滕培松 吳聰 向敏 劉小兵
摘 要:針對(duì)主桁傾角變化對(duì)倒梯形鋼桁梁氣動(dòng)特性有較大影響的問題,以某公鐵兩用連續(xù)鋼桁梁為例,針對(duì)不同的主桁傾角,采用計(jì)算流體力學(xué)(CFD)的方法建立簡(jiǎn)化的三維分析模型,對(duì)鋼桁梁節(jié)段進(jìn)行風(fēng)場(chǎng)模擬,分析不同主桁傾角下的鋼桁梁斷面靜風(fēng)氣動(dòng)力系數(shù)、渦振性能以及流場(chǎng)特性的差異。結(jié)果表明:升力系數(shù)和力矩系數(shù)受主桁傾角變化影響明顯,主桁傾角為10°時(shí),鋼桁梁的升力系數(shù)較優(yōu),此時(shí)鋼桁梁承受較小的豎向風(fēng)荷載;主桁傾角為0°時(shí),鋼桁梁的力矩系數(shù)較優(yōu),此時(shí)鋼桁梁承受較小的扭轉(zhuǎn)風(fēng)荷載;主桁傾角對(duì)鋼桁梁在0°和6°風(fēng)攻角條件下的渦激性能影響明顯,渦振性能在主桁傾角為2.5°和5°時(shí)較優(yōu);隨著主桁傾角的增大,鋼桁梁內(nèi)部風(fēng)速存在的減速現(xiàn)象減弱,有利于內(nèi)部行車穩(wěn)定;主桁傾角的變化對(duì)湍動(dòng)能的分布影響明顯,隨著主桁傾角的增大,鋼桁梁內(nèi)部湍動(dòng)能的增大效果減弱,而鋼桁梁背風(fēng)側(cè)湍動(dòng)能的增大效果加強(qiáng);通過綜合對(duì)比多類氣動(dòng)特性,主桁傾角為5°的鋼桁梁的氣動(dòng)特性較優(yōu)。研究得出了主桁傾角變化對(duì)倒梯形鋼桁梁主梁氣動(dòng)特性和空間流場(chǎng)特性的影響規(guī)律,可為后續(xù)鋼桁梁的抗風(fēng)設(shè)計(jì)提供參考。
關(guān)鍵詞:工程結(jié)構(gòu)其他學(xué)科;鐵路橋梁;主桁傾角;倒梯形鋼桁梁;氣動(dòng)特性;CFD數(shù)值模擬
中圖分類號(hào):U442.5+9;U448.21+1? 文獻(xiàn)標(biāo)識(shí)碼:A???文章編號(hào):1008-1542(2024)02-0217-08
Analysis of the influence of maintruss inclination angle on the aerodynamic characteristics of inverted trapezoidal steel joists
TENG Peisong, WU Cong, XIANG Min, LIU Xiaobing
(School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei 050043, China)
Abstract:Aiming at the problem that the change of the inclination angle of the main truss has a great influence on the aerodynamic characteristics of inverted trapezoidal steel trusses,taking a public-rail continuous steel truss as an example, the effect of main truss inclination on the aerodynamic characteristics of inverted trapezoidal steel truss was investigated. A simplified three-dimensional analysis model was established by using computational fluid dynamics (CFD) method for different main truss inclination angles to simulate the wind field of main turss sections with different main truss inclination angles. The differences of static wind aerodynamic coefficient, vortex vibration performance and flow field characteristics of main truss sections with different main truss inclination angles were analyzed. The results show that the lift and moment coefficients are significantly influenced by the change of main truss inclination, the lift coefficient of the steel truss is better when the inclination angle of the main truss is 10°, at this time the steel truss is subjected to smaller vertical wind load, and the moment coefficient of the steel joist is better when the inclination angle of the main truss is 0°, at this time the steel truss is subjected to smaller torsional wind load; the main truss inclination angle has a significant effect on its vortex excitation performance under 0° and 6° wind angle of attack conditions, and the vortex vibration performance is better at the main truss inclination angles of 2.5° and 5°;the deceleration phenomenon of wind velocity inside the steel truss decreases with the increase of main truss inclination, it contributes to internal traffic stabilization; the change of main truss inclination has obvious effect on the distribution of turbulent kinetic energy, the effect of increase of turbulent kinetic energy inside the steel truss decreases with the increase of main truss inclination and the effect of increase of turbulent kinetic energy on the leeward side of the steel truss strengthens. By comprehensively comparing multiple types of aerodynamic properties, the aerodynamic characteristics of steel trusses with main truss inclination angles of 5° are better. The influence of the change of main truss inclination angle on the aerodynamic characteristics and spatial flow field characteristics of inverted trapezoidal steel truss can provide a reference for the subsequent wind-resistant design of steel truss.
Keywords:other disciplines of engineering structure;railway bridge;inclination angle of main truss;inverted trapezoidal steel truss;pneumatic characteristics;CFD numerical simulation
隨著鋼桁梁在公鐵兩用橋梁中的廣泛應(yīng)用,其氣動(dòng)特性對(duì)橋梁自身穩(wěn)定和橋上行車影響的研究愈發(fā)重要。氣動(dòng)特性參數(shù)是研究橋梁氣動(dòng)特性的重要參數(shù),氣動(dòng)特性參數(shù)獲取的主要方式包括現(xiàn)場(chǎng)實(shí)測(cè)、風(fēng)洞試驗(yàn)和數(shù)值模擬。相對(duì)于現(xiàn)場(chǎng)實(shí)測(cè)和風(fēng)洞試驗(yàn),數(shù)值模擬具有效率高、成本低、試驗(yàn)周期短和可重復(fù)試驗(yàn)等優(yōu)點(diǎn),近幾年在抗風(fēng)試驗(yàn)中得到了廣泛應(yīng)用[1-7]。
鄒明偉等[8]采用CFD(computation fluid dynamic)數(shù)值模擬和風(fēng)洞試驗(yàn)相結(jié)合的方法,對(duì)倒梯形鋼桁梁斷面進(jìn)行氣動(dòng)參數(shù)研究,基于二維SST(shear-stress transfer) k-ω湍流模型和2D LES模擬進(jìn)行分析,結(jié)果表明SST k-ω模型的仿真結(jié)果與風(fēng)洞試驗(yàn)吻合良好,更適合該類鋼桁梁的CFD數(shù)值模擬;任森等[9]采用FLUENT建立了矩形截面鋼桁梁的二維簡(jiǎn)化模型,分析了明橋面和正交異性板橋面2種不同橋面形式下鋼桁梁的空間流場(chǎng)結(jié)構(gòu)、斷面靜風(fēng)氣動(dòng)力系數(shù)、渦振性能及馳振性能的差異;沈自力[10]建立了正梯形鋼桁梁三維仿真模型以進(jìn)行氣動(dòng)特性分析,對(duì)比了三維仿真模型和二維等效模型的仿真結(jié)果,分析結(jié)果表明三維氣動(dòng)仿真的計(jì)算精度大于二維等效模型的計(jì)算精度,故在模擬條件允許的情況下,為保證模擬結(jié)果的準(zhǔn)確性,應(yīng)采用三維仿真模型進(jìn)行模擬;王銘等[11]通過風(fēng)洞試驗(yàn)分析側(cè)風(fēng)下矩形截面鋼桁梁對(duì)移動(dòng)高速列車氣動(dòng)特性的影響,試驗(yàn)結(jié)果表明鋼桁梁結(jié)構(gòu)對(duì)內(nèi)部移動(dòng)列車有明顯的遮蔽效果,所以分析鋼桁梁的主桁傾角對(duì)內(nèi)部風(fēng)環(huán)境的影響很有必要;高宿平等[12]通過風(fēng)洞試驗(yàn)對(duì)單斜式腹桿桁架和2種不同高度的三角形腹桿桁架的鋼桁梁橋上列車進(jìn)行測(cè)力、測(cè)壓試驗(yàn),結(jié)果表明列車位于上游和下游時(shí),風(fēng)壓系數(shù)有顯著差異,其大小受腹桿布置形式的影響相比梁高的影響更為顯著。
在已有的研究中,大多數(shù)都是針對(duì)橋面形式、斷面型式等對(duì)鋼桁梁氣動(dòng)特性影響的分析,針對(duì)倒梯形鋼桁梁主桁傾角對(duì)氣動(dòng)特性影響的分析較少,因此本文針對(duì)不同主桁傾角的倒梯形鋼桁梁進(jìn)行氣動(dòng)特性的比較分析。以某公鐵兩用連續(xù)鋼桁梁為工程背景,采用CFD軟件進(jìn)行數(shù)值模擬,分析不同主桁傾角下的鋼桁梁斷面靜風(fēng)氣動(dòng)力系數(shù)、渦振性能及空間流場(chǎng)特性的差異,分析鋼桁梁主桁傾角與氣動(dòng)特性之間的規(guī)律。
1 工程概況
該公鐵兩用連續(xù)梁采用了倒梯形鋼桁梁的方案,主橋全長(zhǎng)為782.4 m,主跨為180 m,其跨徑組成為(120+3×180+120)m,主橋立面布置圖如圖1所示,鋼桁梁一般橫斷面圖如圖2所示(圖2中主桁傾角為5°)。
2 CFD數(shù)值分析
2.1 基本控制方程
CFD數(shù)值風(fēng)洞采用流體力學(xué)軟件FLUENT進(jìn)行分析,以有限體積法為基礎(chǔ),在整個(gè)區(qū)域內(nèi)將流體運(yùn)動(dòng)控制方程進(jìn)行離散化求解。本次計(jì)算分析采用基于SST k-ω兩方程湍流模型,流體控制方程中連續(xù)性方程的笛卡爾張量形式如式(1)所示。
ρt+(ρui)xi=0,(1)
式中:ρ為流體密度;ui為流體速度沿i方向的分量。
動(dòng)量守恒方程的笛卡爾張量公式見式(2)。
t(ρui)+xi(ρuiuj)=-pxi+τixj,(2)
式中:p為靜壓力;τij為黏性應(yīng)力張量,τij=2μSij-2μδijuk/3xk;μ為空氣動(dòng)力學(xué)中的黏性系數(shù);δij為Kronecker;Sij=0.5(u/xj+uj/xi)。
SST k-ω兩方程湍流模型公式如式(3)、式(4)所示。
t(ρk)+xi(ρkui)=-xi(Γkkxj)+Gk-Yk+Sk,(3)
t(ρω)+xi(ρωui)=-xi(Γωωxj)+Gω-Yω+Sω,(4)
式中:k為湍流動(dòng)能;ω為耗散率;Γk和Γω為有效擴(kuò)散項(xiàng);Gk為平均速度梯度產(chǎn)生的湍流動(dòng)能;Gω為ω的生成;Yk和Yω為k和ω在湍流作用下的耗散;Sk和Sω為k和ω是用戶定義的源項(xiàng)。
2.2 模型尺寸
為了滿足計(jì)算精度,采用計(jì)算區(qū)域的尺寸應(yīng)保證順風(fēng)向的阻塞率不大于5%[13-15],確定計(jì)算區(qū)域如圖3所示。流場(chǎng)整體尺寸為長(zhǎng)480 m,寬144 m,高336 m;上下邊到鋼桁梁模型上下邊緣的距離分別為156 m和156 m,速度入口距模型迎風(fēng)口邊緣的距離為168 m,出口距模型背風(fēng)口邊緣的距離為288 m。
2.3 網(wǎng)格劃分及邊界條件
參考文獻(xiàn)[8-10]的設(shè)置過程,本文三維模型計(jì)算網(wǎng)格采用四面體網(wǎng)格,在橋梁表面處設(shè)置總厚度為0.001 m的邊界層,網(wǎng)格間的增長(zhǎng)率為1.2。流場(chǎng)入口采用速度入口,入口處為U=30 m/s的均勻流,湍流描述形式采用湍流強(qiáng)度和特征長(zhǎng)度,湍流強(qiáng)度取0.5%,特征長(zhǎng)度保持默認(rèn)值。出口邊界條件為壓力出口,邊界條件釆用一個(gè)標(biāo)準(zhǔn)大氣壓強(qiáng)的壓力出口。橋梁表面采用有摩擦的無滑移壁面邊界條件,流域上下及兩側(cè)面為對(duì)稱邊界條件。本文模型采用空氣作為流體介質(zhì),其密度ρ=1.225 kg/m3。
3 模擬結(jié)果與分析
3.1 氣動(dòng)力系數(shù)分析比較
在風(fēng)攻角為α的風(fēng)作用下,鋼桁梁斷面上氣動(dòng)三分力坐標(biāo)系的定義如圖4所示,常用風(fēng)軸坐標(biāo)系和體軸坐標(biāo)系表示風(fēng)荷載,2種坐標(biāo)系都是繞橋梁軸線方向建立[16-20]。
鋼桁梁斷面風(fēng)軸坐標(biāo)系下的阻力系數(shù)CD、升力系數(shù)CL和力矩系數(shù)CM如式(5)—式(7)所示。
CD=FD1/2ρU2∞HL,(5)
CL=FL1/2ρU2∞BL,(6)
CM=FM1/2ρU2∞BL,(7)
式中:FD為橫向風(fēng)荷載,即阻力;FL為豎向風(fēng)荷載,即升力;FM為扭轉(zhuǎn)風(fēng)荷載,即力矩;U∞為試驗(yàn)參考風(fēng)速,取30 m/s;空氣密度ρ=1.225 kg/m3;L為測(cè)力節(jié)段模型長(zhǎng)度;阻力系數(shù)以鋼桁梁高度H為參考長(zhǎng)度;升力系數(shù)、繞橋軸的升力矩系數(shù)均以鋼桁梁斷面的全寬B為參考長(zhǎng)度。
通過CFD數(shù)值模擬,進(jìn)行不同風(fēng)攻角(-6°,-0°,6°)下的氣動(dòng)力系數(shù)計(jì)算,得到鋼桁梁三分力系數(shù)對(duì)比,如圖5所示。
由圖5可知,主桁傾角為12.5°時(shí),鋼桁梁的阻力系數(shù)最大,范圍在-0.65~-0.63,而主桁傾角為0°,2.5°,5°,7.5°和10°的阻力系數(shù)在-0.71~-0.68,整體相差幅度不超過10%,雖然在相同風(fēng)條件下,主桁傾角為12.5°的方案會(huì)承受較小的橫向風(fēng)荷載,但無明顯的差距;主桁傾角為10°時(shí),鋼桁梁的升力系數(shù)最大,范圍在-0.16~0,而其他傾角的升力系數(shù)均低于該范圍,并且差幅較大,在相同風(fēng)條件下,主桁傾角為10°的方案明顯承受較小的豎向風(fēng)荷載;主桁傾角為0°時(shí),鋼桁梁的力矩系數(shù)最小,范圍在4.4~6.6,而其他傾角的力矩系數(shù)均高于該范圍,在相同風(fēng)條件下,主桁傾角為0°的方案明顯承受較小的扭轉(zhuǎn)風(fēng)荷載。
3.2 渦振性能分析
當(dāng)氣流繞過物體時(shí),在物體兩側(cè)及尾流中會(huì)產(chǎn)生周期性脫落的旋渦,這種周期性的激勵(lì)會(huì)使物體發(fā)生限幅振動(dòng),形成渦激振動(dòng)。本文基于CFD分析結(jié)果,建立鋼桁梁渦激振動(dòng)的判定方法,對(duì)不同主桁傾角下的鋼桁梁的渦振性能進(jìn)行分析[21-24]。
旋渦脫落現(xiàn)象通常由無量綱Strouhal數(shù)St來描述,即
St=fh/U,(8)
式中:f為旋渦脫落頻率;h為物體垂直于來流方向平面上的特征尺寸;U為來流速度。
旋渦周期性脫落導(dǎo)致梁體在垂直于來流方向的氣動(dòng)力出現(xiàn)周期性波動(dòng),其波動(dòng)頻率與旋渦脫落頻率一致。通過定常計(jì)算,獲得作用在鋼桁梁斷面升力系數(shù)的時(shí)程曲線,通過氣頻譜分析獲得其卓越頻率,從而獲得旋渦脫落頻率f。
按照上述方法分別計(jì)算出不同主桁傾角的鋼桁梁在不同風(fēng)攻角(-6°,-0°,6°)下旋渦脫落頻率和Strouhal數(shù)如表1、表2所示。
由表1、表2可知,旋渦脫落頻率隨著鋼桁梁的主桁傾角的變化而變化,但未呈現(xiàn)明顯線性變化規(guī)律,主要原因是鋼桁梁包含較多的桿件,各個(gè)桿件自身的旋渦脫落頻率不一致,并且桿件之間相互存在著氣動(dòng)干擾,這些因素導(dǎo)致鋼桁梁的旋渦脫落頻率與主桁傾角之間沒有明顯的線性關(guān)系。雖然主桁傾角與渦激性能無明顯規(guī)律,但主桁傾角的變化對(duì)其渦激性能影響明顯,尤其是在0°和6°的風(fēng)攻角條件下;而主桁傾角為2.5°和5°的方案,相比其他傾角,其渦振性能較好。
3.3 流場(chǎng)特性分析
考慮主桁傾角變化對(duì)鋼桁梁流場(chǎng)特性的影響,通過數(shù)值模擬,得出不同主桁傾角的鋼桁梁的風(fēng)速云圖和湍動(dòng)能云圖如圖6、圖7所示。
由圖6可知,在迎風(fēng)側(cè)的桿件后會(huì)形成一個(gè)明顯的風(fēng)速減速區(qū)域,尤其是鐵路的上方,但隨著主桁傾角的增大,桿件減速效果變得有限,風(fēng)速減速效果減弱,該區(qū)域的風(fēng)速有所恢復(fù),故隨著主桁傾角的增大,列車受到較大的風(fēng)速影響,尤其是在大風(fēng)環(huán)境下,不利于鋼桁梁內(nèi)部行車的穩(wěn)定性和安全性。
由圖7可知,隨著主桁傾角的增大,鋼桁梁內(nèi)部的湍動(dòng)能有明顯的減小趨勢(shì),尤其是靠經(jīng)公路橋面板的區(qū)域,在0°,2.5°和5°傾角的方案下,公路橋面板下側(cè)存在一個(gè)湍動(dòng)能突增的區(qū)域,但在其他傾角的方案下,該區(qū)域的湍動(dòng)能突增現(xiàn)象不明顯,可能是隨著主桁傾角的增大,桿件與橋面板間距離也增大,鈍體繞流現(xiàn)象隨之減弱而造成的;隨著主桁傾角的增大,公路橋面板后的湍動(dòng)能有明顯的增大,該區(qū)域更容易出現(xiàn)旋渦,若橋側(cè)有其他建筑物,可能會(huì)使其發(fā)生風(fēng)致振動(dòng)。
3.4 主桁傾角對(duì)比分析
通過對(duì)比靜力三分力系數(shù),主桁傾角為0°,2.5°和5°的鋼桁梁較優(yōu);在渦振性能方面,主桁傾角為2.5°和5°的鋼桁梁明顯優(yōu)于其他傾角的鋼桁梁;通過比較鋼桁梁內(nèi)部風(fēng)速分布情況,可知鋼桁梁的主桁傾角不宜過大,不然會(huì)影響行車穩(wěn)定性;通過比較鋼桁梁內(nèi)部湍動(dòng)能分布情況,可知主桁傾角若過大會(huì)在鋼桁梁背風(fēng)側(cè)產(chǎn)生旋渦,影響該側(cè)建筑物的穩(wěn)定性,過小會(huì)影響內(nèi)部行車穩(wěn)定性;綜合考慮多種因素,主桁傾角為5°的鋼桁梁的氣動(dòng)特性較優(yōu),可應(yīng)用到鋼桁梁的設(shè)計(jì)中。
4 結(jié) 語
以某公鐵兩用連續(xù)鋼桁梁為例,分析主桁傾角對(duì)倒梯形鋼桁梁氣動(dòng)特性的影響,建立三維簡(jiǎn)化模型,進(jìn)行CFD模擬,分析不同主桁傾角下的鋼桁梁斷面靜風(fēng)氣動(dòng)力系數(shù)、渦振性能以及流場(chǎng)特性的差異,主要結(jié)論如下。
1)主桁傾角的變化對(duì)鋼桁梁承受靜風(fēng)荷載的影響明顯,尤其是橫向風(fēng)荷載和扭轉(zhuǎn)風(fēng)荷載,隨主桁傾角的變化,荷載呈現(xiàn)明顯的變化趨勢(shì)。
2)在不同主桁傾角下的鋼桁梁的渦振性能差異明顯,雖均低于各自的自振頻率,但其渦振安全性不同,特別是2.5°和5°的條件下,Strouhal數(shù)明顯低于其他傾角下的數(shù)值,在大風(fēng)條件下,安全性較為可靠。
3)鋼桁梁的桿件對(duì)風(fēng)速有明顯的減速效果,有利于內(nèi)部行車的穩(wěn)定性和安全性,但隨著主桁傾角的增大,該減速效果逐漸降低。
4)氣流在經(jīng)過桿件后容易產(chǎn)生渦流,影響結(jié)構(gòu)的穩(wěn)定性,隨著主桁傾角的增大,公路橋面板下側(cè)存在的湍動(dòng)能增大的現(xiàn)象開始減弱,更不易產(chǎn)生渦流,但在背風(fēng)側(cè)出現(xiàn)湍動(dòng)增大的區(qū)域,容易影響橋側(cè)建筑物。
5)綜合考慮多種因素,主桁傾角為5°的鋼桁梁的氣動(dòng)特性較優(yōu)。
本文僅研究了主桁傾角對(duì)橋梁自身氣動(dòng)特性的影響,未考慮其對(duì)鋼桁梁內(nèi)部行車以及車-橋系統(tǒng)的影響。未來擬從主桁傾角對(duì)車-橋系統(tǒng)氣動(dòng)特性的影響和主桁型式對(duì)橋梁氣動(dòng)特性的影響等方面進(jìn)行進(jìn)一步研究。
參考文獻(xiàn)/References:
[1]?李升連,楊敏,趙盈江,等.基于CFD的大跨度鋼桁梁懸索橋抗風(fēng)性能分析[J].公路交通科技(應(yīng)用技術(shù)版),2019,15(8):114-117.LI Shenglian,YANG Min,ZHAO Yingjiang,et al.Wind resistance performance analysis of large-span steel truss girder suspension bridgebased on CFD[J].Highway Transportation Science and Technology(Applied Technology Edition),2019,15(8):114-117.
[2] 袁濤,楊曉,夏心紅,等.近距離非對(duì)稱雙塔連體結(jié)構(gòu)氣動(dòng)噪聲CFD數(shù)值模擬研究[J].建筑結(jié)構(gòu),2022,52(22):89-94.YUAN Tao,YANG Xiao,XIA Xinhong,et al.Investigation on aerodynamic noise around close-distance asymmetry twin-tower connected structure by CFD numerical simulation[J].Building Structure,2022,52(22):89-94.
[3] 藍(lán)先林,周禮平,廖斌,等.基于CFD和風(fēng)洞試驗(yàn)的鋼桁梁懸索橋顫振穩(wěn)定性分析[J].噪聲與振動(dòng)控制,2022,42(1):214-219.LAN Xianlin,ZHOU Liping,LIAO Bin,et al.Flutter stability analysis of a steel truss suspension bridge based on CFD and wind tunnel test[J].Noise and Vibration Control,2022,42(1):214-219.
[4] 劉路路,鄒云峰,何旭輝,等.風(fēng)屏障布局對(duì)公鐵同層桁架橋-列車系統(tǒng)氣動(dòng)特性的影響[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,53(5):1592-1599.LIU Lulu,ZOU Yunfeng,HE Xuhui,et al.Effect of layout of wind barriers on aerodynamic characteristics for the same-story truss bridge-train system[J].Journal of Central South University (Science and Technology),2022,53(5):1592-1599.
[5] 馬存明,段青松,廖海黎,等.橫向紊流風(fēng)作用下桁架梁上高速列車抖振力空間相關(guān)性試驗(yàn)研究[J].土木工程學(xué)報(bào),2018,51(4):69-76.MA Cunming,DUAN Qingsong,LIAO Haili,et al.Wind tunnel tests on the spatial correlation of buffeting forces of high-speed trains on steel truss girder under turbulent cross wind[J].China Civil Engineering Journal,2018,51(4):69-76.
[6] 張龍奇.大跨度公鐵兩用倒梯形斷面鋼桁梁氣動(dòng)力與抖振性能研究[D].成都:西南交通大學(xué),2016.ZHANG Longqi.Study on Aerodynamic Force and Buffeting Response of long-Span Highway and Railway Steel Truss Girder with Inverted?Trapezoid Section[D].Chengdu:Southwest Jiaotong University,2016.
[7] 鄭史雄,郭俊峰,張龍奇,等.安慶鐵路長(zhǎng)江大橋鋼桁主梁在非正交風(fēng)作用下的靜氣動(dòng)力系數(shù)[J].中國(guó)鐵道科學(xué),2016,37(6):21-26.ZHENG Shixiong,GUO Junfeng,ZHANG Longqi,et al.Static aerodynamic coefficient of steel truss main girder of Anqing Changjiang river railway bridge under non-orthogonal wind[J].China Railway Science,2016,37(6):21-26.
[8] 鄒明偉,鄭史雄,唐煜,等.倒梯形桁架橋斷面氣動(dòng)參數(shù)研究[J].鐵道標(biāo)準(zhǔn)設(shè)計(jì),2018,62(3):53-57.ZOU Mingwei,ZHENG Shixiong,TANG Yu,et al.Study on aerodynamic parameters of inverted trapezoid section of truss bridge[J].Railway Standard Design,2018,62(3):53-57.
[9]任森,汪斌,孫浩,等.橋面形式對(duì)桁式鐵路橋梁抗風(fēng)性能的影響[J].鐵道建筑,2017(3):21-25.REN Sen,WANG Bin,SUN Hao,et al.Influence of deck form on wind-resistance performance of truss-type railway bridge[J].Railway Engineering,2017(3):21-25.
[10]沈自力.基于 CFD 的桁架橋氣動(dòng)參數(shù)研究[J].鐵道科學(xué)與工程學(xué)報(bào),2015(4):852-858.SHEN Zili.Research on aerodynamic parameter of truss bridge based on CFD theory[J].Journal of Railway Science and Engineering,2015(4):852-858.
[11]王銘,李小珍,沙海慶,等.側(cè)風(fēng)下鋼桁梁對(duì)移動(dòng)高速列車氣動(dòng)特性影響的風(fēng)洞試驗(yàn)[J].中國(guó)公路學(xué)報(bào),2018,31(7):84-91.WANG Ming,LI Xiaozhen,SHA Haiqing,et al.Wind tunnel test of the aerodynamic characteristics of a high-speed train running on a steel truss bridge under crosswind[J].China Journal of Highway and Transport,2018,31(7):84-91.
[12]高宿平,何旭輝,鄒云峰,等.鋼桁梁斷面型式對(duì)公鐵兩橋上列車氣動(dòng)特性影響[J/OL].鐵道學(xué)報(bào):1-12.(2023-04-06)[2023-05-30].http://kns.cnki.net/kcms/detail/11.2104.u.20230404.1732.002.html.GAO Suping,HE Xuhui,ZOU Yunfeng,et al.Influence of steel truss girder section type on aerodynamic characteristics of trains on railcum-road bridge[J/OL].Journal of the China Railway Society:1-12.(2023-04-06)[2023-05-30].http://kns.cnki.net/kcms/detail/11.2104.u.20230404.1732.002.html.
[13]王鋒.基于CFD對(duì)大跨度連續(xù)橋梁抗風(fēng)性能分析[J].公路工程,2018,43(3):83-86.WANG Feng.Analysis of wind resistance performance of long-span continuous bridges based on CFD method[J].Highway Engineering,2018,43(3):83-86.
[14]李永樂,安偉勝,蔡憲棠,等.倒梯形板桁主梁CFD簡(jiǎn)化模型及氣動(dòng)特性研究[J].工程力學(xué),2011,28(sup1):103-109.LI Yongle,AN Weisheng,CAI Xiantang,et al.Simplified CFD modal and aerodynamic characteristics of inverted trapezoidal plate-truss deck[J].Engineering Mechanics,2011,28(sup1):103-109.
[15]周蕾,何旭輝,陳爭(zhēng)衛(wèi),等.風(fēng)屏障對(duì)橋梁及車橋系統(tǒng)氣動(dòng)特性影響的數(shù)值研究[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,49(7):1742-1752.ZHOU Lei,HE Xuhui,CHEN Zhengwei,et al.Numerical study of effect of wind barrier on aerodynamic of bridge and train-bridge system[J].Journal of Central South University (Science and Technology),2018,49(7):1742-1752.
[16]王偉拓,曹曙陽,操金鑫.湍流強(qiáng)度對(duì)橋梁斷面氣動(dòng)力特性的影響[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2023,55(3):20-28.WANG Weituo,CAO Shuyang,CAO Jinxin.Effect of turbulence intensity on aerodynamic force of bridge girder[J].Journal of Harbin Institute of Technology,2023,55(3):20-28.
[17]王仰雪,孫一飛,李震,等.橋面欄桿對(duì)流線型主梁氣動(dòng)力影響的試驗(yàn)研究[J].工程力學(xué),2023,40(sup1):241-247.WANG Yangxue,SUN Yifei,LI Zhen,et al.Experimental study on the influence of railings on aerodynamic force of streamlined main girder[J].Engineering Mechanics,2023,40(sup1):241-247.
[18]廖宸鋒,寧杰鈞,駱俊暉.云南西洋江大橋三分力系數(shù)CFD數(shù)值模擬研究[J].公路,2022,67(9):249-256.LIAO Chenfeng,NING Jiejun,LUO Junhui.Yunnan Xiyangjiang bridge CFD numerical simulation study of three-component force coefficients[J].Highway,2022,67(9):249-256.
[19]何旭輝,高宿平,鄒云峰,等.雙層桁架橋上列車氣動(dòng)特性風(fēng)洞試驗(yàn)研究[J].鐵道科學(xué)與工程學(xué)報(bào),2023,20(6):2165-2172.HE Xuhui,GAO Suping,ZOU Yunfeng,et al.Wind tunnel test study of aerodynamic characteristics of trains on double truss bridges[J].Journal of Railway Science and Engineering,2023,20(6):2165-2172.
[20]高亮,劉健新,張丹.桁架橋主梁三分力系數(shù)試驗(yàn)[J].長(zhǎng)安大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,32(1):52-56.GAO Liang,LIU Jianxin,ZHANG Dan.Experimental study on three-component force coefficients of truss girder cross-section[J].Journal of Chang′an University (Natural Science Edition),2012,32(1):52-56.
[21]宋玉冰,遆子龍,李永樂.寬幅Π型主梁渦振機(jī)理及優(yōu)化措施研究[J].振動(dòng)與沖擊,2023,42(10):121-127.SONG Yubing,TI Zilong,LI Yongle.Mechanism and aerodynamic optimization of vortex-induced vibration for a wide Π-shaped bridge deck[J].Journal of Vibration and Shock,2023,42(10):121-127.
[22]李浩.鈍體截面鐵路混合梁斜拉橋渦振性能研究[J].鐵道學(xué)報(bào),2021,43(1):149-153.LI Hao.Study on vortex-induced vibration performance of hybrid girder railway cable-stayed bridge with blunt section[J].Journal of the China Railway Society,2021,43(1):149-153.
[23]林海峰,侯斌,王浩,等.超大跨度懸索橋長(zhǎng)吊索渦振特性及其控制研究[J].公路,2023,68(6):58-64.LIN Haifeng,HOU Bin,WANG Hao,et al.Research on vortex-induced vibration characteristics and its control of long suspenders of super-long-span suspension bridge[J].Highway,2023,68(6):58-64.
[24]楊猛,王云飛,趙家斌,等.考慮非線性氣動(dòng)力跨向振幅依存性和跨向相關(guān)性的大跨度橋梁三維渦振響應(yīng)分析[J/OL].西南交通大學(xué)學(xué)報(bào).(2023-3-2)[2023-07-21].http://kns.cnki.net/kcms/detail/51.1277.u.20230301.1803.002.html.YANG Meng,WANG Yunfei,ZHAO Jiabin,et al.Prediction of three-dimensional vortex-induced vibration response of long span bridges with consideration of both spanwise variation of vibration amplitude and spanwise correlation of nonlinear aerodynamic forces[J/OL].Journal of Southwest JiaotongUniversity.(2023-03-02)[2023-07-21].http://kns.cnki.net/kcms/detail/51.1277.u.20230301.1803.002.html.
責(zé)任編輯:馮民
基金項(xiàng)目:國(guó)家自然科學(xué)基金(52078313)
第一作者簡(jiǎn)介:滕培松(1998—),男,河北滄州人,碩士研究生,主要從事橋梁結(jié)構(gòu)設(shè)計(jì)理論與施工控制方面的研究。
通信作者:向敏,教授。E-mail:xmycj36357@163.com滕培松,吳聰,向敏,等.主桁傾角對(duì)倒梯形鋼桁梁氣動(dòng)特性的影響分析[J].河北科技大學(xué)學(xué)報(bào),2024,45(2):217-224.TENG Peisong,WU Cong,XIANG Min,et al.Analysis of the influence of maintruss inclination angle on the aerodynamic characteristics of inverted trapezoidal steel joists[J].Journal of Hebei University of Science and Technology,2024,45(2):217-224.