薛韓玲 萬(wàn)學(xué)寧 廖幫海 石建坤
摘要:為優(yōu)化青花椒干燥工藝,降低能耗,通過(guò)實(shí)驗(yàn)探究不同熱風(fēng)溫度(55℃、65℃、75℃)和微波功率(280 W、462 W、595 W)干燥工況的花椒薄層失水特性;基于水分比隨時(shí)間的變化,應(yīng)用Fick第二擴(kuò)散定律,確定花椒薄層熱風(fēng)微波耦合干燥動(dòng)力學(xué)模型和有效水分?jǐn)U散率(Deff);對(duì)比分析熱風(fēng)—微波耦合干燥與熱風(fēng)干燥的能耗以及干制花椒外表皮微觀結(jié)構(gòu)。結(jié)果表明:升高熱風(fēng)溫度或增加微波功率,均有利于提高干燥速率,且高微波功率促進(jìn)花椒內(nèi)部失水的作用遠(yuǎn)大于升高熱風(fēng)溫度增加花椒表面水分強(qiáng)制對(duì)流的作用;在干燥降速期,隨著極性水分子吸收微波輻射能量減少,水分?jǐn)U散率降低,Deff的變化范圍為(1.65026~4.51093)×10-8m2/s;Logarithmic模型為青花椒薄層熱風(fēng)微波耦合干燥失水動(dòng)力學(xué)最優(yōu)模型;相比于熱風(fēng)干燥,熱風(fēng)微波耦合干燥的比能耗減小1/9~1/5,能效增大4~5倍;花椒經(jīng)熱風(fēng)微波耦合干燥后的外表皮氣孔器張開(kāi)程度更大。研究結(jié)果可為實(shí)際花椒干燥應(yīng)用工藝優(yōu)化、參數(shù)設(shè)計(jì)與節(jié)能提供理論依據(jù)。
關(guān)鍵詞:熱風(fēng);微波;干燥動(dòng)力學(xué);能耗;微觀結(jié)構(gòu)
中圖分類號(hào):TS222+.1
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):2095-5553 (2024) 05-0091-07
收稿日期:2022年10月20日? 修回日期:2022年12月10日*基金項(xiàng)目:陜西省重點(diǎn)研發(fā)項(xiàng)目(2019NY—166)
第一作者、通訊作者:薛韓玲,女,1971年生,陜西韓城人,博士,副教授;研究方向?yàn)檗r(nóng)產(chǎn)品傳熱傳質(zhì)與節(jié)能技術(shù)。E-mail: ?szt2001718@xust.edu.cn
Moisture migration and energy characteristics of hot air coupled microwave drying of
thin-layer Zanthoxylum bungeanum
Xue Hanling1, Wan Xuening1, Liao Banghai2, Shi Jiankun3
(1. College of Energy and Engineering, Xian University of Science and Technology, Xian, 710000, China;
2. School of Architecture and Civil Engineering, Xian University of Science and Technology, Xian, 710000, China;
3. Xian Branch of the Fifth Research Institute of China Aerospace Science and Technology Corporation, Xian, 710000, China)
Abstract:
In order to optimize the drying process of Zanthoxylum bungeanum and reduce energy consumption, the controllable system of hot air coupled microwave drying for thin-layer Zanthoxylum bungeanum was applied to investigate the dehydration characteristics at different hot air temperatures of 55 ℃, 65 ℃ and 75 ℃ and microwave powers of 280 W, 462 W, 595 W. Based on the variation of moisture ratio of Zanthoxylum bungeanum with time, the dynamic model of hot air coupled microwave drying of thin-layer Zanthoxylum bungeanum was determined by solving Ficks second diffusion law and the effective moisture diffusivity (Deff) was calculated. The tissue morphology of outer epidermis of Zanthoxylum bungeanum and the specific energy consumption of hot air coupled microwave drying were compared with that of hot air drying. The results showed that the increase of hot air temperature and microwave power resulted in the acceleration of drying rate of Zanthoxylum bungeanum, and the effect of high microwave power on the internal dehydration of Zanthoxylum bungeanum was greater than that of increasing the hot air temperature to enhance the convection of water on the surface of Zanthoxylum bungeanum. The falling-rate period was the main stage of drying, during which less microwave radiation energy was absorbed by polar water molecules and low moisture diffusivity extending the drying time. The variation range of moisture diffusion coefficient was (1.650 26-4.510 93)×10-8 m2/s. Logarithmic model was selected as the best to predicate the moisture variation of Zanthoxylum bungeanum in hot air coupled microwave drying. The scanning electron microscope (SEM) and energy characteristic analysis showed that, compared with hot air drying, the opening degree of stomatal apparatus in the outer skin of Zanthoxylum bungeanum dried by hot air coupled microwave was significantly greater, the Deff also increased in order of magnitude, the specific energy consumption decreased by 1/9 to 1/5, and the energy efficiency accelerated by 4 to 5 times. The conclusions provide technical guidance for the practical application of Zanthoxylum bungeanum drying engineering and present the theoretical basis for its process optimization, parameter design and energy saving.
Keywords:
hot air; microwave; drying kinetics; energy consumption; microstructure
0 引言
花椒民用可作為調(diào)味料,工業(yè)用可提取香料芳香油,藥用可溫中止痛,殺蟲止癢[1]。據(jù)統(tǒng)計(jì),截至2023年全國(guó)花椒種植面積達(dá)1 533.33 hm2,年產(chǎn)花椒57.4×104 t。在 “碳中和”政策背景下,對(duì)花椒干燥工藝進(jìn)行優(yōu)化,降低干燥能耗,有效提高工業(yè)化干燥成品品質(zhì)與經(jīng)濟(jì)價(jià)值至關(guān)重要[2]。
微波干燥作為一種節(jié)能、高效、綠色的干燥技術(shù)[3],相關(guān)學(xué)者在花椒干燥領(lǐng)域進(jìn)行了研究。趙超等[4]采用不同微波功率研究花椒干燥特性,確定出花椒薄層間歇式微波干燥模型。鄭嚴(yán)[5]通過(guò)對(duì)比花椒薄層熱風(fēng)干燥與微波間歇干燥,分析了不同干燥工藝對(duì)花椒品質(zhì)和干燥能耗的影響。但這些研究?jī)H針對(duì)單一的微波干燥,單一的微波干燥因其不均勻性會(huì)對(duì)物料干燥質(zhì)量和能量利用造成不利影響[3]。多種干燥方式的聯(lián)合,可實(shí)現(xiàn)各干燥技術(shù)的優(yōu)化互補(bǔ)[6],王玲等[7]以色差,揮發(fā)油含量和能耗的綜合評(píng)分為響應(yīng)值,分析得到熱風(fēng)與微波串聯(lián)干燥的最佳工藝。國(guó)內(nèi)外學(xué)者對(duì)諸如橙皮[8]、山藥[9]、芹菜[10]等農(nóng)產(chǎn)品也做了一定研究,結(jié)果表明這兩種干燥方式的結(jié)合對(duì)減少干燥時(shí)間和提高農(nóng)產(chǎn)品品質(zhì)效果較好。衛(wèi)靈君等[11]通過(guò)5種干燥模型對(duì)牛蒡熱風(fēng)微波耦合干燥過(guò)程中的水分變化進(jìn)行擬合,發(fā)現(xiàn)Logarithmic方程能很好地描述干燥過(guò)程含水率變化規(guī)律。但目前對(duì)于青花椒,熱風(fēng)與微波并聯(lián)耦合干燥技術(shù),至今鮮有報(bào)道。
本文通過(guò)熱風(fēng)微波耦合干燥試驗(yàn),探究不同熱風(fēng)溫度和微波功率工況下青花椒的失水特性和能量特征,為青花椒干燥工藝的選擇與優(yōu)化提供行之有效的科學(xué)依據(jù)。
1 材料與方法
1.1 材料
試驗(yàn)采用江津九葉真空冷凍包裝鮮花椒,去除莖葉。依據(jù)恒質(zhì)量法,利用烘干箱(蘇珀202-0,精度±1℃)測(cè)得其初始含水率為218%。
1.2 儀器與設(shè)備
自制熱風(fēng)—微波耦合干燥實(shí)驗(yàn)系統(tǒng)主要包括干燥介質(zhì)輸送控制、干燥裝置和水分監(jiān)測(cè)三部分,見(jiàn)圖1。系統(tǒng)主要由軸流風(fēng)機(jī)(來(lái)日SF3-4,電機(jī)功率0.12kW),柔性耐高溫風(fēng)管(玻璃棉保溫),熱敏式風(fēng)速儀(DT-3880,精度1%)、空氣加熱器(G-11),微波裝置(P70D20TL-04)和電子精密天平(PWN423ZH/E,±0.002 g)組成。微波裝置一側(cè)為熱風(fēng)入口(直徑85 mm),另一側(cè)為矩形排濕口(60×80 mm),電子天平自頂部鉆孔(直徑20 mm)與物料托盤連接。采用掃描電鏡SEM(JSM-6460LV)觀察干燥成品花椒果皮外表面組織微觀形貌。
1.7 試驗(yàn)方法
每組試驗(yàn)取200 g青花椒,均勻平整鋪放于聚丙烯物料托盤(170 mm×120 mm×26 mm),層鋪厚度不超過(guò)2 cm。為結(jié)合生產(chǎn)實(shí)際[4, 5, 7],試驗(yàn)中熱風(fēng)風(fēng)速V恒為1.0 m/s,選擇55℃、65℃和75℃三個(gè)溫度水平,280W、462W和595W三個(gè)微波功率水平進(jìn)行試驗(yàn)。待試驗(yàn)條件達(dá)到設(shè)定值,將盛有鮮花椒的托盤懸掛于精密天平,計(jì)數(shù)間隔為5s,并啟動(dòng)微波裝置,直至花椒濕基含水率降為10%則干燥結(jié)束,每組工況試驗(yàn)重復(fù)3次取平均值。
2 結(jié)果與分析
2.1 干燥特性曲線
2.1.1 熱風(fēng)溫度對(duì)干燥特性的影響
恒定微波功率P下,不同風(fēng)溫T對(duì)花椒薄層熱風(fēng)微波耦合干燥失水特性的影響如圖2、圖3所示。從圖2可知,P為280W時(shí),當(dāng)T由55℃升至75℃,干燥時(shí)間由52 min縮短至32 min,減少了38.5%,且最大干燥速率DRmax從0.02826提高至0.04342 g/(g·min)。即隨著風(fēng)溫T的升高,花椒熱風(fēng)微波耦合干燥所需時(shí)間減少,干燥速率增大。這是因?yàn)轱L(fēng)溫的升高導(dǎo)致花椒表面的水分蒸發(fā),增加了花椒內(nèi)外水分濃度梯度,從而促進(jìn)了花椒內(nèi)部水分?jǐn)U散。但從圖3(a)可知,P為462 W時(shí),當(dāng)T從55 ℃升至75 ℃,對(duì)應(yīng)的水分比MR隨時(shí)間t的變化曲線差距較小,甚至出現(xiàn)重合。這是因?yàn)槲⒉ǖ膹?qiáng)穿透性,使得高微波功率促進(jìn)花椒內(nèi)部失水的作用遠(yuǎn)遠(yuǎn)大于升高熱風(fēng)溫度增加花椒表面水分強(qiáng)制對(duì)流的作用,降低了熱風(fēng)溫度的影響[19],Malekjani等[20]對(duì)榛子熱風(fēng)微波耦合干燥時(shí)也發(fā)現(xiàn)了同樣的現(xiàn)象。
從圖2和圖3干燥速率曲線可知,在熱風(fēng)—微波耦合干燥初期,DR值大幅度增加至峰值,然后隨著花椒失水而逐漸降低,進(jìn)入干燥降速階段。這是因?yàn)榛ń烦跏己枯^高,熱風(fēng)和微波共同作用所提供的外熱源和內(nèi)熱源,極大地促進(jìn)了花椒表面的自由水分蒸發(fā)以及內(nèi)部水分?jǐn)U散,使得DR迅速加快,呈現(xiàn)出明顯的升速期。
隨著干燥過(guò)程中花椒不斷失水,吸收的微波輻射能量減少,而且低含水量導(dǎo)致低的水分?jǐn)U散率,抑制了花椒內(nèi)部水分遷移,使得干燥速率降低。熱風(fēng)溫度越高干燥速率越快,280W微波功率條件下的干燥速率隨熱風(fēng)溫度的變化幅度大于462W微波功率。
2.1.2 微波功率對(duì)干燥特性的影響
不同微波功率下的花椒干燥濕分比MR和干燥速率DR的變化見(jiàn)圖4。從圖4可知,當(dāng)T恒定時(shí),P由280W切換至462 W,干燥時(shí)間縮短30.76%,再切換至595 W時(shí),干燥時(shí)間縮短42.3%,對(duì)應(yīng)最大干燥速率DRmax分別為0.02826g/(g·min),0.04231g/(g·min)和0.05887 g/(g·min),說(shuō)明隨著P的升高,干燥時(shí)間縮短,干燥速率增大。這與Drouzas[21]的報(bào)道結(jié)果一致。這是由于受微波體積加熱和選擇性加熱的影響,隨著P的增加,微波直接作用在花椒內(nèi)部的熱量增加,使得其內(nèi)部極性水分子吸收微波輻射能增大而迅速汽化,產(chǎn)生內(nèi)高外低的水蒸氣壓力梯度,推動(dòng)花椒顆粒內(nèi)部水分快速擴(kuò)散至外表面,極大地提高干燥效率。從圖4可知,熱風(fēng)微波耦合干燥初期,DR大幅度增加直至到達(dá)峰值,然后隨著花椒水分的減少,干燥速率開(kāi)始緩慢降低,進(jìn)入干燥降速期。
2.2 花椒薄層熱風(fēng)—微波耦合干燥數(shù)學(xué)模型
應(yīng)用表1中的5種干燥模型對(duì)花椒熱風(fēng)微波耦合干燥試驗(yàn)數(shù)據(jù)進(jìn)行非線性擬合,并通過(guò) R2、χ2 和RSS值評(píng)估,結(jié)果如圖5所示。
從圖5可知,Logarithmic模型擬合所對(duì)應(yīng)的R2均值最高,達(dá)到0.9957,RSS和χ2的均值最小,分別為0.0064和4.892×10-4。因此,Logarithmic模型為描述花椒熱風(fēng)微波耦合干燥失水動(dòng)力學(xué)規(guī)律的最優(yōu)模型。不同工況下Logarithmic模型MR的預(yù)測(cè)值與試驗(yàn)驗(yàn)證結(jié)果如圖6所示,相對(duì)誤差≤10%,說(shuō)明試驗(yàn)值與模型值達(dá)到很好的一致性。各試驗(yàn)工況下該模型的擬合結(jié)果如表2所示。
2.3 有效水分?jǐn)U散率
不同工況下花椒熱風(fēng)微波耦合干燥的有效水分?jǐn)U散率值Deff見(jiàn)表3。
由表3可知,其R2值在0.943 3~0.987 4之間,RSS值在0.018 08~0.201 86之間,擬合程度良好。Deff變化范圍為(1.650 26~4.510 93)×10-8 m2/s,其變化規(guī)律與干燥速率一致,相比于Zogzas等[22]介紹的大多數(shù)農(nóng)產(chǎn)品和果蔬熱風(fēng)干燥的有效擴(kuò)散率范圍(10-11 ~10-9)呈量級(jí)增大。這是因?yàn)槲⒉苤苯訉?duì)花椒內(nèi)部極性水分子加熱,使其迅速汽化而產(chǎn)生內(nèi)高外低的水蒸氣壓力梯度,推動(dòng)花椒內(nèi)部的水分遷移至外表面。同時(shí),熱風(fēng)作為外部熱源與花椒發(fā)生對(duì)流作用,使得花椒外表面水分吸熱后蒸發(fā)擴(kuò)散至空氣中,產(chǎn)生花椒顆粒外低內(nèi)高的水分濃度梯度,促進(jìn)了花椒內(nèi)部水分向外遷移[23]。
隨著熱風(fēng)溫度T的升高和微波功率P的增大,Deff逐漸增大。將Deff與T和P進(jìn)行多元回歸,得到花椒熱風(fēng)微波耦合干燥的有效水分?jǐn)U散模型,如式(12)所示。
Deff=
5.054 37×10-11P+5.612 46×10-10T-2.969 38×10-8 R2=0.922
(12)
對(duì)回歸方程進(jìn)行F檢驗(yàn),顯著性水平α=0.05,F(xiàn)=48.403>F0.05(2,6)=5.143。概率值=1.987 87×10-4<0.05,說(shuō)明Deff與T和P的線性關(guān)系顯著。
2.4 能量分析
不同工況下的干燥比能耗和能效對(duì)比見(jiàn)圖7。
從圖7(a)可知,當(dāng)P=280 W,T分別為55、 65和75℃時(shí),相應(yīng)的比能耗SEC分別為24.11 MJ/kg、22.15 MJ/kg和20.44 MJ/kg,而對(duì)應(yīng)的能效ηe分別為9.6%、10.4%和11.2%。從圖7(b)可知,當(dāng)T=55℃,P分別為280W、462W和595W時(shí),相應(yīng)的SEC分別為24.11MJ/kg、19.71MJ/kg和18.27MJ/kg,對(duì)應(yīng)的ηe分別為9.6%、11.7%和12.7%??梢?jiàn),升高熱風(fēng)溫度增加微波功率均有利于降低干燥能耗,提高干燥能效。這是因?yàn)楦稍飼r(shí)間長(zhǎng)短影響能量特性[19],隨著熱風(fēng)溫度和微波功率的升高,干燥時(shí)間縮短,從而顯著降低能耗,提高能效。
此外,圖7(a)給出T=75℃熱風(fēng)干燥的SEC和ηe值分別為 113.01 MJ/kg和2.03%。當(dāng)T=75℃,P=280 W的微波輔助時(shí),耦合干燥可達(dá)到的最大SEC值(20.44 MJ/kg)近于熱風(fēng)干燥時(shí)可達(dá)到的最小SEC(113.01 MJ/kg)的1/5,而其能效值ηe是熱風(fēng)干燥的4~5倍。圖7(b)給出T=55℃熱風(fēng)干燥的SEC和ηe值分別為109.46 MJ/kg和2.17%,其SEC值是其熱風(fēng)微波耦合干燥的4~6倍,而能效極低。證明熱風(fēng)—微波耦合干燥花椒可顯著節(jié)能。
2.5 SEM分析
熱風(fēng)干燥(65℃)和熱風(fēng)—微波耦合干燥(65℃、462W)的干制青花椒外表皮SEM見(jiàn)圖8。由圖8(a)和圖8(c)可知,花椒外表皮分布著諸多呈橢圓狀的氣孔器以及部分晶狀分泌物。氣孔器既是花椒內(nèi)水分向外遷移的通道,也是復(fù)水時(shí)水分進(jìn)入的通道。從圖8(b)和圖8(d)可見(jiàn),放大5000倍可清晰觀察到花椒外表皮氣孔器形態(tài),相比于熱風(fēng)干燥,耦合干燥下花椒外表皮能夠產(chǎn)生較大的氣孔,閉合氣孔器較少,這有利于減小花椒內(nèi)部水分向外遷移的阻力,從而促進(jìn)水分?jǐn)U散,解釋了耦合干燥Deff值呈量級(jí)增大。
3 結(jié)論
1) 花椒薄層熱風(fēng)—微波耦合干燥時(shí),升高熱風(fēng)溫度或增加微波功率,均有利于提高干燥速率,縮短干燥時(shí)間;但在高微波功率輔助時(shí),熱風(fēng)溫度對(duì)于花椒失水特性的影響很小。
2) Logarithmic模型可認(rèn)為是花椒薄層熱風(fēng)—微波耦合干燥失水動(dòng)力學(xué)的最優(yōu)模型,可用于預(yù)測(cè)花椒薄層熱風(fēng)微波耦合干燥過(guò)程的水分變化規(guī)律。相比于熱風(fēng)干燥,花椒薄層熱風(fēng)—微波耦合干燥的有效水分?jǐn)U散率Deff呈量級(jí)增大,變化范圍為(1.650 26~4.510 93)×10-8 m2/s。Deff與熱風(fēng)溫度T和微波功率P多元回歸模型為Deff=5.054 37×10-11P+5.612 46×10-10T-2.969 38×10-8。
3) 相比于單級(jí)熱風(fēng)干燥,經(jīng)熱風(fēng)—微波耦合干燥的花椒外表皮的氣孔器張開(kāi)程度較大,可極大地增強(qiáng)花椒內(nèi)部水分向外表面擴(kuò)散的能力,并且花椒熱風(fēng)—微波耦合干燥的能效可增大4~5倍,而比能耗僅約為熱風(fēng)干燥的1/9~1/5,耦合干燥的節(jié)能效果顯著。
參 考 文 獻(xiàn)
[1] 張紅, 楊慶, 陳穎, 等. 中藥花椒化學(xué)成分及其防治神經(jīng)精神疾病的研究進(jìn)展[J]. 天然產(chǎn)物研究與開(kāi)發(fā), 2021, 33(11): 1969-1981.
Zhang Hong, Yang Qing, Chen Ying, et al. Research progress on chemical constituents of zanthoxylum bungeanum and its prevention and treatment of neuropsychiatric diseases [J]. Natural Product Research and Development, 2021, 33(11): 1969-1981.
[2] Qiu J, Vuist J E, Boom R M, et al. Formation and degradation kinetics of organic acids during heating and drying of concentrated tomato juice [J]. LWT-Food Science and Technology, 2018, 87: 112-121.
[3] 張紫恒, 張吉軍, 唐正, 等. 北方粳高粱微波干燥特性試驗(yàn)與仿真分析[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào), 2021, 42(11): 65-71.
Zhang Ziheng, Zhang Jijun, Tang Zheng, et al. Experiment and simulation analysis of microwave drying characteristics of northern japonica sorghum [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 65-71
[4] 趙超, 陳建, 邱兵, 等. 花椒微波干燥特性試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào), 2007(3):? 99-101, 98.
Zhao Chao, Chen Jian, Qiu Bing, et al. Experimental study on microwave drying characteristics of chinese prickly ash [J]. Transactions of the Chinese Society for Agricultural Machinery, 2007(3): 99-101, 98.
[5] 鄭嚴(yán). 花椒微波干燥與熱風(fēng)干燥的對(duì)比試驗(yàn)研究[D]. 重慶: 西南大學(xué), 2006.
Zheng Yan. Comparative experimental study on microwave drying and hot air drying of zanthoxylum bungeanum [D]. Chongqing: Southwest University, 2006.
[6] 王教領(lǐng), 宋衛(wèi)東, 任彩紅, 等. 我國(guó)香菇干燥技術(shù)研究進(jìn)展[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào), 2021, 42(7): 76-83.
Wang Jiaoling, Song Weidong, Ren Caihong, et al. Research on the drying progress of lentinus edodes in China [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(7): 76-83.
[7] 王玲, 田冰, 彭林, 等. 熱風(fēng)—微波聯(lián)合干燥青花椒工藝優(yōu)化[J]. 食品與發(fā)酵工業(yè), 2019, 45(18): 176-182.
Wang Ling, Tian Bing, Peng Lin, et al. Optimization of hot air-microwave combined drying of zanthoxylum schinifolium [J]. Food and Fermentation Industries, 2019, 45(18): 176-182.
[8] Talens C, Castro-Giraldez M, Fito P J. A thermodynamic model for hot air microwave drying of orange peel [J]. Journal of Food Engineering, 2016, 175: 33-42.
[9] Wang H, Liu D, Yu H, et al. Optimization of microwave coupled hot air drying for Chinese yam using response surface methodology [J]. Processes, 2019, 7(10): 745.
[10] Chen Y, Song C, Li Z, et al. Effects of hot air and combined microwave and hot air drying on the quality attributes of celery stalk slices [J]. Journal of Food Processing and Preservation, 2020, 44(1).
[11] 衛(wèi)靈君, 宋飛虎, 周洪梅, 等. 熱風(fēng)微波耦合干燥牛蒡動(dòng)力學(xué)模型研究[J]. 浙江農(nóng)業(yè)學(xué)報(bào), 2016, 28(8): 1416-1420.
Wei Lingjun, Song Feihu, Zhou Hongmei, et al. Study on dynamic model of coupled hot air and microwave drying of burdock [J]. Acta Agriculture Zhejiangensis, 2016, 28(8): 1416-1420.
[12] 姜春慧, 張倩, 楊娜, 等. 桔梗切片遠(yuǎn)紅外干燥特性及動(dòng)力學(xué)研究[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào), 2021, 42(2): 92-100.
Jiang Chunhui, Zhang Qian,Yang Na, et al. Study on far infrared drying characteristics and kinetics of platycodon grandiflorum slices [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(2): 92-100.
[13] 薛韓玲, 廖幫海, 拓雯, 等. 基于濕度控制的大紅袍花椒熱風(fēng)干燥動(dòng)力學(xué)與品質(zhì)研究[J]. 食品與發(fā)酵工業(yè), 2023, 49(22): 149-155.
Xue Hanling, Liao Banghai, Tuo Wen, et al. Study on hot air drying kinetics and quality of dahongpao zanthoxylum bungeanum maxim based on humidity control [J]. Food and Fermentation Industries, 2023, 49(22): 149-155.
[14] Kalender M. Thin-layer infrared drying characteristics of construction gypsum plaster and selection of a suitable drying model [J]. Construction and Building Materials, 2017, 155: 947-955.
[15] 吳業(yè)豪. 花椒多孔堆積填充床對(duì)流干燥傳熱傳質(zhì)特性[D]. 西安: 西安科技大學(xué), 2021.
Wu Yehao. Heat andmass transfer characteristics of convective drying in porous packed bed about Zanthoxylum bungeanum Maxim [D]. Xian: Xian University of Science and Technology, 2021
[16] 陳健凱, 林河通, 林藝芬, 等. 基于品質(zhì)和能耗的杏鮑菇微波真空干燥工藝參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2014, 30(3): 277-284.
Chen Jiankai, Lin Hetong, Lin Yifen, et al. Optimized technology of Pleurotus eryngii by microwave-vacuum drying based on quality and energy consumption [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(3): 277-284.
[17] Torki-Harchegani M, Ghanbarian D, Ghasemi Pirbalouti A, et al. Dehydration behaviour, mathematical modelling, energy efficiency and essential oil yield of peppermint leaves undergoing microwave and hot air treatments [J]. Renewable and Sustainable Energy Reviews, 2016, 58: 407-418.
[18] Motevali A, Minaei S, Banakar A, et al. Comparison of energy parameters in various dryers [J]. Energy Conversion and Management, 2014, 87: 711-725.
[19] Silva F A, Marsaioli A, Maximo G J, et al. Microwave assisted drying of macadamia nuts [J]. Journal of Food Engineering, 2006, 77(3): 550-558.
[20] Malekjani N, Emam-Djomeh Z, Hashemabadi S H, et al. Modeling thin layer drying kinetics, moisture diffusivity and activation energy of hazelnuts during microwave-convective drying [J]. International Journal of Food Engineering, 2018, 14(2).
[21] Drouzas A E, Schubert H. Microwave application in vacuum drying of fruits [J]. Journal of Food Engineering, 1996, 28(2): 203-209.
[22] Zogzas N P, Maroulis Z B, Marinos-Kouris D. Moisture diffusivity data compilation in foodstuffs [J]. Drying Technology, 1996, 14(10): 2225-2253.
[23] 王俊山. 牛肉干微波-熱風(fēng)耦合干燥生產(chǎn)工藝及其干燥動(dòng)力學(xué)研究[D]. 揚(yáng)州: 揚(yáng)州大學(xué), 2019.
Wang Junshan. Study on microwave hot air coupling drying process and drying kinetics of beef jerky [D]. Yangzhou: Yangzhou University, 2019.