袁偉濤 張婷 馬翠柳 王凱英 劉晗璐
摘要:好氧堆肥是有機固體廢棄物無害化、資源化和減量化的重要技術(shù),是廢棄物與土壤碳庫間的橋梁。堆肥將廢棄物低耗快速的自然降解并轉(zhuǎn)化為肥料,肥料中腐殖質(zhì)等養(yǎng)分是良好的土壤修復(fù)劑和調(diào)理劑,可抵消農(nóng)業(yè)活動造成的有機質(zhì)損失、提升碳的固存并維持土壤功能。然而,堆肥原料的復(fù)雜性和可變性是實現(xiàn)有機質(zhì)快速腐殖化和維持有機肥質(zhì)量所面對的巨大挑戰(zhàn)??偨Y(jié)堆肥有機質(zhì)的轉(zhuǎn)化原理,綜述工藝參數(shù)優(yōu)化的關(guān)鍵環(huán)節(jié)、多類型添加劑在生產(chǎn)中的應(yīng)用效果以及新型堆肥技術(shù)前景,進而提出以下幾點建議:(1)對輔料進行破壁前處理或添加具有高效木質(zhì)素分解能力的生物制劑,提高纖維類成分的分解,減少堆肥初期有機質(zhì)快速礦化損失。(2)降低pH值可提高體系中NH+4/NH3的值,減少氨氣揮發(fā);提高氧含量和氨氧化細菌生物量,促進氨氧化和硝化作用,避免反硝化和不完全硝化導(dǎo)致的氮損失。(3)添加氧化劑提供充足的氧化還原電位,有效減少含硫有機質(zhì)降解礦化后VSCs的釋放??蔀橛袡C物高效腐殖化、資源化,減輕環(huán)境壓力促進農(nóng)業(yè)可持續(xù)發(fā)展提供參考和依據(jù)。
關(guān)鍵詞:畜禽糞污;堆肥;物質(zhì)轉(zhuǎn)化;工藝優(yōu)化;添加劑
中圖分類號:S141.4文獻標志碼:A
文章編號:1002-1302(2024)06-0025-11
收稿日期:2023-08-23
基金項目:河北省科學(xué)技術(shù)項目(編號:21327308D);吉林省科技發(fā)展計劃(編號:20200301019RQ)。
作者簡介:袁偉濤(1998—),男,河南周口人,碩士研究生,從事特種經(jīng)濟動物微生態(tài)營養(yǎng)與調(diào)控研究。E-mail:2627783817@qq.com。
通信作者:劉晗璐,博士,研究員,從事特種經(jīng)濟動物微生態(tài)營養(yǎng)與調(diào)控研究。E-mail:liuhanlu@caas.cn。
隨著集約化養(yǎng)殖的發(fā)展,畜禽糞污產(chǎn)量急劇增加,已成為農(nóng)業(yè)面的首要污染源。據(jù)統(tǒng)計,2020年畜牧業(yè)糞污量已達到38億t[1]。周海賓等認為,我國89.44%的規(guī)模化養(yǎng)殖場普遍采用堆肥處理固體糞便,其中采用簡易堆漚處理的高達 85.90%[2]。畜禽糞便中的營養(yǎng)物質(zhì)、病原體、重金屬以及藥物殘留,若不能妥善處理,則會造成嚴重的環(huán)境污染,甚至還會引發(fā)公共安全事故[3]。糞便作為碳氮資源庫,在堆肥過程中釋放的大量CH4、CO2、N2O等溫室氣體,既會造成環(huán)境污染,又會降低堆肥品質(zhì)[4-5]。糞便中含有多種致病菌和寄生蟲蟲卵,具有引發(fā)疫病傳播的風(fēng)險[6-7]。好氧堆肥能有效殺死糞便中的致病菌,提高土壤中腐生菌的比例[8]。堆肥在氨氧化細菌、硝化細菌等需氧微生物合成代謝作用下,將纖維素、蛋白質(zhì)等大分子有機質(zhì)轉(zhuǎn)化為結(jié)構(gòu)更穩(wěn)定的可溶性腐殖質(zhì),如真菌在木質(zhì)纖維素的降解中發(fā)揮關(guān)鍵作用、厚壁菌門參與可溶性有機質(zhì)的形成[8-10]。糞便中含有的氮、磷、鉀等元素能為作物生長提供必要的營養(yǎng),腐熟后通常被用作土壤改良劑,可以提高土壤肥力,增加土壤碳氮含量,中和土壤酸度,并將草地和土地退化的風(fēng)險降至最低[11-13]。更為重要的是,堆肥是有效的碳和氮保存手段,可顯著減輕溫室效應(yīng)[14]。然而,堆肥過程釋放大量CH4、CO2、N2O等溫室氣體以及氮、硫惡臭氣體的排放是限制好氧堆肥技術(shù)發(fā)展的重要因素,造成有機肥品質(zhì)下降和嚴重的環(huán)境污染。本研究旨在討論提升堆肥品質(zhì)即碳氮保存和除臭的現(xiàn)有策略,主要探討堆肥工藝優(yōu)化、添加劑選擇和新型堆肥等在提升有機質(zhì)轉(zhuǎn)化、減少有害氣體的排放以及提高有機肥營養(yǎng)水平方面發(fā)揮的作用。
1 堆肥過程物質(zhì)轉(zhuǎn)化規(guī)律
從源頭、過程和最終產(chǎn)物等角度深入了解堆肥體系物質(zhì)轉(zhuǎn)化和原理,以及各元素的轉(zhuǎn)移路徑有助于解釋不同處理策略的作用機理。
1.1 碳在堆肥中的轉(zhuǎn)移和轉(zhuǎn)化
碳元素主要以有機碳的形式存在于新鮮糞便和堆肥輔料中。堆肥過程有機質(zhì)的轉(zhuǎn)化分為活化和固化2個階段[15-17]。第一階段微生物活性提升,快速分解大多數(shù)易降解有機質(zhì),如蛋白質(zhì)、氨基酸、脂肪和部分纖維、半纖維等,產(chǎn)生的糖類、有機酸等可溶性非結(jié)構(gòu)化有機碳最先滲入到微生物細胞質(zhì)內(nèi),可溶性有機碳以碳源和能源的形式促進微生物的代謝活動,被完全氧化代謝[18];第二階段隨著可溶性碳進一步消耗,使相關(guān)微生物生物量及活性下降,微生物分泌水解酶會促進大分子有機碳,如木質(zhì)素、纖維素、半纖維素等纖維成分降解轉(zhuǎn)化為多糖、芳香類化合物和一些單體物質(zhì),同時通過合成代謝以及生物凋亡轉(zhuǎn)化為堆體內(nèi)可溶性有機碳,最后通過美拉德反應(yīng)固定到腐殖質(zhì)中(圖1)[17,19-20]。Ye等認為,堆肥過程中碳的損失占初始碳含量的44.2%,其中以CO2-C、CH4-C形式的碳損失分別占堆肥總碳損失的73.00%、1.58%[21]。CO2因呼吸作用而被釋放,包括微生物對小分子有機碳的持續(xù)消耗和纖維素表面胞外酶的水解作用兩大途徑[22]。小分子物質(zhì)的代謝對碳的保存十分不利,通過調(diào)節(jié)微生物代謝以限制CO2的釋放可能是促進碳保存的潛在措施。Jones等認為,借助腺嘌呤核苷三磷酸(ATP)、還原型煙酰胺腺嘌呤二核苷酸(NADH)抑制劑,可通過限制細胞內(nèi)氨基酸脫羧、脂肪酸α氧化、丙酮酸轉(zhuǎn)化為乙酰輔酶A和三羧酸循環(huán)(TCA)限制呼吸作用,減少CO2釋放[23]。ATP抑制劑的加入會加速腐殖質(zhì)形成,NADH可能促進纖維素降解為可溶性糖和有機質(zhì)[24]。但TCA作為呼吸作用的基本途徑,代謝受阻影響微生物的活性。Cotrufo等認為,微生物代謝產(chǎn)物和壞死性物質(zhì)難以被微生物再利用[25]。因此,通過提高堆肥可降解纖維物質(zhì)微生物的生物量以及代謝產(chǎn)物,也是增強碳保留的有效途徑。
1.2 氮在堆肥中的轉(zhuǎn)移和轉(zhuǎn)化
氮元素主要以蛋白質(zhì)、氨基酸、核酸等形式存在于堆肥體系中。堆肥氮循環(huán)涵蓋多個途徑的相互作用,包括氮同化、氨化、硝化、反硝化、厭氧氨氧化和固氮作用(圖2)[14]。氨化發(fā)生于堆肥高溫期,原料中含氮有機質(zhì)被好氧細菌、真菌分解礦化,轉(zhuǎn)化為可溶態(tài)NH3,并通過得失1個質(zhì)子在NH+4/NH3可溶態(tài)與氣態(tài)之間轉(zhuǎn)化[26-27]。微生物同化作用使部分NH+4/NH3被吸收轉(zhuǎn)化為有機氮成分。堆肥過程中氨水平受溫度、pH值、氨化劑密度等因素影響,不同堆肥體系往往差異很大[28]。硝化作用在氨氧化細菌(AOB)、氨氧化古菌(AOA)、亞硝酸鹽氧化細菌(NOB)作用下將NH+4/NH3轉(zhuǎn)化成NO-3,這是有機氮轉(zhuǎn)化的重要途徑[29]。N2O是堆肥過程中釋放的最普遍的氣體,其產(chǎn)生與NO-3轉(zhuǎn)化時氧氣供應(yīng)不足有關(guān)[30]。堆肥初期耗氧量高,加之基質(zhì)的沉降使局部供氧不足,不可避免地發(fā)生不完全硝化和反硝化而生成N2O[31]。同時,自養(yǎng)型氨氧化細菌(AOB)在缺氧條件下,以氨為電子受體和亞硝酸鹽為電子受體生成N2,該過程中N2O是中間產(chǎn)物[32]。Guo等認為,在堆肥高溫階段,與產(chǎn)氣相關(guān)的微生物活性下降,反硝化作用產(chǎn)生的N2O與N2主要發(fā)生在降溫期與腐熟期[33]。堆肥氮損失主要發(fā)生于嗜熱期的NH3大量釋放,該階段氮損失占初始總有機氮的40%~70%[34]。因此,通過維持堆肥過程好氧條件,增強前期氨化作用并減少由此帶來的高pH值、NH+4/NH3低可溶性問題,從而達到增強硝化作用并減弱反硝化作用的效果。
1.3 硫在堆肥中的轉(zhuǎn)移和轉(zhuǎn)化
硫元素主要存在于含硫蛋白、硫氨基酸、硫胺酸、磺酸鹽等有機質(zhì)內(nèi),在堆肥中的轉(zhuǎn)化與氮元素相似。堆體內(nèi)有機硫化物在硫氧化菌(SOB)和氧化還原酶(如芳基硫酸酯酶)的作用下發(fā)生礦化,氧化的最終產(chǎn)物是硫酸鹽(SO2-4),S和SO2-3是硫氧化反應(yīng)的關(guān)鍵中間體(圖3)[35-36]。硫代謝過程由SOB基因編碼產(chǎn)物完成。sqr基因參與硫化物氧化成硫單質(zhì),而后在pdo基因編碼的過硫酸鹽雙加氧酶作用下進一步氧化為亞硫酸鹽,氧化亞硫酸鹽的蛋白酶由sor和sox基因編碼在細菌胞質(zhì)內(nèi)合成。然而,堆肥厭氧區(qū)域內(nèi)含硫蛋白、氨基酸的甲基化和異化還原硫酸鹽產(chǎn)生揮發(fā)性含硫有機物(VSCs),包括硫化氫(H2S)、二硫化碳(CS2)、甲硫醇(MeSH)、甲硫醚(Me2S)和二甲基二硫醚(Me2SS)等[37-38]。VSCs是堆肥主要的致臭因子,具有較低的氣味閾值。H2S氣體主要釋放于堆肥前期,由于硫氧化過程電子受體不足而產(chǎn)生。Zhang等認為,餐廚垃圾堆肥過程釋放的VSCs中的99.8%是H2S氣體[39]。Me2S和Me2SS是堆肥過程中硫損失的主要形式,分別占VSCs的33.21%、63.96%[40]。值得注意的是,二甲基硫化物和二甲基二硫物的去甲基化促進H2S釋放,而H2S是厭氧條件下甲基化生成甲基硫醇(MeSH)的關(guān)鍵原料[41-42]。可見,控制H2S排放是減少堆肥VSCs釋放以及提高硫轉(zhuǎn)化效率的關(guān)鍵。
2 堆肥品質(zhì)調(diào)控策略
2.1 堆肥工藝優(yōu)化
堆肥受多種因素影響,如C/N、含水率、通氣量、pH值、溫度,條件改變決定堆肥物質(zhì)轉(zhuǎn)化效率、堆肥周期以及有機肥養(yǎng)分水平。堆肥溫度的變化是微生物代謝水平的重要體現(xiàn),堆肥嗜熱期是有機物轉(zhuǎn)化和實現(xiàn)無害化的關(guān)鍵階段。高溫會導(dǎo)致NH3、H2S等氣體的釋放增加,但降低溫度又會降低堆肥質(zhì)量和腐熟度。因此,在實踐生產(chǎn)中堆肥往往不直接對溫度進行調(diào)節(jié)。
2.1.1 C/N
C和N是微生物代謝所需的關(guān)鍵元素,C為能量來源,N則用于構(gòu)建細胞結(jié)構(gòu)[43]。C/N在調(diào)節(jié)有機物降解中至關(guān)重要,不僅可以影響有機質(zhì)的轉(zhuǎn)化效率,還可以反映物質(zhì)降解程度。Ye等經(jīng)
過系統(tǒng)分析發(fā)現(xiàn),不同類型堆肥體系中有機碳與總氮含量變化趨勢相同,且兩者呈正相關(guān)[21]。當?shù)窟^低時,微生物代謝緩慢,影響有機物的降解;氮含量過高,多余的氮將以氨氣等形式釋放[44]。此外,堆肥C/N的值上升,與CO2損失呈正相關(guān)[45]。當堆肥初始C/N的值從23 ∶1上升到29 ∶1時,造成的總碳(TC)損失由43.9%提高到53.0%[44]。Huang等認為,堆肥C/N在(25~30) ∶1間具有良好的堆肥效果[46-48]。不同材料堆肥的C/N差異較大,通常以各種植物性填充劑如稻殼、鋸末、秸稈等為輔料,添加到高氮原料堆肥中,如雞糞和肉食性動物糞便,兼具吸附劑和膨脹劑的作用[49-50]。反芻動物、草食動物糞便中氮含量較低,尿素往往被作為其調(diào)節(jié) C/N 的首選原料[51-52]。
2.1.2 pH值
堆肥pH值的變化是有機物代謝的結(jié)果。堆肥初期,蛋白、脂肪、糖類等物質(zhì)降解生成有機酸、含硫有機物礦化產(chǎn)生H2S、氨化作用使NH+4/NH3持續(xù)積累,構(gòu)成一個復(fù)雜的酸堿體系[53]。堆肥全程維持在弱堿性的環(huán)境中,氨化作用導(dǎo)致pH值上升,硝化作用又使氨發(fā)生轉(zhuǎn)化,pH值再次降低[54]。pH值是影響氣體揮發(fā)的重要因素[55]。低pH值能提高NH+4/NH3比例,有效減少NH3的揮發(fā),但會造成VSCs排放增加[56]。大多數(shù)研究認為,堆肥最佳pH值為7~8[53,57]。在調(diào)節(jié)堆肥酸堿度方面,廚余垃圾基質(zhì)酸化程度高,過低的pH值會抑制微生物生長,導(dǎo)致甲烷生成,CO2的排放增加[58]。堆肥時添加質(zhì)量分數(shù)為0.1%的醋酸鈉(NaAc)、緩沖劑K2HPO4/MgSO4或KH2PO4/MgSO4、CaCO3以及草木灰,可以緩解酸化帶來的不利影響,但可能會增加氨的排放[59-62]。堆肥過程中NH3和VSCs等易揮發(fā)性氣體對pH值敏感性相互對立,難以通過調(diào)節(jié)pH值緩解。pH值作為堆肥的重要因素,適宜條件下可提升堆肥效益。
2.1.3 曝氣率(含氧量)
曝氣與溫度是評估微生物活性的關(guān)鍵參數(shù)[63]。氧氣供應(yīng)在控制堆肥溫室氣體和揮發(fā)性氣體排放中具有關(guān)鍵作用。氧氣水平影響微生物活性和堆體升溫速率,而溫度變化與堆體微生物動態(tài)分布的耦合作用決定了堆肥的速率和質(zhì)量。Zheng等研究發(fā)現(xiàn),堆肥堆氧氣濃度為20.9%時,溫度峰值為70 ℃;氧氣濃度為3.16%時,溫度可達60 ℃[64]。氧氣不足時,微生物活性減弱,升溫速率變慢,高溫持續(xù)時間變短,無害化效果變低,厭氧降解作用增強導(dǎo)致碳、氮元素損耗。另外,曝氣量若超過微生物的需求水平,會加速熱量流失,增強吹脫效應(yīng),導(dǎo)致氣體排放增加[65]。按堆肥通氣方式分為靜態(tài)堆肥、拋翻堆體和強制曝氣堆肥。與靜態(tài)堆肥(氧濃度<1%)相比,強制曝氣堆肥(氧濃度<5%)擁有更高含量的可溶性有機碳,且能顯著降低溫室氣體的排放[8,66]。其中,曝氣率為0.05 m3/min的間歇式曝氣(每30~50 min通氣7 min)可保持氧濃度>15%,與連續(xù)曝氣相比,可降低堆肥系統(tǒng)NH3的損失[67]。Chen等認為,縮短曝氣時間或曝氣間隔,維持氧濃度>14%可有效降低H2S排放[68]。拋翻堆體和強制曝氣都能改善堆肥氧含量,選擇何種曝氣都無法忽略經(jīng)濟效益。
2.1.4 含水量
含水量是維持有效堆肥的重要參數(shù),直接影響微生物的生長速率、氧氣擴散能力,以及作為物質(zhì)交換媒介影響生物降解動力[69]。一般認為,堆肥最佳含水量為50%~70%[70-72]。含水量過高,膜增厚效應(yīng)使基質(zhì)填充物間隙變小,空氣循環(huán)受限造成堆肥局部缺氧,且增加比熱容,導(dǎo)致堆肥失敗[73]。含水量過低時,堆肥基質(zhì)轉(zhuǎn)移能力下降,嚴重影響細菌的新陳代謝并減慢發(fā)酵速度[74]。適宜的含水量對于可溶性營養(yǎng)物質(zhì)的轉(zhuǎn)化與沉積至關(guān)重要。Higgins等在家禽墊料堆肥研究中發(fā)現(xiàn),含水量對有效磷、硝化作用的水平有很大的影響,與含水量為50%的植物有效磷沉積(2.7~3.0 mg/g)相比,含水量為70%的植物有效磷含量(4.2~4.8 mg/g)提高41%~78%[75]。
2.2 添加劑
基于堆肥條件調(diào)整的可操作性十分有限,在大規(guī)模生產(chǎn)中的經(jīng)濟效益不容忽視。在該過程中宜使用添加劑,常用的添加劑包括物理添加劑、化學(xué)添加劑、微生物制劑等。
2.2.1 物理添加劑
物理添加劑具有多空隙的蓬松結(jié)構(gòu),別稱膨脹劑、吸附劑,包括有機物理添加劑和無機物理添加劑[76]。
有機物理添加劑常指一些純天然或人工合成的生物炭,包括秸稈、稻殼、木屑、竹子、蘑菇糠等,因具有較大的比表面積和低成本特性被廣泛用于堆肥[77]。這些天然生物炭具有很強的膨脹性和吸附性,不僅能用于調(diào)節(jié)堆肥基質(zhì)的含水量和C/N,還能提高堆肥的透氣性,利用吸附作用減少氮、硫元素的揮發(fā)[29]。Mao等研究發(fā)現(xiàn),20%蘋果渣加入到堆肥后可減少57%、24%的NH3、N2O排放量[78]。玉米秸稈是一種常見的農(nóng)業(yè)廢棄物,用于堆肥能減少總氮損失,但對NH3排放抑制效果不明顯[79]。玉米秸稈可以提升堆體pH值,相對于pH值較低的蘑菇糠,其對NH3的抑制效果(玉米秸稈為30%,蘑菇糠為50%)較差,對VSCs的減排效果(玉米秸稈為80%,蘑菇糠為72%)較好[80-81]。當前一些合成的生物炭如在500 ℃下制備的玉米秸稈生物炭具有微孔結(jié)構(gòu)和極高的表面積,使其氣體吸附和離子交換能力表現(xiàn)突出[82]。將竹子生物炭用于堆肥時,溫室氣體排放量減少93.61%,NH3排放量減少51.42%[83]。其結(jié)構(gòu)特性會促進氣體流通,也可作微生物群落繁衍生態(tài)位,加速有機物分解,進而促進易揮發(fā)性氨態(tài)氮的固定[84]。
無機物理添加劑即礦物添加劑,包括沸石、褐煤、黏土、膨潤土等[83]。天然沸石是一種多孔的鋁硅酸鹽礦石,在堆肥中利用沸石的吸附能力和陰陽離子交換作用捕獲NH3/NH+4[85]。在淤泥與麥秸共堆肥中添加30%的沸石和1%的石灰,可有效減少50.43%的氮素損失[86];在城市垃圾中加入天然沸石(15%)、鎂改性沸石(15%)堆肥后,NH+4固存分別提高64.5%、19.7%[87];堆肥中施用硅藻土?xí)铀儆袡C質(zhì)降解和腐殖化,減少N2O (58.70%~76.00%)、CH4(17.20%~29.20%)和NH3(6.38%~13.40%)的排放[88]。無機物理添加劑分布廣泛,價格低廉,有機物理添加劑隨著堆肥被降解,其結(jié)構(gòu)變得穩(wěn)定,能重復(fù)利用。
2.2.2 化學(xué)添加劑
堆肥化學(xué)添加劑在減少NH3、N2O排放方面表現(xiàn)突出,其種類很多,包括鹽類、酸性物質(zhì)、硝化抑制劑和鳥糞石結(jié)晶[85,89]。
鐵鹽(FeCl3)常用于廢水中NH3的處理和厭氧消化VSCs的預(yù)處理[90],Yuan等也已證實鐵鹽在堆肥中消除異味的可行性[91]。FeCl3在堆肥中起到與污水處理時類似的絮凝劑作用,能與氣體分子相凝結(jié)。另外,鐵鹽在有機硫化物分解后,將溶解態(tài)硫轉(zhuǎn)化為硫單質(zhì)和硫酸鹽,可以降低溶解態(tài)硫濃度而減少H2S氣體釋放[92]。此外,氧化鐵(Fe2O3)加入豬糞堆肥時,可能通過促進硫化鐵(Fe2S3)和硫化亞鐵(FeS)的沉淀或催化VSCs轉(zhuǎn)化加強硫固定,并有效降低46.7%~80.9%VSCs的排放[93]。堆肥中添加強氧化劑,能促進氧化還原反應(yīng),將氮、硫固定在硝酸鹽和硫酸鹽中。
堆肥時添加酸性物質(zhì)如磷酸鈣、乳酸、明礬、硫酸銅、鎂鹽、磷酸鹽等,可抑制NH3揮發(fā),并與NH+4結(jié)合成穩(wěn)定的鹽[85]。過磷酸鈣是一種有效的堆肥保氮劑,在豬糞和麥秸共堆肥中添加過磷酸鈣能有效降低NH3揮發(fā),使堆肥中的總氮損失減少24.0%,同時提高有機肥中氮和磷的含量[94]。Cao等研究發(fā)現(xiàn),將酸化添加劑施用于堆肥中,不僅能顯著提高氮固存,還能有效減少CH4的排放[95-96]。通過酸化糞肥控制某一類氣體排放的管理方式,往往會增加同一階段其他氣體或下游同一類氣體的排放[97]。一方面,NH+4的增加同時為硝化作用和N2O的生成提供底物;另一方面,低pH值和NO-3又會抑制N2O的還原途徑[98]。使用含金屬離子的酸性劑時要注意用量,避免過量添加導(dǎo)致鹽分含量過高。
鳥糞石(MgNH4PO4·6H2O)是一類由等摩爾濃度的鎂鹽、銨鹽和磷酸鹽組成的礦物晶體[26]。Jeong等首次在廚余垃圾堆肥中利用鳥糞石沉淀法固定氮元素,堆肥后NH+4含量達到1.4%,是普通堆肥含量的3~5倍[99]。Fukumoto等認為,堆肥時添加H3PO4、MgCl2或Mg(OH)2,能減少NH3、N2O等氮類氣體排放[100]。Li等在對幾種鎂鹽、磷酸鹽組合的比較中發(fā)現(xiàn)K2HPO4/MgSO4為最佳組合,添加后氮損失降至23.3%,有機質(zhì)分解率達64%,HPO2-4發(fā)揮了pH值緩沖劑的作用[101]。鎂鹽與過磷酸鈣的組合能發(fā)揮一樣的效果,并加速堆肥腐熟[102]。研究證實,利用鳥糞石沉淀法不僅能提高氮固存能力,還能抑制CH4的產(chǎn)生。這可能與鳥糞石晶體形成提高供氧能力或SO2-4有關(guān),從而增強了硝化作用,抑制了甲烷菌的繁殖[95,103-104]。一些原料初始氮含量很高,無法僅靠鎂鹽和磷酸鹽沉淀法全部保存,避免添加水平過高影響有機物降解。
雙氰胺(DCD)可抑制氨氧化細菌的代謝、減緩硝化作用、阻止銨態(tài)氮(NH+4-N)向亞硝酸鹽轉(zhuǎn)化而減少N2O的產(chǎn)生[95,105]。在豬糞和玉米秸稈共堆肥中添加2.5%雙氰胺,可顯著降低N2O排放78.57%,但對NH3排放無影響[106]。雙氰胺在堆肥調(diào)控中存在“短板”,常需要與其他添加劑聯(lián)合使用。
2.2.3 微生物添加劑
堆肥添加微生物制劑能加速物質(zhì)循環(huán),彌補傳統(tǒng)堆肥發(fā)酵周期長、養(yǎng)分損失大、溫室氣體排放量大等缺點。近年來,關(guān)于堆肥微生物種屬演替規(guī)律、外源添加微生物的作用,特別是在有機碳和氮轉(zhuǎn)化方面的研究有很大進展。
在糞便與植物共堆肥體系中,纖維素降解是一直以來的重要難題,所提供的氮的比值遠低于總碳與氮的比值比,堆肥接種纖維素降解菌能有效提升對有機碳的利用率。Lu等研究發(fā)現(xiàn),在羊糞堆肥中加入由枯草芽孢桿菌、地衣芽孢桿菌、綠色木霉、黑曲霉和酵母制備的菌制劑,能顯著提高有機碳和腐植酸碳含量[107]。在豬糞與蘑菇基質(zhì)堆肥中接種木質(zhì)纖維素降解菌,不僅可以提升有機碳的利用率,還能抑制氮功能基因以及反硝化細菌群落[108]。嗜熱期是氮轉(zhuǎn)化的主要階段,接種、氨氧化細菌(AOB)、氨氧化古菌(AOA)、硝化細菌和固氮桿菌可增強氮固定,減少氨氣、N2O的排放[109-112]。實驗室篩選分離的功能性耐熱菌在糞污處理中的應(yīng)用取得了突出效果。Yu等認為,在家禽糞便堆肥中接種嗜熱硬脂芽孢桿菌可以促進糖轉(zhuǎn)化為有機酸,降低pH值,從而顯著降低NH3的排放,并提高NH+4-N含量[108]。堆肥添加嗜熱亞硝酸鹽氧化菌可緩解嗜熱期強烈氨化作用下銨和亞硝酸的積累,減少反硝化和不完全硝化導(dǎo)致的N2O排放。將分離出的耐熱硝化細菌接種于堆肥中,推動硝化反應(yīng),加速銨態(tài)氮向硝酸鹽轉(zhuǎn)化,NH3排放量減少了29.7%[111]。Chen等發(fā)現(xiàn),污泥堆肥接種耐熱硫氧化細菌,可以參與還原性硫的氧化,H2S氣體排放量降低了48.9%[113]。
2.2.4 復(fù)合添加
僅靠改變堆肥條件或采用某一種添加劑對堆肥效率的提升是有限的,也是有缺陷的。研究人員對多種添加劑復(fù)合使用研究日益加深,復(fù)合添加的方式彌補了單一添加劑的不足,并減少了其用量。Lei等認為,在豬糞堆肥中,與單獨添加10%磷石膏和麥飯石使NH3排放量分別降低59.74%和25.78%、N2O排放量分別降低8.15%和19.00%相比,復(fù)合添加5%麥飯石和磷石膏的NH3、N2O的累積排放量可以分別降低68.37%、42.86%[114]。Wang等認為,在豬糞與麥稈共堆肥中,聯(lián)合添加生物炭和沸石的氮固定效果更好,可以分別減少63.40%、78.13%的NH3、N2O排放[115]?;瘜W(xué)添加劑會增加有機肥的鹽濃度,影響作物生長,而物理添加劑的吸附作用可緩解高鹽離子濃度。將10%沸石于補充鎂鹽和磷鹽的鳥糞石沉淀堆肥中,堆肥電導(dǎo)率降低到2.82 mS/cm,并增加了對NH+4的吸附,氨損失減少到18%[53]。生物炭和微生物制劑也是一種很好的組合。污泥堆肥添加需氧微生物菌劑與竹炭后,可以有效降低CO2、CH4、N2O等溫室氣體的排放,并提高嗜熱期微生物的多樣性[84]。實踐證明,復(fù)合添加是提高堆肥效率更經(jīng)濟有效的策略。
2.3 新型堆肥
近年來,一些創(chuàng)新的堆肥系統(tǒng)如電場輔助、半透膜覆蓋和蚯蚓堆肥為提高堆肥品質(zhì)提供新的思路。
電場輔助堆肥通過提高電子轉(zhuǎn)移效率、增強高氧氣利用效率,加速了有機質(zhì)的分解,提高了腐殖質(zhì)含量[116-117]。電場輔助下的堆肥過程中CH4、N2O的排放量分別減少97.2%、72.7%,但出現(xiàn)了更大的碳損失,CO2排放增加28.9%[116]。Tan等研究發(fā)現(xiàn),氧化還原能力可用電子轉(zhuǎn)移容量(ETC)來量化,包括電子接受能力(EAC)和電子供體容量(EDC),堆肥中可溶性有機質(zhì)的組成是氧化還原能力的關(guān)鍵,如腐殖質(zhì)是EDC和ETC的主要功能組分[118-119]。這些研究增強了對堆肥機理的理解,有助于電場輔助在堆肥中的應(yīng)用。
半透膜覆蓋堆肥采用一種由聚四氟乙烯(PTFE)材料制成的,膜上排布0.2 μm的微孔,能隔離灰塵、氣溶膠的疏水性分子篩選膜[120]。膜覆蓋堆肥結(jié)合送風(fēng)系統(tǒng),可保持堆內(nèi)均勻的氧氣濃度,加速升溫和有機質(zhì)的降解。在牛糞與麥稈的共堆肥中,膜覆蓋后提高腐殖酸含量和聚合度,可以增加與腐殖質(zhì)合成相關(guān)優(yōu)勢屬的豐度[121]。半透膜覆蓋奶牛糞堆肥的碳轉(zhuǎn)化率增高,CO2和CH4排放的碳損失僅為非膜覆蓋的1/7[8]。
原生動物堆肥在微生物和原生動物協(xié)同下完成,包括蚯蚓和黑水虻幼蟲堆肥[122-124]。蚯蚓處理污泥有大規(guī)模應(yīng)用的先例,其對污泥的降解能力是自然分解的3倍[125]。蚯蚓引入生物炭與污泥的共堆肥后,抗生素水平顯著降低,抗生素抗性基因ermF和tetX水平顯著降低[126]。黑水虻幼蟲堆肥能有效地將糞便轉(zhuǎn)化為優(yōu)質(zhì)肥料,還可用作畜牧業(yè)替代性飼料成分[127-128]。
3 總結(jié)與展望
堆肥可實現(xiàn)有機廢棄物資源化利用和畜牧業(yè)健康發(fā)展。結(jié)合堆肥物質(zhì)轉(zhuǎn)化、遷移規(guī)律,對提升堆肥質(zhì)量、減少物質(zhì)損耗、降低對環(huán)境負面效應(yīng)提出以下幾點調(diào)控建議:(1)對輔料進行前處理或添加具有木質(zhì)素降解效力的生物制劑,提升纖維類有機質(zhì)的分解,促進糖-胺縮合反應(yīng)和木質(zhì)素-蛋白聚合反應(yīng),減少堆肥前期可溶性有機質(zhì)快速礦化消耗,從而提高堆肥腐殖質(zhì)含量。(2)降低pH值可提高體系NH+4/NH3,減少NH+4的積累致使氨氣揮發(fā);提高氧含量和氨氧化細菌生物量,促進氨氧化為硝酸鹽,減少發(fā)生反硝化和不完全硝化導(dǎo)致N2O、N2等氣體釋放。(3)添加氧化劑提供充足的氧化還原電位,有效減少含硫有機質(zhì)降解礦化后VSCs的釋放,提高pH值減少H2S氣體產(chǎn)生。根據(jù)畜禽養(yǎng)殖不同糞肥特性和作物養(yǎng)分需求特點開展堆肥生產(chǎn),提高糞污的綜合利用率,減輕環(huán)境壓力,促進農(nóng)業(yè)和畜牧業(yè)的可持續(xù)發(fā)展。
參考文獻:
[1]楊開宇,林常楓. 畜禽糞污厭氧發(fā)酵預(yù)處理技術(shù)研究進展[J]. 能源環(huán)境保護,2021,35(6):42-48.
[2]周海賓,丁京濤,孟海波,等. 中國畜禽糞污資源化利用技術(shù)應(yīng)用調(diào)研與發(fā)展分析[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(9):237-246.
[3]Yao Q F,Borjihan Q,Qu H H,et al. Cow dung-derived biochars engineered as antibacterial agents for bacterial decontamination[J]. Journal of Environmental Sciences,2021,105:33-43.
[4]王麗麗,孫東升,許 雷,等. 秸稈過濾豬場廢水及濾料與豬糞好氧堆肥研究[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(19):180-189.
[5]Jawad J,Khalil M J,Sengar A K,et al. Experimental analysis and modeling of the methane degradation in a three stage biofilter using composted sawdust as packing media[J]. Journal of Environmental Management,2021,286:112214.
[6]Black Z,Balta I,Black L,et al. The fate of foodborne pathogens in manure treated soil[J]. Frontiers in Microbiology,2021,12:781357.
[7]Tran D T Q,Bradbury M I,Ogtrop F F V A N,et al. Environmental drivers for persistence of Escherichia coli and Salmonella in manure-amended soils:a meta-analysis[J]. Journal of Food Protection,2020,83(7):1268-1277.
[8]Fang C,Yuan X R,Liao K K,et al. Micro-aerobic conditions based on membrane-covered improves the quality of compost products:insights into fungal community evolution and dissolved organic matter characteristics[J]. Bioresource Technology,2022,362:127849.
[9]Jiang Z W,Lu Y Y,Xu J Q,et al. Exploring the characteristics of dissolved organic matter and succession of bacterial community during composting[J]. Bioresource Technology,2019,292:121942.
[10]Wu J Q,Wei Z M,Zhu Z C,et al. Humus formation driven by ammonia-oxidizing bacteria during mixed materials composting[J]. Bioresource Technology,2020,311:123500
[11]Jennifer E,Adam G,Mark B,et al. Persistence of human pathogens in manure-amended Australian soils used for production of leafy vegetables[J]. Agriculture,2020,11(1):14.
[12]Loss A,Couto R,Brunetto G,et al. Animal manure as fertilizer:changes in soil attributes,productivity and food composition[J]. International Journal of Research-GRANTHAALAYAH,2019,7(9):307-331.
[13]陳文旭,劉逸飛,蔣思楠,等. 微生物菌劑對廚余垃圾堆肥溫室氣體減排的影響[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(23):181-187.
[14]Huang D L,Gao L,Cheng M,et al. Carbon and N conservation during composting:a review[J]. Science of the Total Environment,2022,840:156355.
[15]李文圣. 不同組群奶牛糞便堆積過程中溫室氣體排放及碳氮轉(zhuǎn)化規(guī)律[D]. 楊凌:西北農(nóng)林科技大學(xué),2015.
[16]Voběrková S,Vaverková M D,Adamcová D. Enzyme production during composting of aliphatic–aromatic copolyesters in organic wastes[J]. Environmental Engineering Science,2017,34(3):177-184.
[17]Liang C,Schimel J P,Jastrow J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology,2017,2(8):1-6.
[18]Ma S S,Sun X X,F(xiàn)ang C,et al. Exploring the mechanisms of decreased methane during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane[J]. Waste Management,2018,78:393-400.
[19]Zhao Y,Zhao Y,Zhang Z C,et al. Effect of thermo-tolerant actinomycetes inoculation on cellulose degradation and the formation of humic substances during composting[J]. Waste Management,2017,68:64-73.
[20]聶曉瑀,于春靜,盧 倩,等. 微生物在農(nóng)作物秸稈好氧堆肥過程中的研究進展[J]. 中國農(nóng)學(xué)通報,2022,38(26):76-81.
[21]Ye P P,F(xiàn)ang L F,Song D,et al. Insights into carbon loss reduction during aerobic composting of organic solid waste:a meta-analysis and comprehensive literature review[J]. Science of the Total Environment,2023,862:160787.
[22]Wei Z M,Ahmed M T,Zhao L,et al. Microhabitat drive microbial anabolism to promote carbon sequestration during composting[J]. Bioresource Technology,2022,346:126577.
[23]Jones S W,F(xiàn)ast A G,Carlson E D,et al. CO2fixation by anaerobic non-photosynthetic mixotrophy for improved carbon conversion[J]. Nature Communications,2016,7:12800.
[24]Yu C J,Lu Q,F(xiàn)u C,et al. Exploring the internal driving mechanism underlying bacterial community-induced organic component conversion and humus formation during rice straw composting with tricarboxylic acid cycle regulator addition[J]. Bioresource Technology,2022,365:128149.
[25]Cotrufo M F,Soong J L,Horton A J,et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience,2015,8(10):776-779.
[26]Wang S G,Zeng Y. Ammonia emission mitigation in food waste composting:a review[J]. Bioresource Technology,2018,248:13-19.
[27]Wang R X,Zhao Y,Xie X Y,et al. Role of NH3recycling on nitrogen fractions during sludge composting[J]. Bioresource Technology,2020,295:122175.
[28]Chowdhury M A,de Neergaard A,Jensen L S. Composting of solids separated from anaerobically digested animal manure:effect of different bulking agents and mixing ratios on emissions of greenhouse gases and ammonia[J]. Biosystems Engineering,2014,124:63-77.
[29]Cáceres R,Malińska K,Marfà O. Nitrification within composting:a review[J]. Waste Management,2018,72:119-137.
[30]Yang Y J,Kumar A M,Wu L L,et al. Microbial driving mechanism of biochar and bean dregs on NH3and N2O emissions during composting[J]. Bioresource Technology,2020,315:123829.
[31]Chen H Y,Awasthi M K,Liu T,et al. Influence of clay as additive on greenhouse gases emission and maturity evaluation during chicken manure composting[J]. Bioresource Technology,2018,266:82-88.
[32]Zheng J X,Liu J B,Han S H,et al. N2O emission factors of full-scale animal manure windrow composting in cold and warm seasons[J]. Bioresource Technology,2020,316:123905.
[33]Guo H H,Gu J,Wang X J,et al. Microbial driven reduction of N2O and NH3emissions during composting:effects of bamboo charcoal and bamboo vinegar[J]. Journal of Hazardous Materials,2020,390:121292.
[34]Nigussie A,Kuyper T W,Bruun S,et al. Vermicomposting as a technology for reducing nitrogen losses and greenhouse gas emissions from small-scale composting[J]. Journal of Cleaner Production,2016,139:429-439.
[35]Tang K,Baskaran V,Nemati M. Bacteria of the sulphur cycle:an overview of microbiology,biokinetics and their role in petroleum and mining industries[J]. Biochemical Engineering Journal,2009,44(1):73-94.
[36]Chen L X,Ren Y L,Lin J Q,et al. Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant[J]. PLoS One,2012,7(9):e39470.
[37]Schiavon M,Martini L M,Corrà C,et al. Characterisation of volatile organic compounds (VOCs) released by the composting of different waste matrices[J]. Environmental Pollution,2017,231:845-853.
[38]Drennan M F,DiStefano T D. Characterization of the curing process from high-solids anaerobic digestion[J]. Bioresource Technology,2010,101(2):537-544.
[39]Zhang H Y,Li G X,Gu J,et al. Influence of aeration on volatile sulfur compounds (VSCs) and NH3emissions during aerobic composting of kitchen waste[J]. Waste Management,2016,58:369-375.
[40]Ma R N,Liu Y,Wang J N,et al. Effects of oxygen levels on maturity,humification,and odor emissions during chicken manure composting[J]. Journal of Cleaner Production,2022,369:133326.
[41]Fisher R M,Le-Minh N,Alvarez-Gaitan J P,et al. Emissions of volatile sulfur compounds (VSCs) throughout wastewater biosolids processing[J]. Science of the Total Environment,2018,616/617:622-631.
[42]Wang J,Chu Y X,Tian G M,et al. Estimation of sulfur fate and contribution to VSC emissions from lakes during algae decay[J]. Science of the Total Environment,2023,856:159193.
[43]Iqbal M K,Nadeem A,Sherazi F,et al. Optimization of process parameters for kitchen waste composting by response surface methodology[J]. International Journal of Environmental Science and Technology,2015,12(5):1759-1768.
[44]Li D Y,Yuan J,Ding J T,et al. Effects of carbon/nitrogen ratio and aeration rate on the sheep manure composting process and associated gaseous emissions[J]. Journal of Environmental Management,2022,323:116093.
[45]Zhang L,Zhao T T,Shi E H,et al. The non-negligibility of greenhouse gas emission from a combined pre-composting and vermicomposting system with maize stover and cow dung[J]. Environmental Science and Pollution Research,2021,28(15):19412-19423.
[46]Huang G F,Wong J W C,Wu Q T,et al. Effect of C/N on composting of pig manure with sawdust[J]. Waste Management,2004,24(8):805-813.
[47]Yu K,Li S Y,Sun X Y,et al. Maintaining the ratio of hydrosoluble carbon and hydrosoluble nitrogen within the optimal range to accelerate green waste composting[J]. Waste Management,2020,105:405-413.
[48]Ogunwande G A,Osunade J A,Adekalu K O,et al. Nitrogen loss in chicken litter compost as affected by carbon to nitrogen ratio and turning frequency[J]. Bioresource Technology,2008,99(16):7495-7503.
[49]Zhang L,Sun X Y. Influence of bulking agents on physical,chemical,and microbiological properties during the two-stage composting of green waste[J]. Waste Management,2016,48:115-126.
[50]Zhang L,Sun X Y. Improving green waste composting by addition of sugarcane bagasse and exhausted grape marc[J]. Bioresource Technology,2016,218:335-343.
[51]Lazcano C,Gómez-Brandón M,Domínguez J. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure[J]. Chemosphere,2008,72(7):1013-1019.
[52]Zhao B,Wang Y Y,Ma L T,et al.? Adding an appropriate proportion of phosphogypsum ensured rice husk and urea composting to promote the compost as substrate utilization[J]. Bioresource Technology,2022,344:126301.
[53]Chan M T,Selvam A,Wong J W C. Reducing nitrogen loss and salinity during ‘struvite food waste composting by zeolite amendment[J]. Bioresource Technology,2016,200:838-844.
[54]Wang Y J,Pang L,Liu X Y,et al. Using thermal balance model to determine optimal reactor volume and insulation material needed in a laboratory-scale composting reactor[J]. Bioresource Technology,2016,206:164-172.
[55]Wang Y,Liu S J,Xue W T,et al. The characteristics of carbon,nitrogen and sulfur transformation during cattle manure composting:based on different aeration strategies[J]. International Journal of Environmental Research and Public Health,2019,16(20):3930.
[56]Gu W J,Sun W,Lu Y S,et al. Effect of Thiobacillus thioparus 1904 and sulphur addition on odour emission during aerobic composting[J]. Bioresource Technology,2018,249:254-260.
[57]Keng Z X,Chong S,Ng C G,et al. Community-scale composting for food waste:a life-cycle assessment-supported case study[J]. Journal of Cleaner Production,2020,261:121220.
[58]Oertel C,Matschullat J,Zurba K,et al. Greenhouse gas emissions from soils:a review[J]. Geochemistry,2016,76(3):327-352.
[59]Komilis D P,Tziouvaras I S. A statistical analysis to assess the maturity and stability of six composts[J]. Waste Management,2009,29(5):1504-1513.
[60]Li S,Huang G H,An C J,et al. Effect of different buffer agents on in-vessel composting of food waste:performance analysis and comparative study[J]. Journal of Environmental Science and Health(Part A),2013,48(7):772-780.
[61]Paradelo R,Moldes A B,Barral M T. Evolution of organic matter during the mesophilic composting of lignocellulosic winery wastes[J]. Journal of Environmental Management,2013,116:18-26.
[62]Yu H,Huang G H. Effects of sodium acetate as a pH control amendment on the composting of food waste[J]. Bioresource Technology,2009,100(6):2005-2011.
[63]Puyuelo B,Gea T,Sánchez A. A new control strategy for the composting process based on the oxygen uptake rate[J]. Chemical Engineering Journal,2010,165(1):161-169.
[64]Zheng G D,Wang Y W,Wang X K,et al. Oxygen monitoring equipment for sewage-sludge composting and its application to aeration optimization[J]. Sensors,2018,18(11):4017.
[65]Zhao S,Yang X F,Zhang W J,et al. Volatile sulfide compounds (VSCs) and ammonia emission characteristics and odor contribution in the process of municipal sludge composting[J]. Journal of the Air & Waste Management Association,2019,69(11):1368-1376.
[66]Fang C,Yin H J,Han L J,et al. Effects of semi-permeable membrane covering coupled with intermittent aeration on gas emissions during aerobic composting from the solid fraction of dairy manure at industrial scale[J]. Waste Management,2021,131:1-9.
[67]Wang K,Li W G,Guo J H,et al. Spatial distribution of dynamics characteristic in the intermittent aeration static composting of sewage sludge[J]. Bioresource Technology,2011,102(9):5528-5532.
[68]Chen J,Chen T B,Gao D,et al. Reducing H2S production by O2feedback control during large-scale sewage sludge composting[J]. Waste Management,2011,31(1):65-70.
[69]Petric I,Helic' A,Avdic' E A. Evolution of process parameters and determination of kinetics for co-composting of organic fraction of municipal solid waste with poultry manure[J]. Bioresource Technology,2012,117:107-116.
[70]Barthod J,Rumpel C,Dignac M F.Composting with additives to improve organic amendments:a review[J]. Agronomy for Sustainable Development,2018,38(2):17.
[71]Petric I,Mustafic' N. Dynamic modeling the composting process of the mixture of poultry manure and wheat straw[J]. Journal of Environmental Management,2015,161:392-401.
[72]Luangwilai T,Sidhu H S,Nelson M I. One-dimensional spatial model for self-heating in compost piles:investigating effects of moisture and air flow[J]. Food and Bioproducts Processing,2018,108:18-26.
[73]Makan A,Assobhei O,Mountadar M. Effect of initial moisture content on the in-vessel composting under air pressure of organic fraction of municipal solid waste in Morocco[J]. Iranian Journal of Environmental Health Science & Engineering,2013,10(1):3.
[74]Guo R,Li G X,Jiang T,et al. Effect of aeration rate,C/N ratio and moisture content on the stability and maturity of compost[J]. Bioresource Technology,2012,112:171-178.
[75]Higgins B T,Chaump K,Wang Q C,et al. Moisture content and aeration control mineral nutrient solubility in poultry litter[J]. Journal of Environmental Management,2021,300:113787.
[76]Liu X Y,Zhang L.Effects of additives on the co-composting of forest residues with cattle manure[J]. Bioresource Technology,2023,368:128384.
[77]Zhu P,Shen Y L,Pan X S,et al. Reducing odor emissions from feces aerobic composting:additives[J]. RSC Advances,2021,11(26):15977-15988.
[78]Mao H,Zhang T,Li R H,et al. Apple pomace improves the quality of pig manure aerobic compost by reducing emissions of NH3and N2O[J]. Scientific Reports,2017,7(1):1-8.
[79]Yuan J,Zhang D F,Du L L,et al. Effect of woody peat as an additive on maturity and gaseous emissions during pig manure composting[J]. Compost Science & Utilization,2019,27(2):69-80.
[80]張紅玉,李國學(xué),袁 京,等. 固氮添加劑降低廚余垃圾堆肥中NH3和H2S排放[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(23):173-178.
[81]李 赟,袁 京,李國學(xué),等. 輔料添加對廚余垃圾快速堆肥腐熟度和臭氣排放的影響[J]. 中國環(huán)境科學(xué),2017,37(3):1031-1039.
[82]Li R H,Wang Q,Zhang Z Q,et al. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures[J]. Environmental Technology,2015,36(7):815-826.
[83]Zhang B X,Xu Z C,Jiang T,et al. Gaseous emission and maturity in composting of livestock manure and tobacco wastes:effects of aeration intensities and mitigation by physiochemical additives[J]. Environmental Technology & Innovation,2020,19:100899.
[84]Yin Y N,Yang C,Li M T,et al. Research progress and prospects for using biochar to mitigate greenhouse gas emissions during composting:a review[J]. Science of the Total Environment,2021,798:149294.
[85]Shan G C,Li W G,Gao Y J,et al. Additives for reducing nitrogen loss during composting:a review[J]. Journal of Cleaner Production,2021,307:127308.
[86]Awasthi M K,Wang Q,Huang H,et al. Influence of zeolite and lime as additives on greenhouse gas emissions and maturity evolution during sewage sludge composting[J]. Bioresource Technology,2016,216:172-181.
[87]Taheri-Soudejani H,Heidarpour M,Shayannejad M,et al. Composts containing natural and Mg-modified zeolite:the effect on nitrate leaching,drainage water,and yield[J]. Clean,2019,47(8):1800257.1-1800257.9.
[88]Ren X N,Wang Q,Chen X,et al. Elucidating the optimum added dosage of diatomite during co-composting of pig manure and sawdust:carbon dynamics and microbial community[J]. Science of the Total Environment,2021,777:146058.
[89]Li M H,Li S Y,Chen S G,et al. Measures for controlling gaseous emissions during composting:a review[J]. International Journal of Environmental Research and Public Health,2023,20(4):3587.
[90]Wilson C A,Tanneru C T,Banjade S,et al. Anaerobic digestion of raw and thermally hydrolyzed wastewater solids under various operational conditions[J]. Water Environment Research,2011,83(9):815-825.
[91]Yuan J,Yang Q Y,Zhang Z Y,et al. Use of additive and pretreatment to control odors in municipal kitchen waste during aerobic composting[J]. Journal of Environmental Sciences,2015,37:83-90.
[92]Dhar B R,Elbeshbishy E,Hafez H,et al. Thermo-oxidative pretreatment of municipal waste activated sludge for volatile sulfur compounds removal and enhanced anaerobic digestion[J]. Chemical Engineering Journal,2011,174(1):166-174.
[93]Gao X Z,Yang F Y,Cheng J W,et al. Emission of volatile sulphur compounds during swine manure composting:source identification,odour mitigation and assessment[J]. Waste Management,2022,153:129-137.
[94]Jiang J S,Huang Y M,Liu X L,et al. The effects of apple pomace,bentonite and calcium superphosphate on swine manure aerobic composting[J]. Waste Management,2014,34(9):1595-1602.
[95]Cao Y B,Wang X,Liu L,et al. Acidification of manure reduces gaseous emissions and nutrient losses from subsequent composting process[J]. Journal of Environmental Management,2020,264:110454.
[96]Li Y B,Liu T T,Song J L,et al. Effects of chemical additives on emissions of ammonia and greenhouse gas during sewage sludge composting[J]. Process Safety and Environmental Protection,2020,143:129-137.
[97]Pan J T,Cai H Z,Zhang Z Q,et al. Comparative evaluation of the use of acidic additives on sewage sludge composting quality improvement,nitrogen conservation,and greenhouse gas reduction[J]. Bioresource Technology,2018,270:467-475.
[98]Liu B B,Morkved P T,F(xiàn)rostegard A,et al. Denitrification gene pools,transcription and kinetics of NO,N2O and N2production as affected by soil pH[J]. FEMS Microbiology Ecology,2010,72(3):407-417.
[99]Jeong Y K,Kim J S.A new method for conservation of nitrogen in aerobic composting processes[J]. Bioresource Technology,2001,79(2):129-133.
[100]Fukumoto Y,Suzuki K,Kuroda K,et al. Effects of struvite formation and nitratation promotion on nitrogenous emissions such as NH3,N2O and NO during swine manure composting[J]. Bioresource Technology,2011,102(2):1468-1474.
[101]Li Y,Su B S,Liu J L,et al. Nitrogen conservation in simulated food waste aerobic composting process with different Mg and P salt mixtures[J]. Journal of the Air & Waste Management Association,2011,61(7):771-777.
[102]Jiang T,Ma X G,Yang J,et al. Effect of different struvite crystallization methods on gaseous emission and the comprehensive comparison during the composting[J]. Bioresource Technology,2016,217:219-226.
[103]Wang Q,Awasthi M K,Ren X N,et al. Combining biochar,zeolite and wood vinegar for composting of pig manure:the effect on greenhouse gas emission and nitrogen conservation[J]. Waste Management,2018,74:221-230.
[104]Zhang D F,Luo W H,Yuan J,et al. Effects of woody peat and superphosphate on compost maturity and gaseous emissions during pig manure composting[J]. Waste Management,2017,68:56-63.
[105]Dai Y,Di H J,Cameron K C,et al. Effects of nitrogen application rate and a nitrification inhibitor dicyandiamide on ammonia oxidizers and N2O emissions in a grazed pasture soil[J]. Science of the Total Environment,2013,465:125-135.
[106]Yuan J,Li Y,Chen S L,et al. Effects of phosphogypsum,superphosphate,and dicyandiamide on gaseous emission and compost quality during sewage sludge composting[J]. Bioresource Technology,2018,270:368-376.
[107]Lu J W,Wang J G,Gao Q,et al. Effect of microbial inoculation on carbon preservation during goat manure aerobic composting[J]. Molecules,2021,26(15):4441.
[108]Yu J,Gu J,Wang X J,et al. Effects of inoculation with lignocellulose-degrading microorganisms on nitrogen conversion and denitrifying bacterial community during aerobic composting[J]. Bioresource Technology,2020,313:123664.
[109]Kuroda K,Waki M,Yasuda T,et al. Utilization of Bacillus sp. strain TAT105 as a biological additive to reduce ammonia emissions during composting of swine feces[J]. Bioscience,Biotechnology,and Biochemistry,2015,79(10):1702-1711.
[110]Lu Y S,Gu W J,Xu P Z,et al. Effects of sulphur and Thiobacillus thioparus 1904 on nitrogen cycle genes during chicken manure aerobic composting[J]. Waste Management,2018,80:10-16.
[111]Zhao Y,Li W G,Chen L,et al. Effect of enriched thermotolerant nitrifying bacteria inoculation on reducing nitrogen loss during sewage sludge composting[J]. Bioresource Technology,2020,311:123461.
[112]趙歐亞,侯利敏,孫世友,等. 不同商品發(fā)酵菌劑對牛糞堆肥微生物群落的影響[J]. 江蘇農(nóng)業(yè)科學(xué),2022,50(14):239-244.
[113]Chen L,Li W G,Zhao Y,et al. Effects of compound bacterial agent on gaseous emissions and compost maturity during sewage sludge composting[J]. Journal of Cleaner Production,2022,366:133015.
[114]Lei L S,Gu J,Wang X J,et al. Effects of phosphogypsum and medical stone on nitrogen transformation,nitrogen functional genes,and bacterial community during aerobic composting[J]. Science of the Total Environment,2021,753:141746.
[115]Wang Q,Awasthi M K,Ren X N,et al. Comparison of biochar,zeolite and their mixture amendment for aiding organic matter transformation and nitrogen conservation during pig manure composting[J]. Bioresource Technology,2017,245:300-308.
[116]Tang J H,Li X,Zhao W Q,et al. Electric field induces electron flow to simultaneously enhance the maturity of aerobic composting and mitigate greenhouse gas emissions[J]. Bioresource Technology,2019,279:234-242.
[117]Fu T,Shangguan H Y,Wu J X,et al. Insight into the synergistic effects of conductive biochar for accelerating maturation during electric field-assisted aerobic composting[J]. Bioresource Technology,2021,337:125359.
[118]Tan Z H,Dong B,Xing M Y,et al. Electric field applications enhance the electron transfer capacity of dissolved organic matter in sludge compost[J]. Environmental Technology,2024,45(2):283-293.
[119]Yuan Y,Xi B D,He X S,et al. Insights into the redox components of dissolved organic matters during stabilization process[J]. Environmental Science and Pollution Research,2018,25(13):13026-13034.
[120]楊麗楠,李 昂,袁春燕,等. 半透膜覆蓋好氧堆肥技術(shù)應(yīng)用現(xiàn)狀綜述[J]. 環(huán)境科學(xué)學(xué)報,2020,40(10):3559-3564.
[121]Song Y J,Li R Y,Wang Y X,et al. Co-composting of cattle manure and wheat straw covered with a semipermeable membrane:organic matter humification and bacterial community succession[J]. Environmental Science and Pollution Research,2023,30(12):32776-32789.
[122]段自豪,夏 慧,黃 魁,等. 蚯蚓對污泥堆肥過程中活性真核微生物的影響[J]. 環(huán)境科學(xué)學(xué)報,2023,43(4):408-416.
[123]Liu T,Awasthi M,Chen H Y,et al. Performance of black soldier fly larvae (Diptera:Stratiomyidae) for manure composting and production of cleaner compost[J]. J Environ Manage,2019,109593.
[124]Aira M,Olcina J,Pérez-Losada M,et al. Characterization of the bacterial communities of casts from Eisenia andrei fed with different substrates[J]. Applied Soil Ecology,2016,98:103-111.
[125]Liew C S,Yunus N M,Chidi B S,et al. A review on recent disposal of hazardous sewage sludge via anaerobic digestion and novel composting[J]. Journal of Hazardous Materials,2022,423(Pt A):126995.
[126]Huang K,Chen J Y,Guan M X,et al. Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge[J]. Journal of Hazardous Materials,2020,397:122767.
[127]Siddiqui S A,Ristow B,Rahayu T,et al. Black soldier fly larvae (BSFL) and their affinity for organic waste processing[J]. Waste Management,2022,140:1-13.
[128]Liu T,Awasthi S K,Qin S Y,et al. Conversion food waste and sawdust into compost employing black soldier fly larvae (Diptera:Stratiomyidae) under the optimized condition[J]. Chemosphere,2021,272:129931.