富佳 李然
摘要:復(fù)對稱算子是由復(fù)對稱矩陣的概念抽象出來的,本文借助矩陣研究如何刻畫經(jīng)典Hardy空間上的一類復(fù)對稱Toeplitz算子。首先在Hardy空間上定義兩類新的共軛算子,它們分別為n倒置的共軛算子和n二次倒置的共軛算子。其次分奇偶情況去完整刻畫在這類共軛算子下Toeplitz算子是復(fù)對稱的結(jié)構(gòu),利用在Hardy空間上經(jīng)典正規(guī)正交基下Toeplitz算子的矩陣表示,給出了Toeplitz算子分別相對于一類共軛算子是復(fù)對稱的充分必要條件。最后對本文進(jìn)行總結(jié)及展望,提出能否繼續(xù)刻畫Toeplitz算子相對于這類共軛算子是m-復(fù)對稱的問題。
關(guān)鍵詞:Hardy空間;Toeplitz算子;共軛算子;復(fù)對稱算子;矩陣表示
中圖分類號:O177.1文獻(xiàn)標(biāo)志碼:A文獻(xiàn)標(biāo)識碼
Complex symmetry of Toeplitz operators on Hardy spaces
FU? Jia,LI? Ran*
(School of Mathematics, Liaoning Normal University,Dalian,Liaoning 116029,China)
Abstract: Complex symmetric operators are abstracts from the concept of complex symmetric matrices. In this paper,we study how to characterize a class of complex symmetric Toeplitz operators on classical Hardy Spaces through matrix. Firstly,two new classes of conjugations are defined on Hardy spaces,which are n-inverted conjugations and n-quadratic inverted conjugations respectively. Secondly,it is described that the Toeplitz operator is complex symmetric under conjugations in odd and even cases,and the necessary and sufficient conditions for Toeplitz operator to be complex symmetric under conjugations on Hardy spaces are given by using the matrix representation of the Toeplitz operator under classical orthogonal basis respectively. Finally,this paper summarizes and looks forward to the problem of whether Toeplitz operator can be described as m-complex symmetric relative to this class of conjugations.
Key words: Hardy spaces;Toeplitz operators;conjugations;complex symmetric operators;matrix representation
參考文獻(xiàn)(References)
[1] TOEPLITZ O. Zur theorie der quadratischen und bilinearen formen von unendlichvielen vernderlichen[J]. Mathematische Annalen, 1911, 70(3): 351-376.
[2] GARICIA S R, PUTINAR M. Complex symmetric operators and applications[J]. Transactions of the American Mathematical Society, 2005, 358(3): 1285-1315.
[3] GARICIA S R, PUTINAR M. Complex symmetric operators and applications II[J]. Transactions of the American Mathematical Society, 2007, 359(8): 3913-3931.
[4] GARICIA S R, WOGEN W R. Complex symmetric partial isometries[J]. Journal of Functional Analysis, 2009, 257(4): 1251-1260.
[5] GARICIA S R. Conjugation and Clark operators[J]. Contemporary Mathematics, 2006, 393: 67-111.
[6] GUO K Y, ZHU S. A canonical decomposition of complex symmetric operators[J]. Journal of Operator Theory, 2014, 72(2): 529-547.
[7] KO E, LEE J E. On complex symmetric Toeplitz operators[J]. Journal of Mathematical Analysis and Applications, 2016, 434(1): 20-34.
[8] NOOR S W. Complex symmetry of Toeplitz operators with continuous symbols[J]. Archiv der Mathematik, 2017, 109(5): 455-460.
[9] BU Q G, CHEN Y, ZHU S. Complex symmetric Toeplitz operators[J]. Integral Equations and Operator Theory, 2021, 93(2): 15-33.
[10] WANG M F, WU Q, HAN K K. Complex symmetry of Toeplitz operators over the bidisk[J]. Acta Mathematica Scientia, 2023, 43(4): 1537-1546.
[11] ARUP C, SOMA D, CHANDAN P, et al. Characterization of C-symmetric Toeplitz operators for a class of conjugations in Hardy spaces[J]. Linear and Multilinear Algebra, 2022, 71(12): 2026-2048.
[12] LI R, YANG Y X, LU Y F. A class of complex symmetric Toeplitz operators on Hardy and Bergman spaces[J]. Journal of Mathematical Analysis and Applications, 2020, 489(2): 124173.
[13] KO E, LEE J E, LEE J. Complex symmetric Toeplitz operators on the weighted Bergman space[J]. Complex Variables and Elliptic Equations, 2022, 67(5): 1393-1408.
[14] JIANG C, DONG X T, ZHOU Z H. Complex symmetric Toeplitz operators on the unit polydisk and the unit ball[J]. Acta Mathematica Scientia, 2020, 40(1): 35-44.
[15] HU X H, DONG X T, ZHOU Z H. Complex symmetric monormial Toeplitz operators on the unit ball[J]. Journal of Mathematical Analysis and Applications, 2020, 492(2): 124490.
[16] DONG X T, GAO Y X, HU Q J. Complex symmetric Toeplitz operators on the unit polydisk[J]. International Journal of Mathematics, 2023, 34(1): 96-120.
[17] He X H. Complex symmetry of Toeplitz operators on the weighted Bergman spaces[J]. Czechoslovak Mathematical Journal, 2022, 72(3): 855-873.
[18] KO E, LEE J E, LEE J. Complex symmetric Toeplitz operators on the weighted Bergman space[J]. Complex Var. Elliptic Equ., 2022, 67(6): 1393-1408.
[18] LI A S, LIU Y, CHEN Y. Complex symmetric Toeplitz operators on the Dirichlet space[J]. Journal of Mathematical Analysis and Applications, 2020, 487(1): 123998.
[19] HAN K K, WANG M F, WU Q. Unbounded complex symmetric Toeplitz operators[J]. Acta Mathematica Scientia, 2022, 42(1): 420-428.(責(zé)任編輯:編輯郭蕓婕)