摘要: 明確灌水器特征參數(shù)和土壤粒徑組成對(duì)濕潤(rùn)進(jìn)程的影響是進(jìn)行滴灌系統(tǒng)設(shè)計(jì)的基礎(chǔ)與前提.提出了使用單位濕潤(rùn)體的灌水強(qiáng)度(AQTV)量化土壤濕潤(rùn)進(jìn)程,探究了灌水器流量(1,3,6 L/h)、灌水量(5,10,20 L)和覆膜對(duì)不同粒徑組成砂質(zhì)土壤(北京大興DX、內(nèi)蒙古烏盟WM、新疆伽師JS、內(nèi)蒙赤峰CF)AQTV的影響.結(jié)果表明:不同粒徑組成砂壤土的AQTV均隨灌水器流量增大呈上升的變化規(guī)律,并且與粒徑組成中(0.100,0.250] mm的土壤顆粒占比呈顯著性負(fù)相關(guān)關(guān)系(Plt;0.05);隨著灌水量增加,4種砂壤土中AQTV均呈逐漸下降趨勢(shì).當(dāng)灌水量為5 L以及10和20 L時(shí),AQTV分別與≤0.002 mm的黏粒以及(0.500,1.000] mm的砂粒組分占比呈顯著正相關(guān)關(guān)系.覆膜滴灌提升了處理DX,WM和CF的AQTV,這可能是由于3種砂壤土大粒徑砂?;蝠ちO鄬?duì)較高的原因.此外,隨著灌水器間距增加,土壤水分交匯區(qū)域與含水量減小,土壤水分在水平和豎直濕潤(rùn)距離減小.
關(guān)鍵詞: 濕潤(rùn)鋒;砂壤土;水分運(yùn)移;單位濕潤(rùn)體的灌水強(qiáng)度;交匯入滲
中圖分類號(hào): S274 文獻(xiàn)標(biāo)志碼: A" 文章編號(hào): 1674-8530(2024)05-0508-09
DOI:10.3969/j.issn.1674-8530.23.0009
郝闖闖,劉大忠,買買提明·買吐松,等. 滴灌灌水器特征參數(shù)對(duì)砂土濕潤(rùn)進(jìn)程的影響[J]. 排灌機(jī)械工程學(xué)報(bào),2024,42(5):508-516.
HAO Chuangchuang, LIU Dazhong, MAIMAITIMING Maitusong, et al. Effect of drip irrigation emitters parameters on wetting process of sandy soil[J]. Journal of drainage and irrigation machinery engineering(JDIME), 2024, 42(5): 508-516.(in Chinese)
Effect of drip irrigation emitters parameters on wetting
process of sandy soil
HAO Chuangchuang1,2, LIU Dazhong3, MAIMAITIMING Maitusong3, ZHOU Yunpeng2,
KUANG Naikun2, CHEN Weijie2, LIU Pei1,2, XIAOKAITIJIANG Kasimu2, LI Yunkai2*
(1. College of Water Conservancy amp; Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832003, China; 2. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; 3. Xinjiang Kashgar River Basin Administration Bureau, Kashgar, Xinjiang 844000, China)
Abstract: Clarifying the impact of emitter characteristic parameters and soil particle size composition on the wetting process is basis for designing drip irrigation systems. The effects of emitter flow (1, 3, and 6 L/h), irrigation volume (5, 10, and 20 L), and film covering on the AQTV of sandy soil with different particle size composition were investigated in this study. It proposed to use the average quantity of irrigation in the per-unit time and unit-wet volume (AQTV) to quantify the soil wetting process (Beijing Daxing DX, Inner Mongolia Wumeng WM, Xinjiang Jiashi JS, Inner Mongolia Chifeng CF). The results indicate that the AQTV of sandy loam soil with different particle size compositions increases with the increase of irrigation flow rate, and it shows a significant negative correlation with the proportion of soil particles in the particle size range of (0.100,0.250] mm (Plt;0.05). The AQTV in the four different types of sandy loam soil also shows a trend toward a gradual decline trend with an increase in irrigation amount. The content of clay particles≤0.002 mm and (0.500,1.000] mm sand components and AQTV have a strong positive link when the irrigation volume is 5 L and 10 L, 20 L, respectively. The improvement in AQTV of the DX, WM and CF treatments with film mulching drip irrigation may be attributable to the relatively large sand or clay particles in the three types of sandy loams. In addition, when the distance between emitters increases, the intersection area, water content, and horizontal and vertical soaking distance of soil water are reduced.
Key words: moist front;sandy loam soil;water migration;AQTV;confluent infiltration
滴灌被認(rèn)為是現(xiàn)階段應(yīng)用最廣泛、最高效的節(jié)水灌溉方式,通過(guò)灌水器將水分緩慢、均勻、靶向地輸送到作物根部土壤中,以局部濕潤(rùn)的方式在作物根區(qū)形成橢球形濕潤(rùn)體[1-2].濕潤(rùn)體的形狀與特征會(huì)顯著影響作物對(duì)水分的吸收,從而影響作物產(chǎn)量、品質(zhì)和水分利用效率[3-4].因此,明確灌水器特征參數(shù)對(duì)土壤濕潤(rùn)體運(yùn)移特性及水分分布特征的影響,對(duì)于合理設(shè)計(jì)滴灌系統(tǒng)、進(jìn)一步理解其節(jié)水增產(chǎn)機(jī)理具有重要意義.
國(guó)內(nèi)外學(xué)者圍繞灌水器特征參數(shù)對(duì)土壤濕潤(rùn)特性的影響展開(kāi)了部分研究.李明思等[5]和EKHMAJ等[6]發(fā)現(xiàn),灌水器流量對(duì)濕潤(rùn)鋒水平運(yùn)移的影響較豎直運(yùn)移更加明顯,與非砂質(zhì)土壤相比,砂質(zhì)土壤具有更大的濕潤(rùn)鋒豎直運(yùn)移距離.張振華等[7] 發(fā)現(xiàn)當(dāng)灌水器流量大于土壤最大入滲能力時(shí),會(huì)在地表滴灌灌水器下方土壤形成積水.何振嘉等[8]研究了灌水器間距對(duì)黃綿土濕潤(rùn)特性的影響,發(fā)現(xiàn)隨著灌水器間距增加,對(duì)交匯面處濕潤(rùn)鋒運(yùn)移距離具有促進(jìn)作用.砂質(zhì)土壤[9]是中國(guó)滴灌技術(shù)應(yīng)用的主要土壤類型,例如北京市大興區(qū)、內(nèi)蒙古烏盟、新疆地區(qū)等[10].砂質(zhì)土壤中砂粒占比較高、粉粒和黏粒占比較低[11].
粒徑組成是導(dǎo)致砂質(zhì)土壤滲透率差異的最主要因素之一,即土壤砂粒大粒徑占比越高,土壤滲透性越強(qiáng),水分運(yùn)移得也越快[12-13].同時(shí),不同灌水器特征參數(shù)與灌溉制度條件下,土壤水分具有獨(dú)特的入滲規(guī)律、濕潤(rùn)鋒推進(jìn)模式和入滲滯后效應(yīng),最終形成具有時(shí)空分布差異的土壤濕潤(rùn)特征[14-15].
然而,現(xiàn)有研究大多圍繞濕潤(rùn)鋒運(yùn)移形式對(duì)土壤入滲特性的影響開(kāi)展研究[16-17],如何定量刻劃土壤濕潤(rùn)特性與灌水器特征參數(shù)、砂土粒徑組成間的關(guān)系還鮮有報(bào)道.
為此,文中提出單位濕潤(rùn)體的灌水強(qiáng)度(average quantity of irrigation in the per unit time and wet vo-lume, AQTV)的概念,從而對(duì)土壤濕潤(rùn)進(jìn)程進(jìn)行量化表征;在北京市大興區(qū)、內(nèi)蒙古烏盟、新疆伽師縣、內(nèi)蒙古赤峰市選取4種典型農(nóng)田0~50 cm的耕層土壤,通過(guò)室內(nèi)土箱試驗(yàn)探究灌水器特征參數(shù)對(duì)不同粒徑組成的砂壤土濕潤(rùn)進(jìn)程的影響,旨在:① 闡明灌水器流量、灌水量與覆膜滴灌對(duì)不同組分砂質(zhì)土壤水分入滲過(guò)程的影響;② 明確不同灌水器間距對(duì)砂質(zhì)土壤濕潤(rùn)體特性的影響.以期為量化滴灌灌水器特征參數(shù)對(duì)砂質(zhì)土壤濕潤(rùn)特性的影響提供理論依據(jù).
1 材料與方法
1.1 試驗(yàn)設(shè)計(jì)
試驗(yàn)地點(diǎn)位于中國(guó)農(nóng)業(yè)大學(xué)水利與土木工程學(xué)院土壤與作物學(xué)研究室內(nèi).選擇4種組分不同的砂質(zhì)土壤、3種灌水器流量(1,3,6 L/h)、3種灌水量(5,10,20 L)和2種覆蓋形式(無(wú)膜滴灌與10 μm地膜覆膜滴灌)開(kāi)展單點(diǎn)源入滲試驗(yàn),選擇2種灌水器間距(30,50 cm)開(kāi)展雙點(diǎn)源入滲試驗(yàn).供試土壤取自北京市大興區(qū)(DX)、內(nèi)蒙古自治區(qū)烏蘭察布市(烏盟)(WM)、新疆維吾爾自治區(qū)伽師縣(JS)、內(nèi)蒙古自治區(qū)赤峰市烏丹鎮(zhèn)(CF)周邊典型農(nóng)田0~50 cm的耕層土壤.土壤經(jīng)自然風(fēng)干、晾曬、碾壓過(guò)2 mm篩并均勻混合后,按照容重1.4 g/cm3,通過(guò)分層打毛(以5 cm為1層)、壓實(shí)裝入土箱.對(duì)裝填的土壤隨機(jī)取樣.使用激光粒度分布儀(MS2000,馬爾文,英國(guó))測(cè)試土壤粒徑分布狀態(tài),按照美國(guó)制劃分土壤類型,見(jiàn)表1,γ為粒徑占比.
1.2 試驗(yàn)內(nèi)容
室內(nèi)入滲試驗(yàn)裝置主要由馬氏瓶和土箱兩部分組成.在單點(diǎn)源入滲試驗(yàn)中,土箱為頂角15°的扇形土槽,側(cè)面積尺寸為65 cm×65 cm;雙點(diǎn)源入滲試驗(yàn)中土箱為長(zhǎng)方體,長(zhǎng)×寬×高為50 cm×50 cm×65 cm.單、雙點(diǎn)源試驗(yàn)均采用馬氏瓶穩(wěn)壓供水,7號(hào)針頭模擬滴灌灌水器.單點(diǎn)源試驗(yàn)中,針頭位置位于扇形土槽的頂角位置,試驗(yàn)過(guò)程中形成的濕潤(rùn)體體積為完整濕潤(rùn)體體積的1/24,因此針頭流量和灌水量均為試驗(yàn)設(shè)計(jì)灌水器流量的1/24.
雙點(diǎn)源試驗(yàn)中,以有機(jī)玻璃的中心線與土層表層相交處為零點(diǎn),針頭以此為對(duì)稱布置.針頭間距為50 cm時(shí),試驗(yàn)過(guò)程中形成的濕潤(rùn)體體積為完整濕潤(rùn)體體積的1/4,因此針頭流量和灌水量均為試驗(yàn)設(shè)計(jì)灌水器流量的1/4;針頭間距30 cm時(shí),試驗(yàn)過(guò)程中形成的濕潤(rùn)體體積為完整濕潤(rùn)體體積的1/2,因此針頭流量和灌水量均為試驗(yàn)設(shè)計(jì)灌水器流量的1/2.
試驗(yàn)開(kāi)始前,用燒杯測(cè)試滴水流量,調(diào)節(jié)止水閥使針頭出流量達(dá)到設(shè)定流量.覆膜試驗(yàn)采用10 μm地膜覆蓋地表.
試驗(yàn)開(kāi)始后,在0~1 h內(nèi)每隔5 min,2~3 h內(nèi)每隔10 min,4~5 h內(nèi)每隔30 min,6~7 h內(nèi)每隔60 min觀測(cè)1次馬氏瓶讀數(shù)并在有機(jī)玻璃板上描繪濕潤(rùn)鋒運(yùn)移曲線.試驗(yàn)結(jié)束后,用坐標(biāo)紙拓下,做好標(biāo)記導(dǎo)入AutoCAD 2019軟件,仔細(xì)描繪出濕潤(rùn)鋒圖;通過(guò)預(yù)制孔(直徑20 mm)取得土壤樣品并使用烘干法計(jì)算土壤質(zhì)量含水率.
為了描述土壤濕潤(rùn)體的灌溉效果,提出了單位濕潤(rùn)體的灌水強(qiáng)度(AQTV)的概念,具體計(jì)算式為
AQTV=Q/(TV),(1)
式中:Q為灌水量,m3;T為灌水時(shí)間,h;V為濕潤(rùn)體體積,m3.
將記錄濕潤(rùn)鋒的圖像導(dǎo)入AutoCAD 2019軟件后,把圖像沿軸線旋轉(zhuǎn)360°,通過(guò)建立3D模型進(jìn)行土壤濕潤(rùn)體體積的計(jì)算.
1.3 數(shù)據(jù)處理
使用Microsoft Excel對(duì)數(shù)據(jù)進(jìn)行預(yù)處理和表格制作,采用AutoCAD 2019軟件繪制裝置示意圖,采用Origin 2021進(jìn)行制圖與相關(guān)性分析.采用ANVOA(IBM,SPSS)進(jìn)行灌水器流量、灌水量、粒徑組成與AQTV間Spearman相關(guān)系數(shù)的計(jì)算(Plt;0.05).
2 試驗(yàn)結(jié)果與分析
2.1 灌水器流量對(duì)不同砂質(zhì)土壤濕潤(rùn)鋒運(yùn)移過(guò)程的影響
灌水器流量對(duì)不同土壤濕潤(rùn)鋒運(yùn)移過(guò)程的影響如圖1所示,L為運(yùn)移濕潤(rùn)距離、t為運(yùn)移時(shí)間.結(jié)果表明不同灌水器流量下,濕潤(rùn)鋒水平和豎直方向的運(yùn)移均經(jīng)歷了加速濕潤(rùn)(0,60] min、減緩濕潤(rùn)(60,120] min和穩(wěn)定濕潤(rùn)>120 min的過(guò)程.當(dāng)灌水器流量為1 L/h時(shí),處理JS的濕潤(rùn)鋒的水平和豎直運(yùn)移距離最大,DX的濕潤(rùn)鋒豎直運(yùn)移距離最小.其中處理JS較DX,WM和CF的水平濕潤(rùn)距離分別大6.1,7.7和6.6 cm,豎直濕潤(rùn)距離分別大5.3,4.2和4.9 cm.
當(dāng)灌水器流量為3和6 L/h時(shí),均呈現(xiàn)處理DX濕潤(rùn)距離最大、CF濕潤(rùn)距離最小的規(guī)律.其中處理DX較WM,JS和CF的水平濕潤(rùn)距離分別大3.0~4.2,1.1~2.1和3.2~3.3 cm;豎直濕潤(rùn)距離分別大-0.5~1.2,0.8~1.1和1.9~3.9 cm.
灌水器流量對(duì)不同砂質(zhì)土壤單位濕潤(rùn)體灌水強(qiáng)度的影響如圖2所示,δ為相關(guān)程度,Silt表示粒徑為(0.005,0.100]的土壤.由圖可知,在不同砂質(zhì)土壤條件下,AQTV與灌水器流量均呈顯著正相關(guān)關(guān)系;流量為1,3,6 L/h時(shí)CF的AQTV較其他供試土壤分別提升8.8%~134.5%,10.8%~33.7%和4.2%~52.7%.通過(guò)Spearman相關(guān)系數(shù)可知,不同灌水器流量下,AQTV均與粒徑為(0.100,0.250] mm的砂粒占比呈顯著負(fù)相關(guān)關(guān)系,與粒徑為(0.002,0.005] mm和≤0.002 mm的黏粒占比均呈顯著正相關(guān)關(guān)系(Plt;0.05).
2.2 灌水量對(duì)不同砂質(zhì)土壤濕潤(rùn)鋒運(yùn)移過(guò)程的影響
灌水量對(duì)不同砂質(zhì)土壤濕潤(rùn)鋒運(yùn)移過(guò)程的影響如圖3所示.
結(jié)果表明,在0~40 min時(shí)段,處理DX,WM和CF在水平方向濕潤(rùn)鋒的運(yùn)移速率高于豎直方向,但JS在前期呈現(xiàn)相反的規(guī)律,隨時(shí)間推移,豎直運(yùn)移速率逐漸大于水平運(yùn)移速率.在120 min后,濕潤(rùn)鋒豎直方向運(yùn)移速率按處理排序由大到小呈現(xiàn)DX,JS,WM,CF的規(guī)律.不同時(shí)刻下,處理DX在水平和豎直方向一直保持最大濕潤(rùn)距離,隨灌水量增加,處理DX較WM,JS和CF在水平方向上的濕潤(rùn)距離分別高出2.3~5.6,1.3~2.1和0.8~3.5 cm,在豎直方向上濕潤(rùn)距離分別高出2.1~5.2,2.7~3.6和5.4~7.8 cm.
灌水量對(duì)不同砂質(zhì)土壤單位濕潤(rùn)體的灌水強(qiáng)度的影響如圖4所示.結(jié)果表明,隨著灌水量增加,AQTV在不同砂質(zhì)土壤中分別呈現(xiàn)逐漸降低的趨勢(shì).不同砂質(zhì)土壤間AQTV的差異均隨灌水量增加而逐漸縮小.其中,當(dāng)灌水量達(dá)到5,10和20 L時(shí),不同砂質(zhì)土壤間AQTV處于0.35~0.60,0.15~0.25和 0.06~0.11,呈現(xiàn)的規(guī)律按處理排序由小到大分別為DX,WM,JS,CF;DX,JS,CF,WM;DX,JS,CF,WM.通過(guò)Spearman相關(guān)性進(jìn)一步分析可知,AQTV與(0.500,1.000] mm粒級(jí)的砂粒和≤0.002 mm 粒級(jí)的黏粒含量呈正相關(guān),但與(0.100,0.250] mm粒級(jí)的砂粒含量呈顯著負(fù)相關(guān).
整體而言,隨著灌水量增加,其相關(guān)性逐漸增強(qiáng).此外,在灌水量為5 L 時(shí),AQTV與Silt占比呈顯著正相關(guān),但隨著灌水量的逐步累積,相關(guān)性又逐步降低.
2.3 覆膜滴灌對(duì)土壤濕潤(rùn)鋒運(yùn)移過(guò)程的影響
覆膜滴灌對(duì)砂質(zhì)土壤水分運(yùn)移特性與單位濕潤(rùn)體的灌水強(qiáng)度的影響如圖5,6所示,ΔL為水平與豎直方向濕潤(rùn)距離差,即以未覆膜情況下的濕潤(rùn)鋒運(yùn)移距離減去覆膜情況下濕潤(rùn)鋒運(yùn)移距離所得,AQTV為覆膜減去未覆膜狀態(tài)下的值.
結(jié)果表明,以灌水器流量3 L/h時(shí)為例,覆膜增加了供試土壤JS和WM的最大水平濕潤(rùn)距離(0.01~0.68 cm),而CF的最大水平濕潤(rùn)距離降低了0.43 cm.同時(shí),覆膜提升了DX和JS的最大豎向濕潤(rùn)距離(0.14~2.04 cm),但減小了WM和CF的最大濕潤(rùn)距離(0.50~1.54 cm).覆膜對(duì)于供試土壤AQTV的影響隨砂壤土粒徑組成不同而展示出不同規(guī)律,例如,覆膜降低了處理JS的AQTV,降低幅度為8.65%,但其他供試土壤的AQTV有所提升,提升為0.81%~7.08%.
2.4 灌水器間距對(duì)土壤濕潤(rùn)鋒運(yùn)移過(guò)程的影響
灌水器間距對(duì)土壤濕潤(rùn)鋒運(yùn)移過(guò)程及土壤水分質(zhì)量濃度ρ的影響如圖7,8所示.結(jié)果表明,同一灌水器流量和灌水量下,灌水器間距l(xiāng)為30 cm時(shí)土壤水分發(fā)生交匯的時(shí)間相同,且均為160 min.發(fā)生交匯后,土壤的含水量變大,CF和WM發(fā)生交匯處豎直濕潤(rùn)距離約為5 cm,但DX和JS卻為10 cm左右.當(dāng)灌水器間距為30 cm時(shí),CF在豎直入滲10 cm處水分質(zhì)量濃度最大,土壤水分質(zhì)量濃度為37 kg/L,較WM,JS和DX的土壤水分質(zhì)量濃度分別高出1,16和19 kg/L.但當(dāng)灌水器間距為50 cm時(shí),豎直入滲10 cm處WM的水分質(zhì)量濃度大于CF.灌水器間距相同時(shí),供試土壤DX和JS的水分質(zhì)量濃度的差值為3~4 kg/L,供試土壤WM和CF有較高的保水特性.灌水器間距增加后,濕潤(rùn)鋒交匯區(qū)、交匯區(qū)ρ及灌水器下方水平和豎直濕潤(rùn)距離均呈現(xiàn)減小趨勢(shì).
3 討 論
3.1 灌水器特征參數(shù)對(duì)不同砂質(zhì)土壤濕潤(rùn)進(jìn)程的影響
土壤濕潤(rùn)體及其影響因素研究是合理設(shè)計(jì)滴灌系統(tǒng)、提高水分利用效率的前提和基礎(chǔ)[18].ATQV作為一個(gè)衡量土壤濕潤(rùn)體范圍內(nèi)灌溉效果的指標(biāo),通過(guò)不同灌水器特征參數(shù)對(duì)于砂質(zhì)土壤濕潤(rùn)進(jìn)程中AQTV的影響,能夠反饋出在滴灌系統(tǒng)設(shè)計(jì)過(guò)程中適宜不同作物的灌水器特征參數(shù).
研究中借助室內(nèi)土箱試驗(yàn),探究了不同灌水器特征參數(shù)對(duì)砂土濕潤(rùn)進(jìn)程的影響,以明晰不同粒徑占比對(duì)于土壤水分運(yùn)移過(guò)程與濕潤(rùn)進(jìn)程的影響.結(jié)果表明,當(dāng)灌水器流量為1 L/h時(shí),處理JS的最大濕潤(rùn)距離大于其他供試土壤,這與小于等于0.005的黏粘占比較低有關(guān),黏粒占比往往與濕潤(rùn)體體積呈負(fù)相關(guān)[19].當(dāng)灌水器流量增大后,處理DX的濕潤(rùn)距離最大,這可能是因?yàn)榇藭r(shí)的灌水器流量接近DX土壤的飽和導(dǎo)水率,促進(jìn)了水分在土壤中的豎向運(yùn)移[20].對(duì)比不同灌水器流量對(duì)砂質(zhì)土壤濕潤(rùn)進(jìn)程的結(jié)果可知,處理WM和CF中土壤水分的水平方向與豎直方向濕潤(rùn)距離明顯小于其他供試土壤.WM和CF土壤中的黏粒占比高、孔隙結(jié)構(gòu)復(fù)雜,土壤的吸水性和保水性較強(qiáng),從而延緩了土壤濕潤(rùn)速率[19,21].同時(shí)WM和CF在灌水器下方形成了地表積水,從而減小了土壤水分入滲速率與距離[22].處理CF中與AQTV呈顯著負(fù)相關(guān)關(guān)系的(0.100,0.250] mm砂粒占比處于較低水平,與AQTV呈顯著正相關(guān)關(guān)系的(0.002,0.005] mm粒級(jí)和≤0.002 mm粒級(jí)黏粒占比處于較高水平,使得CF的AQTV較其他處理有所提升.由于濕潤(rùn)體體積提升的規(guī)模遠(yuǎn)小于灌水器流量增加帶來(lái)的影響,導(dǎo)致在相同灌水時(shí)間條件下,AQTV隨灌水量增加而增大.當(dāng)土壤含水量趨近飽和時(shí),土壤水分的遷移擴(kuò)散速度逐漸趨于穩(wěn)定,濕潤(rùn)體擴(kuò)散逐漸減緩[23].綜合濕潤(rùn)距離和AQTV的結(jié)果,推薦處理JS和CF使用的灌水器流量為3 L/h.
在不同灌水量下,DX均具有最大的土壤水分入滲速率,這與DX小粒徑砂粒占比較高有關(guān).土壤中小粒徑顆粒占比與土壤田間持水率密切相關(guān),砂粒含量越高,土壤田間持水率越低[24].在灌水器流量相同時(shí),隨著灌水量的累積,其單位濕潤(rùn)體所能承載的含水量逐漸趨于飽和[20],因此AQTV隨灌水量增大呈現(xiàn)減小的趨勢(shì).通過(guò)相關(guān)性分析可知,AQTV與(0.100,0.250] mm粒級(jí)的砂粒含量呈負(fù)相關(guān),與≤0.002 mm粒級(jí)的黏粒含量呈正相關(guān),并且相關(guān)系數(shù)隨著灌水器流量增大和灌水量增加而增加.這可能是由于土壤田間持水率、持水能力均隨砂粒占比增加而逐漸遞減[25],土壤中黏粒占比增加可以提高土壤飽和含水率[26].
3.2 覆膜滴灌及灌水器間距對(duì)不同砂質(zhì)土壤濕潤(rùn)進(jìn)程的影響
相較無(wú)膜覆蓋條件而言,覆膜提升了大部分砂壤土的AQTV.在地膜覆蓋的情況下,水分滲透過(guò)程中同時(shí)受到邊界地膜束縛、土壤地表積水、重力勢(shì)、基質(zhì)附著力等多重因素的影響,限制了濕潤(rùn)鋒的水平運(yùn)移,同時(shí)由于水分不能向四周擴(kuò)散使得地表水壓力增大,增大了土壤豎直入滲速率[27].當(dāng)土壤含水量達(dá)到一定的閾值,在重力的影響下會(huì)更加傾向于向深層土壤滲透[28].覆膜降低了處理JS的AQTV,增加了土壤水分在水平、豎直方向的最大濕潤(rùn)距離,這可能是由于JS土壤具有較高的粉粒和砂粒組成.
隨著灌水器間距的增大,雙點(diǎn)源入滲時(shí)水平最大濕潤(rùn)距離、濕潤(rùn)峰交匯時(shí)間和濕潤(rùn)體體積均呈現(xiàn)增加的變化趨勢(shì),并且顯著促進(jìn)了交匯面處濕潤(rùn)鋒運(yùn)移距離.這與吳恒卿等[29]的發(fā)現(xiàn)一致.同時(shí),研究發(fā)現(xiàn)灌水器間距對(duì)交匯面處濕潤(rùn)鋒運(yùn)移距離有較大影響.隨著灌水器間距增加,交匯面濕潤(rùn)鋒運(yùn)移距離逐漸越小,交匯入滲處的土壤水分質(zhì)量濃度降低幅度小于自由入滲處,即灌水器間距越大,交匯面濕潤(rùn)程度越低[8].當(dāng)灌水器間距相同,發(fā)生交匯后處理WM和CF的濕潤(rùn)體體積較小,土壤含水量相對(duì)較高,這是由于WM和CF土壤砂粒占比小、而土壤粉粒和黏粒占比較高,土壤持水能力較強(qiáng)所導(dǎo)致的.同時(shí),交匯區(qū)土壤含水量始終大于灌水器下方,砂壤土含水量始終大于壤質(zhì)砂土,這主要與土壤的濕潤(rùn)體的形態(tài)有關(guān)[30].綜合濕潤(rùn)體形態(tài)和土壤水分質(zhì)量濃度的結(jié)果,推薦處理JS和CF使用的灌水器間距為30 cm.
4 結(jié) 論
研究了滴灌灌水器特征參數(shù)對(duì)砂土濕潤(rùn)進(jìn)程的影響,得到主要結(jié)論如下:
1) 在4種砂壤土上,AQTV隨灌水器流量增加均呈現(xiàn)升高的變化趨勢(shì),而隨灌水量增加呈現(xiàn)降低的變化趨勢(shì).
2) AQTV與粒徑為(0.500,1.000]mm的砂粒、(0.002,0.005]mm的黏粒和≤0.002 mm的黏粒占比呈顯著正相關(guān)關(guān)系,與粒徑為(0.100,0.250] mm的砂粒占比呈顯著負(fù)相關(guān).
3) 覆膜提高了DX,WM和CF 3個(gè)處理的AQTV,降低了處理JS的AQTV,土壤濕潤(rùn)體交匯區(qū)域的含水量隨灌水器間距增加而減小.
4) 推薦處理JS和CF使用的最佳灌水器流量為3 L/h,最佳灌水器間距為30 cm.
5) 研究借助AQTV量化了灌水器特征參數(shù)對(duì)砂質(zhì)土壤濕潤(rùn)進(jìn)程的影響,可為優(yōu)化滴灌系統(tǒng)的設(shè)計(jì)提供理論支撐.
參考文獻(xiàn)(References)
[1] ANGOLD Y V, ZHARKOV V A. Special features of drip-sprinkler irrigation technology[J]. Water science and technology: water supply, 2014,14(5):841-849.
[2] 趙偉霞,張振華,蔡煥杰,等.間接地下滴灌土壤濕潤(rùn)體特征參數(shù)[J].農(nóng)業(yè)工程學(xué)報(bào),2010,26(4):87-92.
ZHAO Weixia, ZHANG Zhenhua, CAI Huanjie, et al. Characteristic parameters of soil wetted volume under indirect subsurface drip irrigation[J]. Transactions of the CSAE,2010,26(4):87-92.(in Chinese)
[3] HASSANLIA M, EBRAHIMIZADEH M A, BEECHAM S. The effects of irrigation methods with effluent and irrigation scheduling on water use efficiency and corn yields in an arid region[J]. Agricultural water management,2009,96(1): 93-99.
[4] HASSANLIA M, AHMADIRRAD S, BEECHAM S. Evaluation of the influence of irrigation methods and water quality on sugar beet yield and water use efficiency[J]. Agricultural water management,2010,97(2): 357-362.
[5] 李明思,康紹忠,孫海燕.點(diǎn)源滴灌滴頭流量與濕潤(rùn)體關(guān)系研究[J].農(nóng)業(yè)工程學(xué)報(bào),2006,22(4):32-35.
LI Mingsi, KANG Shaozhong, SUN Haiyan. Relation-ships between dripper discharge and soil wetting pattern for drip irrigation[J]. Transactions of the CSAE,2006,22(4):32-35.(in Chinese)
[6] EKHMAJ A L, AMIN M S M, SALIM S, et al. Wetted surface radius under point source trickle irrigation in sandy soil[J]. International agricultural engineering journal,2005,14(2): 67-75.
[7] 張振華,蔡煥杰,郭永昌,等.滴灌土壤濕潤(rùn)體影響因素的實(shí)驗(yàn)研究[J].農(nóng)業(yè)工程學(xué)報(bào),2002,18(2):17-20.
ZHANG Zhenhua, CAI Huanjie, GUO Yongchang, et al. Experimental study on factors effecting soil wetted volume of clay loam under drip irrigation[J]. Transac-tions of the CSAE,2002,18(2):17-20. (in Chinese)
[8] 何振嘉,史仝樂(lè),傅渝亮,等.灌水器間距對(duì)涌泉根灌雙點(diǎn)源交匯入滲水氮運(yùn)移特性影響研究[J].中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào),2022,24(5):157-169.
HE Zhenjia, SHI Tongle, FU Yuliang, et al. Effect of emitter spacing on nitrogen transport characteristics of intersecting two point sources in bubbled-root irrigation[J]. Journal of agricultural science and technology, 2022,24(5):157-169.(in Chinese)
[9] 張珂,戴鈺,劉林鑫,等.考慮植被根系深度動(dòng)態(tài)變化的VIC模型徑流模擬研究[J/OL].水資源保護(hù):1-12[2024-04-18]. http://kns.cnki.net/kcms/detail/32.1356.tv.20240404.2308.002.html.
ZHANG Ke, DAI Yu, LIU Linxin, et al. Study on the runoff simulation by considering dynamic root system parameters in the VIC model[J/OL]. Water resources protection: 1-12[2024-04-18]. http://kns.cnki.net/kcms/detail/32.1356.tv.20240404.2308.002.html.(in Chinese)
[10] TAN S, WANG Q J, ZHANG J, et al. Performance of AquaCrop model for cotton growth simulation under film-mulched drip irrigation in Southern Xinjiang, China[J]. Agricultural water management, 2018,196: 99-113.
[11] ZHANG J Y, GU P F, LI L Y, et al. Changes of soil particle size fraction along a chronosequence in sandy desertified land: a fundamental process for ecosystem succession and ecological restoration[J]. Journal of soils and sediments, 2016,16(12): 2651-2656.
[12] 朱鵬錕,習(xí)伶宇,覃維維,等.基于圖像法的非均質(zhì)砂土介質(zhì)中水分飽和過(guò)程研究[J].地下水,2021,43(6):17-20.
ZHU Pengkun, XI Lingyu, QING Weiwei, et al. Investigation on water saturation process in heterogeneous sand media based on image methods[J] . Ground water, 2021,43(6):17-20.(in Chinese)
[13] 何岱洵,張家明,陳茂,等.粒度組成對(duì)紅黏土干縮裂隙影響[J].水土保持研究,2022,29(5):185-191.
HE Daixun, ZHANG Jiaming, CHEN Mao, et al. Influen-ce of particle size composition on desiccation cracks of red clay[J]. Research of soil and water conservation, 2022,29(5):185-191. (in Chinese)
[14] RODRIGUEZ-SINOBAS L, ZUBELZU S, MARTIN-SOTOCA J J, et al. Multiscaling analysis of soil water content during irrigation events. Comparison between surface and subsurface drip irrigation[J]. Geoderma, 2021, 382: 114777.
[15] ELMALOGLOU S, DIAMANTOPOULOS E. Effects of hysteresis on redistribution of soil moisture and deep percolation at continuous and pulse drip irrigation[J]. Agricultural water management, 2009,96(3): 533-538.
[16] 蔡國(guó)慶,劉倩倩,楊雨,等.基于濕潤(rùn)鋒前進(jìn)法的不同應(yīng)力狀態(tài)砂質(zhì)黃土土柱滲流試驗(yàn)[J].水利學(xué)報(bào),2021,52(3):291-299.
CAI Guoqing, LIU Qianqian, YANG Yu, et al. Seepage experiments of sandy loess soil column with different stress states based on wetting front advancing method[J]. Journal of hydraulic engineering, 2021,52(3):291-299.(in Chinese)
[17] 夏天,田軍倉(cāng).基于沙壤土黏粒量預(yù)測(cè)土壤水分入滲量和濕潤(rùn)鋒深度[J].灌溉排水學(xué)報(bào),2020,39(11):90-96.
XIA Tian, TIAN Juncang. Using clay content to predict water infiltration in sandy loam soils[J]. Journal of irrigation and drainage,2020,39(11):90-96. (in Chinese)
[18] 范嚴(yán)偉,王延祥,朱鵬程,等.豎管地表滴灌下風(fēng)沙土穩(wěn)定入滲率與濕潤(rùn)體估算模型[J].農(nóng)業(yè)工程學(xué)報(bào),2021,37(7):103-111.
FAN Yanwei, WANG Yanxiang, ZHU Pengcheng, et al. Estimation model for steady infiltration rate and wetting pattern of aeolian sandy soil under vertical pipe surface drip irrigation[J]. Transactions of the CSAE, 2021,37(7):103-111. (in Chinese)
[19] FANY W, HUANG N, ZHANG J, et al. Simulation of soil wetting pattern of vertical moistube-irrigation[J]. Water, 2018,10(5): 601-619.
[20] 陸軍勝,張富倉(cāng),范軍亮,等.不同滴頭流量和灌水量下農(nóng)田土壤濕潤(rùn)體特征及其估算模型[J].干旱地區(qū)農(nóng)業(yè)研究,2020,38(4):19-26.
LU Junsheng, ZHANG Fucang, FAN Junliang, et al. Characteristics and estimation model of wetted soil volume under different drip discharge rates and irrigation amounts[J]. Agricultural research in the arid areas, 2020,38(4):19-26.(in Chinese)
[21] 賈昂元,張勇勇,趙文智,等.干旱區(qū)綠洲農(nóng)田土壤大孔隙與水分入滲特征[J].土壤學(xué)報(bào),2022,59(2):486-497.
JIA Angyuan, ZHANG Yongyong, ZHAO Wenzhi, et al." Characteristics of soil macropores and water infiltration in oasis croplands in an arid region[J]. Acta pedologica sinica, 2022,59(2):486-497. (in Chinese)
[22] 崔偉敏,李明思,代智光,等.滴灌條件下積水區(qū)特性的試驗(yàn)研究[J].灌溉排水學(xué)報(bào),2010,29(2):69-71.
CUI Weimin, LI Mingsi, DAI Zhiguang, et al. Characteristics of water accumulated areas under drip irrigation[J]. Journal of irrigation and drainage, 2010,29(2):69-71.(in Chinese)
[23] 冀榮華, 劉秋霞, 陳振海,等. 基于HYDRUS-3D模型的微潤(rùn)灌溉土壤水分入滲模擬[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2017,48(S1):290-295.
JI Ronghua, LIU Qiuxia, CHEN Zhenhai, et al. Numeri-cal simulation of soil water infiltration based on HYDRUS-3D finite element model under moistube-irrigation[J]. Transactions of the CSAM, 2017,48(S1):290-295.(in Chinese)
[24] SUZUKI S, NOBLE A D, RUAYSOONGNERN S, et al. Improvement in water-holding capacity and structural stability of a sandy soil in Northeast Thailand[J]. Arid land research and management, 2007,21(1):37-49.
[25] 李卓,馮浩,吳普特,等.砂粒含量對(duì)土壤水分蓄持能力影響模擬試驗(yàn)研究[J].水土保持學(xué)報(bào),2009,23(3):204-208.
LI Zhuo, FENG Hao, WU Pute, et al. Simulated expe-riment on effects of soil clay particle content on soil water holding capacity[J]. Journal of soil and water conservation, 2009,23(3):204-208.(in Chinese)
[26] 林立文,鄧羽松,楊鈣仁,等.南亞熱帶不同林分土壤顆粒分形與水分物理特征[J].生態(tài)學(xué)雜志,2020,39(4):1141-1152.
LIN Liwen, DENG Yusong, YANG Gairen, et al. Fractal and hydrophysical characteristics of soil particles in different forest stands in south subtropical China[J]. Chinese journal of ecology, 2020,39(4):1141-1152. (in Chinese)
[27] 李堯, 付玉娟, 張旭東,等. 基于Hydrus-2D分析農(nóng)田覆膜對(duì)降雨入滲的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2022, 38(11):134-143.
LI Yao, FU Yujuan, ZHANG Xudong, et al. Effects of farmland plastic mulching on rainfall infiltration using Hydrus-2D model[J]. Transactions of the CSAE, 2022, 38(11):134-143. (in Chinese)
[28] 李明思, 康紹忠, 楊海梅. 地膜覆蓋對(duì)滴灌土壤濕潤(rùn)區(qū)及棉花耗水與生長(zhǎng)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2007,23(6):49-54.
LI Mingsi, KANG Shaozhong, YANG Haimei. Effects of plastic film mulch on the soil wetting pattern, water consumption and growth of cotton under drip irrigation[J]. Transactions of the CSAE, 2007,23(6):49-54. (in Chinese)
[29] 吳恒卿,黃強(qiáng),魏群.涌泉根灌雙點(diǎn)源交匯入滲濕潤(rùn)體試驗(yàn)研究[J].西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,43(5):201-207.
WU Hengqing, HUANG Qiang, WEI Qun. Moist body of two-point source interference infiltration of surge root irrigation[J]. Journal of Northwest A amp; F University (natural sciences edition), 2015,43(5):201-207. (in Chinese)
[30] 李明思,謝云,崔偉敏.線源滴灌土壤濕潤(rùn)均勻性的影響因素試驗(yàn)研究[J].灌溉排水學(xué)報(bào),2007,26(6):11-14.
LI Mingsi, XIE Yun, CUI Weimin. Experimental study on factors influencing soil moisture uniformity under linear source drip irrigation[J]. Journal of irrigation and drainage, 2007,26(6):11-14.(in Chinese)
(責(zé)任編輯 張文濤)
收稿日期: 2023-01-18; 修回日期: 2023-04-25; 網(wǎng)絡(luò)出版時(shí)間: 2024-04-26
網(wǎng)絡(luò)出版地址: https://link.cnki.net/urlid/32.1814.th.20240423.1113.012
基金項(xiàng)目: 喀什噶爾河流域管理局科研項(xiàng)目(XJKGKY001);國(guó)家自然科學(xué)基金資助項(xiàng)目(51790531)
第一作者簡(jiǎn)介: 郝闖闖(1995—),男,河北邯鄲人,碩士研究生(hchuangchuang@126.com),主要從事節(jié)水灌溉理論與技術(shù)研究.
通信作者簡(jiǎn)介: 李云開(kāi)(1975—),男,湖南芷江人,教授,博士生導(dǎo)師(yunkai@cau.edu.cn),主要從事滴灌灌水器堵塞過(guò)程、機(jī)理與控制研究.