高琳 劉甲林 李靜
摘要:虛擬電廠儲能系統(tǒng)的智能調度尤為關鍵,因此提出了一種基于深度Q 網絡(deep Q network,DQN)的虛擬電廠儲能數(shù)據挖掘方法,結合光伏發(fā)電功率、負荷功率和電力市場的實時動態(tài)電價,進行虛擬電廠儲能數(shù)據挖掘仿真研究。仿真實驗證實,在光伏發(fā)電功率大于負荷功率時,虛擬電廠儲能系統(tǒng)可以根據電價情況進行充放電操作,以最大化調度收益,從而實現(xiàn)了對虛擬電廠儲能系統(tǒng)的智能化管理。該方法有效提升了虛擬電廠儲能系統(tǒng)的智能化水平和能源調度效率,為未來虛擬電廠智能化運行提供了新的方法。
關鍵詞:深度學習;神經網絡;數(shù)據挖掘;虛擬電廠;儲能
中圖分類號:TM73;TP181 文獻標識碼:A
0 引言
隨著可再生能源的迅速增長和能源轉型的推進,虛擬電廠(virtual power plant,VPP)已成為實現(xiàn)能源智能化管理和提高系統(tǒng)靈活性的關鍵解決方案。在虛擬電廠中,儲能系統(tǒng)被視為重要的能量存儲設施,其運行的優(yōu)化對于平衡電力系統(tǒng)的供需、提高系統(tǒng)的可靠性至關重要。然而,隨著儲能系統(tǒng)規(guī)模的不斷擴大和運行復雜性的增加,如何有效利用儲能數(shù)據進行深度分析和挖掘,成為優(yōu)化虛擬電廠運行的關鍵挑戰(zhàn)之一。
人工智能是一種模擬人類智能行為的技術,其核心在于利用計算機系統(tǒng)模擬人類的思維過程以及學習能力,從而執(zhí)行各種任務。在人工智能領域,深度Q 網絡(deep Q network,DQN)是一種基于深度學習和強化學習的方法,已在解決復雜的決策問題時展現(xiàn)出驚人的性能。DQN 結合了深度神經網絡的表征學習能力和Q 學習(Q-learning)的強化學習框架,能夠自動從環(huán)境中學習并優(yōu)化決策策略,適用于探索和解決具有高度不確定性和復雜性的問題。DQN 在視頻游戲、機器人控制、交通規(guī)劃等領域的成功應用,表明了其在決策制定和優(yōu)化方面的巨大潛力。在虛擬電廠儲能數(shù)據挖掘中,利用DQN 可以有效地對儲能數(shù)據進行分析和建模,實現(xiàn)智能化的儲能系統(tǒng)管理,優(yōu)化系統(tǒng)的運作效能與經濟效益。本文旨在探討基于DQN 的虛擬電廠儲能數(shù)據挖掘方法,以加速能源智能化管理的實現(xiàn),并為能源系統(tǒng)的持久發(fā)展提供理論與技術支持。