中分別對轉(zhuǎn)速比n′/n為0.6~1.0下的轉(zhuǎn)子軸系振動時域信號進行傅里葉變換[18-19].對應(yīng)的頻譜圖中僅保留每個工況下對應(yīng)轉(zhuǎn)速頻率10倍范圍內(nèi)的幅域進行振動特性分析.
圖6和圖7分別為正常工況下和轉(zhuǎn)子不平衡工況下軸系測點M2在x軸和y軸這2個方向的振動頻譜圖,如圖所示,U為振動位移幅值,由圖可以看出,轉(zhuǎn)子不平衡工況下,軸系測點M2的徑向振動特征頻率均表現(xiàn)為1APF,頻率幅值較正常工況有明顯的增大.且同一工況下的軸系測點M2在x軸和y軸這2個徑向的振動幅值接近.
圖8為轉(zhuǎn)子不平衡工況與正常工況在不同轉(zhuǎn)速比下的幅值對比.由圖可以發(fā)現(xiàn),相同轉(zhuǎn)速比下,轉(zhuǎn)子不平衡工況的1APF幅值明顯高于正常工況1APF幅值.且兩者的幅值均隨著轉(zhuǎn)速比的增大而呈現(xiàn)逐漸增大的趨勢,特別是轉(zhuǎn)子不平衡工況在轉(zhuǎn)速比為0.8以后,隨著轉(zhuǎn)速的增加,其對應(yīng)的1APF振動峰值出現(xiàn)明顯的增大,這可能與系統(tǒng)自身的共振頻率有關(guān).
圖9為轉(zhuǎn)子不平衡故障工況下軸系測點M2振動軸心軌跡,圖中dx為水平方向位移,dy為垂直方向位移,其整體位移形狀為不規(guī)則的橢圓形,其形狀和大小在多個周期內(nèi)均保持較好的重復(fù)性.
圖10為不同墊片質(zhì)量下轉(zhuǎn)子不平衡工況下振動瀑布圖,圖中Q/Qd為流量比,A為振動加速度幅值.通過對比分析可以發(fā)現(xiàn),在額定流量處,3APF位置的幅值隨著墊片質(zhì)量的增加出現(xiàn)了逐漸減小的趨勢.
3.2" 轉(zhuǎn)子不對中振動特性分析
圖11為轉(zhuǎn)子不對中故障下測點M2振動頻譜圖.
由圖11可知,轉(zhuǎn)子不對中工況在測點M2的徑向振動中1APF為主頻,同時在2APF處出現(xiàn)新的特征頻率峰值,且1APF特征頻率峰值明顯高于同轉(zhuǎn)速下正常工況的峰值,這與轉(zhuǎn)子不平衡工況的振動特性相似.由圖11a和11b可知,轉(zhuǎn)子軸系在同一工況下2個徑向的振動幅值基本相近,隨著轉(zhuǎn)速的增加,對應(yīng)工況下的1APF和2APF幅值均呈現(xiàn)增大的趨勢.對應(yīng)的軸心軌跡如圖12所示.
圖13為不同程度轉(zhuǎn)子不對中工況在額定轉(zhuǎn)速下軸向測點的振動瀑布圖.對比發(fā)現(xiàn),隨著故障程度的增大,信號幅值逐漸增大.
3.3" 支座連接松動振動特性分析
分別對轉(zhuǎn)速比n′/n為0.6~1.0下機腳測點M6的振動時域信號進行傅里葉變換.支座連接松動工況下測點M6振動頻譜圖如圖14所示.
由圖14可知,當(dāng)立式離心泵發(fā)生支座連接松動故障時,對應(yīng)的振動頻譜圖中出現(xiàn)了新的2APF,3APF以及1/2分?jǐn)?shù)諧波頻率等成分,其中3APF的頻率峰值變化比較明顯,其峰值已經(jīng)高于對應(yīng)轉(zhuǎn)速工況下的其他頻率成分從而形成主頻.且隨著轉(zhuǎn)速的增加,除葉片通過頻率,其他各頻率成分的振動幅值均出現(xiàn)明顯增大的趨勢.
4" 結(jié)" 論
1) 文中搭建的立式離心泵,其軸系測點的振動位移信號對轉(zhuǎn)子不平衡和轉(zhuǎn)子不對中工況表現(xiàn)出較高敏感性,可使用軸系的振動位移信號診斷轉(zhuǎn)子不平衡和轉(zhuǎn)子不對中故障.機腳處的振動位移信號對支座連接松動故障的振動特性敏感性較高,可使用機腳處的振動位移信號診斷支座連接松動故障.
2) 文中使用立式離心泵進行故障仿真,分析軸系處采集的振動加速度信號,轉(zhuǎn)子不平衡、轉(zhuǎn)子不對中故障的頻譜特征在不同工況下均表現(xiàn)為1APF為主頻,兩者之間的差異僅僅體現(xiàn)在相同工況下的主頻峰值不同,且幅值隨著配重質(zhì)量的增加出現(xiàn)了逐漸減小的趨勢.轉(zhuǎn)子不對中故障頻譜特征還產(chǎn)生新的特征頻率2APF,且隨著故障程度的增大,信號幅值逐漸增大.
3) 文中使用立式離心泵仿真支架松動故障,分析機腳處采集的振動加速度信號,支座連接松動故障的頻譜圖中的主頻變?yōu)?APF,且出現(xiàn)新的2APF和1/2分?jǐn)?shù)諧波頻率.
參考文獻(References)
[1]" 付強,莊祥,黃倩,等.基于LabVIEW的臥式離心泵故障診斷系統(tǒng)設(shè)計[J].西華大學(xué)學(xué)報(自然科學(xué)版),2022,41(6):26-33.
FU Qiang, ZHUANG Xiang, HUANG Qian, et al. Design of fault diagnosis system for horizontal centrifugal pump based on LabVIEW[J]. Journal of Xihua University(natural science edition),2022,41(6):26-33.(in Chinese)
[2]" ALTOBI M A S, BEVAN G, WALLACE P, et al. Fault diagnosis of a centrifugal pump using MLP-GABP and SVM with CWT[J]. Engineering science and techno-logy, 2019, 22(3): 854-861.
[3]" YU R, LIU J. Failure analysis of centrifugal pump impeller[J]. Engineering failure analysis, 2018, 92:343-349.
[4]" 陳正甦,衡亞光,熊平,等.基于CFD-DPM的離心泵內(nèi)顆粒性質(zhì)對泵性能與磨損的影響[J].西華大學(xué)學(xué)報(自然科學(xué)版),2024,43(1):87-96.
CHEN Zhengsu,HENG Yaguang,XIONG Ping,et al.Influence of particle properties on the performance and wear of centrifugal pumps based on CFD-DPM[J].Journal of Xihua University(natural science edition),2024,43(1):87-96.(in Chinese)
[5]" 宣元, 何琳, 廖健. 梅花形彈性聯(lián)軸器液壓泵機組不對中故障振動分析[J]. 國防科技大學(xué)學(xué)報, 2019, 41(6):94-99.
XUAN Yuan, HE Lin, LIAO Jian. Misalignment analy-sis of pumps-motor aggregate with plum-shaped flexible couplings[J]. Journal of National University of Defense Technology, 2019, 41(6):94-99. (in Chinese)
[6]" HUANG D. Characteristics of torsional vibrations of a shaft system with parallel misalignment[J]. Mechanical engineering science, 2005, 219(11):1219-1224.
[7]" PENNACCHI P, VANIA A, CHATTERTON S. Nonli-near effects caused by coupling misalignment in rotors equipped with journal bearings[J]. Mechanical systems and signal processing, 2012, 30:306-322.
[8]" TUCKMANTEL F W S, CAVALCA K L. Vibration signatures of a rotor-coupling-bearing system under angular misalignment[J]. Mechanism and machine theory, 2019, 133:559-583.
[9]" 肖漢, 周建中, 肖劍, 等. 滑動軸承-轉(zhuǎn)子系統(tǒng)不平衡-不對中-碰摩耦合故障動力學(xué)建模及響應(yīng)信號分解[J]. 振動與沖擊, 2013, 32(23):159-165.
XIAO Han, ZHOU Jianzhong, XIAO Jian, et al. Dynamic modeling and response signal decomposition for a sliding bearing-rotor system with unbalance-misalign-ment-rubbing coupled faults[J]. Journal of vibration and shock, 2013, 32(23):159-165. (in Chinese)
[10]" 尹江南, 袁壽其, 駱寅, 等. 離心泵葉輪磨損破壞程度下的振動特性分析[J]. 振動與沖擊, 2019, 38(1):44-49.
YIN Jiangnan, YUAN Shouqi, LUO Yin, et al. Vibration characteristics analysis for a centrifugal pump under different damage degrees of its impeller[J]. Journal of vibration and shock, 2019, 38(1):44-49. (in Chinese)
[11]" 張德勝, 汪靖, 施衛(wèi)東, 等. 高壓多級離心泵轉(zhuǎn)子系統(tǒng)的不平衡響應(yīng)特性[J]. 排灌機械工程學(xué)報, 2014, 32(1):17-22.
ZHANG Desheng, WANG Jing, SHI Weidong, et al. Unbalance response characteristics of rotor system in high pressure multi-stage pump[J]. Journal of drainage and irrigation machinery engineering, 2014, 32(1):17-22. (in Chinese)
[12]" HUANG S, QIU G, SU X, et al. Performance predic-tion of a centrifugal pump as turbine using rotor-volute matching principle[J]. Renewable energy, 2017, 108:64-71.
[13]" 佟延文. 離心泵故障機理分析與診斷方法研究[J]. 水泵技術(shù),2017(1):27-30.
TONG Yanwen. Study on fault mechanism analysis and diagnosis method of centrifugal pump[J]. Water pump technology, 2017(1):27-30. (in Chinese)
[14]" 馬輝, 孫偉, 劉杰, 等. 旋轉(zhuǎn)機械支座松動故障的實驗[J]. 農(nóng)業(yè)機械學(xué)報, 2007, 38(6):134-137.
MA Hui, SUN Wei, LIU Jie, et al. Experimental research on rotating machinery with pedestal looseness faults[J]. Transactions of the CSAM, 2007, 38(6):134-137. (in Chinese)
[15]" 關(guān)少亞, 王春宇, 陳琪, 等. 旋轉(zhuǎn)機械轉(zhuǎn)子故障診斷軟件系統(tǒng)設(shè)計[J]. 制造業(yè)自動化, 2022, 44(1):194-197.
GUAN Shaoya, WANG Chunyu, CHEN Qi, et al. Design of software system for rotor fault diagnosis of rotating machinery[J]. Manufacturing automation, 2022, 44(1):194-197. (in Chinese)
[16]" ZHANG H H, YOU H L, LU H S, et al. CFD-rotordynamics sequential coupling simulation approach for the flow-induced vibration of rotor system in centrifugal pump[J]. Applied sciences, 2020, 10(3):1186.
[17]" 曾柏杞, 歐陽紅林, 蘇深廣, 等. 基于自適應(yīng)算法的液面檢測系統(tǒng)[J]. 傳感器與微系統(tǒng), 2012, 31(8):94-96.
ZENG Baiqi, OUYANG Honglin, SU Shenguang, et al. Liquid level detecting system based on self-adaptive algorithm[J]. Transducer and microsystem technologies, 2012, 31(8):94-96. (in Chinese)
[18]" 胡智勇, 胡杰鑫, 謝里陽, 等. 滾動軸承振動信號處理方法綜述[J]. 中國工程機械學(xué)報, 2016, 14(6):525-531.
HU Zhiyong, HU Jiexin, XIE Liyang, et al. Review on signal processing for rolling bearing vibrations[J]. Chinese journal of construction machinery, 2016, 14(6):525-531. (in Chinese)
[19]" LI W, JI L, SHI W, et al. Influence of different flow conditions on rotor axis locus of mixed-flow pump[J]. Transactions of the CSAE, 2016, 32(4):91-97.
(責(zé)任編輯" 黃鑫鑫)