才智 岳靜宇 王鈺雯 景天惠 雷家軍 薛莉
收稿日期:2023-10-16 接受日期:2023-11-29
基金項(xiàng)目:遼寧省科技廳面上項(xiàng)目(2023-MS-211);沈陽(yáng)市種業(yè)創(chuàng)新項(xiàng)目(Z20230379)
作者簡(jiǎn)介:才智,女,在讀碩士研究生,從事觀賞植物種質(zhì)資源與遺傳育種研究。E-mail:c18342801098@163.com
*通信作者 Author for correspondence. E-mail:lixue@syau.edu.cn
DOI:10.13925/j.cnki.gsxb.20230394
摘? ? 要:草莓屬植物均開(kāi)白花。紅花草莓是一種新型草莓,其果紅花亦紅,能觀賞兼鮮食,可作為多年生草本花卉,用于地栽、盆栽等景觀美化,具有較高的經(jīng)濟(jì)價(jià)值和觀賞價(jià)值。概述了紅花草莓的起源、育種歷史和現(xiàn)狀及新近育成的種子型品種的研究進(jìn)展,并對(duì)紅花草莓花瓣呈色物質(zhì)、轉(zhuǎn)錄調(diào)控等分子機(jī)制研究進(jìn)展進(jìn)行了綜述,期望能為紅花草莓新品種選育和種質(zhì)創(chuàng)新提供新思路。
關(guān)鍵詞:紅花草莓;花色;雜交育種;種子型品種;花青苷;呈色機(jī)制
中圖分類號(hào):S668.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)01-0155-07
Advances in research on breeding and petal coloration mechanism of red-flowered strawberry
CAI Zhi, YUE Jingyu, WANG Yuwen, JING Tianhui, LEI Jiajun, XUE Li*
(College of Horticulture, Shenyang Agricultural University, Shenyang 110866, Liaoning, China)
Abstract: The strawberry, belonging to the Fragaria genus of the Rosaceae family, is a perennial herbaceous plant with global significance as a berry fruit crop. Nearly all strawberry plants have white flowers. The red-flowered strawberry is a result of distant hybridization, which can be viewed in addition to fresh food due to its vibrant red flowers. China has a robust foundation in strawberry cultivation, and its area and yield ranks first in the world, which is of significant economic benefits. With the rapid development of Chinas economy and the improvement of material level, people have higher and higher requirements for the selection of strawberry cultivars, “good-looking, delicious and healthy” is the current new demand for strawberry consumption. In recent years, red-flowered strawberries have garnered a global attention from scholars and breeders, which have coloration and morphological characteristics such as Pink Panda, Toscana, Pretty Beauty and Summer Breeze series. In addition, the red-flowered strawberry has a strong ability to reproduce; its green leaves, red flowers and red fruits have a high ornamental value, and can be used for landscaping and potted viewing. The red-flowered strawberry is highly popular due to its vibrant color and edible fruit, commanding a significantly higher market price compared to ordinary white strawberry cultivars, and thereby exhibiting immense and economic value. In China, the red-flowered strawberry can flower all year round in the southern region where the temperature is suitable, and in the cold northern region, it can also flower from April to October. Most red-flowered strawberries are not cold resistant, and its application in the open field in Shenyang area in China needs cold protection to overwinter, which seriously limits its growing area. Flower color is the main ornamental trait of the red-flowered strawberry, which is distinguished from cultivated strawberries with white flowers by its diverse petal colors, including gradients from light pink to deep red. There are many reasons affecting the formation of red color. The most important factor is the type and content of pigments. The flower color of the red-flowered strawberry hybrid covers the whole red series, from light pink to red, which provides an ideal material for studying the mechanism of flower color formation. At present, there have been many studies on the molecular mechanism of petal coloration in red-flowered strawberry. The results show that the structural genes of anthocyanin synthesis pathway and some MYB transcription factors play a role in flower color of red-flowered strawberry. In addition, molecular markers related to flower color of red-flowered strawberry have also been developed, which can effectively accelerate molecular breeding of red-flowered strawberry. Modern red-flowered strawberry breeding has a history of more than 60 years. With the joint efforts of breeders at home and abroad, new cultivars of red-flowered strawberry have come out continuously. At present, seed cultivars with different petal colors of red-flowered strawberry have been obtained, which will lay a good foundation for its popularization and application. The breeding of red-flowered strawberry cultivars in China started relatively late. Shenyang Agricultural University was the first institute to carry out the breeding of red-flowered strawberry in China. According to the different application goals of red-flowered strawberry, it mainly focused on the aspects of large fruit, high quality, bright color and good resistance. Now a series of red-flowered strawberry cultivars with different colors have been obtained. Some breeders obtained decaploid red-flowered strawberry through ploidy breeding, which showed strong plant resistance, large flower, strong reproduction ability and strong resistance. Currently, the majority of red-flowered strawberry cultivars in our country are single-petaled, and they are mainly propagated through asexual reproduction by using stolons. There is still a big gap compared with the cultivars cultivated abroad, especially in the Netherlands. Flower color, type and fruit quality are crucial traits that directly impact the ornamental and economic value of red-flowered strawberry. Therefore, in order to enhance the breeding efforts for red-flowered strawberry in China, it is necessary to broaden the genetic background by introducing excellent foreign cultivars as hybrid parents. This should be accompanied by extensive crossbreeding work and full utilization of abundant resources from related plants within China. Additionally, combining traditional crossbreeding methods with modern molecular biological techniques can cultivate superior red strawberry cultivars with independent intellectual property rights. Simultaneously, future efforts should focus on strengthening promotion and publicity of red-flowered strawberry to increase awareness suitable for both appreciation and consumption purposes. This will facilitate wider adoption of red-flowered strawberry among individuals and businesses. The present paper provides a comprehensive review on the origin, breeding history, current status of red-flowered strawberry, and the research progress made in developing new seed cultivars. Additionally, it delves into the molecular mechanism underlying petal color and explores the transcriptional regulation of red-flowered strawberry. The aim is to offer novel insights for breeding and germplasm innovation in red-flowered strawberry.
Key words: Red-flowered strawberry; Flower color; Cross breeding; Seed type cultivar; Anthocyanin; Coloring mechanism
草莓是薔薇科(Rosaceae)草莓屬(Fragaria)的多年生草本植物,作為“水果皇后”,是世界上重要的漿果類果樹(shù)。我國(guó)草莓產(chǎn)業(yè)基礎(chǔ)雄厚,栽培面積和產(chǎn)量連續(xù)多年居世界第一位,經(jīng)濟(jì)效益顯著。隨著我國(guó)經(jīng)濟(jì)社會(huì)的快速發(fā)展和物質(zhì)水平的提高,人們對(duì)草莓品種選育的要求也越來(lái)越高,“好看、好吃、安全”是目前草莓消費(fèi)的新需求?,F(xiàn)在大規(guī)模栽培草莓的花色均為白色,顏色較為單一,而通過(guò)遠(yuǎn)緣雜交手段能夠獲得花色鮮艷奪目、果面光澤度高且酸甜可口的草莓新品種已經(jīng)成為草莓品種選育的新方向。紅花草莓是通過(guò)遠(yuǎn)緣雜交手段得到的觀賞兼食用的多年生草本植物,植株低矮、花色艷麗?;ㄉ羌t花草莓的主要觀賞性狀,區(qū)別于開(kāi)白色花的栽培草莓,紅花草莓的獨(dú)特之處在于它的花瓣顏色多樣,包括了從淺粉色到深紅色的各個(gè)梯度。紅花草莓由于具有靚麗的花色和可食用的果實(shí)而備受人們歡迎,具有較大的市場(chǎng)潛力和經(jīng)濟(jì)價(jià)值。隨著陽(yáng)臺(tái)花卉的流行,世界各國(guó)紛紛開(kāi)展了紅花草莓的育種,包括日本、荷蘭、德國(guó)、美國(guó)、韓國(guó)、中國(guó)等,主要圍繞提高紅花草莓的花色、花型、果實(shí)品質(zhì)、抗性等,其中荷蘭ABZ種子公司育成的品種最多,包括不同花色及不同花型的紅花草莓[1]。有關(guān)不同植物的花青苷生物合成及轉(zhuǎn)錄調(diào)控已經(jīng)進(jìn)行了許多研究,主要的花青苷呈色物質(zhì)、轉(zhuǎn)錄調(diào)控關(guān)鍵基因以及一些轉(zhuǎn)錄后調(diào)節(jié)miRNAs在不同的物種中都有了報(bào)道[2-4]。目前,已經(jīng)從代謝組、轉(zhuǎn)錄組等多個(gè)層面分析了紅花草莓花瓣著色的生理和分子機(jī)制。
1 紅花草莓的來(lái)源
紅花草莓(Red-flowered strawberry)是利用遠(yuǎn)緣雜交將紅色花基因?qū)氲皆耘嗖葺械玫降?,其花瓣呈現(xiàn)紅色系的多種不同顏色,具有很高的觀賞價(jià)值和商業(yè)價(jià)值[5-6]。迄今為止,已有兩個(gè)遠(yuǎn)緣雜交途徑獲得了紅花草莓,第一個(gè)來(lái)源途徑是1962年,由英國(guó)的Ellis用開(kāi)白花的八倍體鳳梨草莓(F.×ananassa,2n=8x=56)與開(kāi)紅花的六倍體沼委陵菜(Potentilla palustris,2n=6x=42)進(jìn)行屬間雜交,得到了開(kāi)粉紅色花的七倍體雜種植株(2n=7x=49),其生長(zhǎng)勢(shì)弱,遂與栽培草莓品種(F.× ananassa)不斷進(jìn)行回交,直到1989年成功培育出世界上第一個(gè)紅花草莓品種粉紅熊貓(Pink Panda),其花為粉紅色,具四季開(kāi)花性,但果實(shí)很小、結(jié)實(shí)率很低[7-9];紅花草莓的第二個(gè)來(lái)源途徑是,2021年俄羅斯新西伯利亞中央植物園的Ambros和Novikova [10]利用八倍體栽培草莓和開(kāi)紅色花的尼泊爾委陵菜(P. nepalensis Hook)(2n = 4x = 28)進(jìn)行遠(yuǎn)緣雜交獲得的粉紅花F1代雜種,其抗寒性強(qiáng),這是最新發(fā)表的利用近緣的委陵菜屬植物種質(zhì)進(jìn)行屬間雜交得到的開(kāi)紅色花的草莓。相信不久之后,將會(huì)有更多的途徑可以培育出紅花草莓,創(chuàng)新更多的紅花草莓新種質(zhì)。
2 紅花草莓雜交育種進(jìn)展
現(xiàn)代紅花草莓育種已經(jīng)有60多年的歷史,在國(guó)內(nèi)外育種工作者的共同努力下,紅花草莓新品種不斷問(wèn)世,為其推廣應(yīng)用奠定了良好基礎(chǔ)。Khanizadeh等[11]在加拿大魁北克利用(Raritian × K74-12)×(SJ9616-1 × Pink Panda)雜交,成功培育了兩個(gè)日中性紅花草莓新品種玫瑰波麗(Roseberry)和玫瑰麗娜(Rosalyne),花粉色、果實(shí)芳香、品質(zhì)優(yōu)且抗寒。Olbricht等[12]以粉紅熊貓(Pink Panda)和口紅(Lipstick)為親本,經(jīng)雜交和自交得到了大量花色艷麗、重瓣或半重瓣觀賞性強(qiáng)的F3雜種優(yōu)系;瑞典科學(xué)院細(xì)胞學(xué)和遺傳學(xué)研究所也進(jìn)行了類似的工作,以粉紅熊貓和荷蘭ABZ種子公司創(chuàng)造的紅花雜交品種為親本,希望能夠培育出抗寒的紅花草莓品種用于露地栽培,建立了包含5個(gè)歐洲選育品種和30個(gè)雜交品系的大果粉花草莓基因庫(kù)[10]。
紅花草莓具有高度雜合性,其種子型品種的育成是先通過(guò)反復(fù)自交,從而獲得純合的育種材料,這一過(guò)程因材料和性狀的差異,自交次數(shù)也有所不同,再配制雜交組合選育而成。1993年,ABZ種子公司開(kāi)始紅花草莓種子型品種育種工作,紅花草莓對(duì)消費(fèi)者的吸引力是基于花朵大小、形狀、數(shù)量和顏色等,他們的育種目標(biāo)是以觀賞特性為主,包括開(kāi)花早、株型緊湊、花朵吸引人以及果實(shí)口感最佳。目前,市場(chǎng)上ABZ種子的F1雜交草莓品種有23個(gè),這些種子已經(jīng)出口到六大洲的30多個(gè)國(guó)家,包括中國(guó)、日本、美國(guó)等[13]。表1列出了ABZ種子公司在1995—2021年部分培育的12個(gè)由種子繁殖型的紅花草莓品種,如Roman(羅曼)、Ruby Ann(盧比安)、Tristan(特里斯坦)、Summer Breeze Cherry(夏日微風(fēng)櫻桃)、Summer Breeze Rose(夏日微風(fēng)玫瑰)等,這些紅花草莓品種均是通過(guò)種子繁殖,產(chǎn)生匍匐莖較少,植株長(zhǎng)勢(shì)一致,花和果實(shí)性狀均較好。通過(guò)對(duì)種子繁殖型草莓品種的推廣應(yīng)用,將會(huì)對(duì)未來(lái)的草莓種苗繁育系統(tǒng)和生產(chǎn)模式產(chǎn)生重要影響。
沈陽(yáng)農(nóng)業(yè)大學(xué)最早在我國(guó)開(kāi)展了紅花草莓的選育工作,自1999年從日本引入紅花草莓品種粉紅熊貓后,展開(kāi)了系列雜交,主要圍繞大果、優(yōu)質(zhì)、色艷、抗性等方面進(jìn)行新品種選育。2011年,培育出了紅花草莓新品種粉佳人(花粉色、果實(shí)酸甜)和俏佳人(花深粉色、果實(shí)品質(zhì)優(yōu))[14],2014年培育出了新品種粉公主(花粉色、四季開(kāi)花)和紅玫瑰(花深粉色、花大),2016年又培育出新品種小桃紅(花紅色)和四季紅(花紅色、四季開(kāi)花)[15];同時(shí),還通過(guò)倍性育種的手段,用紅花草莓品種粉佳人與白花、抗寒且果實(shí)芳香的12x種間雜種進(jìn)行雜交,獲得了植株高大、花大、繁殖力強(qiáng)的紅花草莓新種質(zhì)[16]。與紅花草莓親本粉紅熊貓相比,沈陽(yáng)農(nóng)業(yè)大學(xué)現(xiàn)在育成的紅花草莓品種植株長(zhǎng)勢(shì)旺、花色豐富且果實(shí)性狀要顯著優(yōu)于親本粉紅熊貓;與市面上ABZ公司的其他紅花草莓品種相比,沈陽(yáng)農(nóng)業(yè)大學(xué)育成的品種植株長(zhǎng)勢(shì)更壯、四季開(kāi)花類型者多、繁殖能力更強(qiáng),更易于覆蓋地面。另外,2017年江蘇省農(nóng)業(yè)科學(xué)院以紅顏為母本,以優(yōu)良中間育種材料03-01(花粉色)為父本進(jìn)行雜交,選育成優(yōu)質(zhì)的紅花草莓新品種紫金紅,其花為粉紅色、重瓣,適合鮮食與觀賞[17];2021年以優(yōu)質(zhì)紅花品系08-1-N-5和早熟大果白花品系09-8-S-9進(jìn)行雜交,又培育出觀賞兼鮮食的紅花草莓新品種紫金粉玉,其突出性狀是早熟、花紅色[18]。
3 紅花草莓花瓣呈色調(diào)控研究
近年來(lái),國(guó)內(nèi)外對(duì)草莓花青苷的合成及轉(zhuǎn)錄調(diào)控已進(jìn)行了較多研究,紅花草莓花瓣和果實(shí)的主要呈色物質(zhì)是花青苷,然而它們的主要花青苷種類不同[19-20]。Xue等[19]采用HPLC-MS技術(shù),對(duì)紅花草莓不同花色的花瓣中花青苷成分進(jìn)行鑒定,發(fā)現(xiàn)了7種花青苷,包括天竺葵素類苷元、矢車元菊素類苷元和飛燕草素類苷元。隨著紅花草莓花色的加深,花青苷的總含量越高,紅花草莓花瓣中還發(fā)現(xiàn)了少量的飛燕草素類苷元。矢車菊素-3-葡萄糖苷是紅花草莓花瓣的主要呈色物質(zhì),而果實(shí)中主要的呈色物質(zhì)是天竺葵素-3-葡萄糖苷,這與栽培草莓果實(shí)中的主要呈色物質(zhì)一致[21]。這表明紅花草莓的果實(shí)和花瓣中花青苷積累的方式不同,也就是說(shuō)在紅花草莓中有兩種以上可調(diào)控花青苷積累的模式。
轉(zhuǎn)錄因子是位于植物細(xì)胞核中調(diào)控花青苷積累的重要因子,通過(guò)結(jié)合花青苷合成代謝途徑上結(jié)構(gòu)基因的啟動(dòng)子,進(jìn)行激活或抑制基因的轉(zhuǎn)錄。目前,已經(jīng)從代謝組、轉(zhuǎn)錄組等多個(gè)層面分析了紅花草莓花瓣著色的原因。Xue等[22]發(fā)現(xiàn),花青苷合成途徑的結(jié)構(gòu)基因FaANS、FaBZ1和FaUGT75C1的低表達(dá)是紅花草莓雜交后代中白色花瓣中花青苷缺失的主要原因,同時(shí),F(xiàn)aFLS和FaDFR基因的相互作用可能會(huì)進(jìn)一步抑制花青苷的合成;洪燕紅等[23]發(fā)現(xiàn)在紅花草莓莓紅的花瓣發(fā)育過(guò)程中,F(xiàn)aMYB6和FaMYB90對(duì)花青苷的生物合成有正向調(diào)控作用,而FaMYB82則與這4個(gè)差異表達(dá)的結(jié)構(gòu)基因FaPAL、Fa4CL、FaDFR和Fa3GT呈極顯著負(fù)相關(guān);Liu等[24]通過(guò)對(duì)紅花草莓R2R3-MYB基因家族的全基因組分析,鑒定出3個(gè)調(diào)控紅花草莓花瓣中花青苷生物合成的R2R3-FaMYB基因,分別為FaMYB28、FaMYB54和FaMYB576。經(jīng)系統(tǒng)進(jìn)化樹(shù)構(gòu)建及序列比對(duì)分析,這些FaMYBs與果實(shí)中調(diào)控花青苷形成的FaMYB1、FaMYB10和FaMYB5均不同,這說(shuō)明在紅花草莓的不同組織部位的著色上,有不同的機(jī)制來(lái)影響花青苷的形成[25-26]。
已有大量的研究表明,miRNAs在植物花青苷的生物合成過(guò)程中發(fā)揮重要作用,主要通過(guò)調(diào)控花青苷生物合成相關(guān)的轉(zhuǎn)錄因子,來(lái)影響花青苷合成的相關(guān)結(jié)構(gòu)基因的表達(dá);或者可以直接負(fù)調(diào)控花青苷合成途徑的結(jié)構(gòu)基因,從而對(duì)植物花青苷的含量產(chǎn)生影響。目前已經(jīng)鑒定到許多miRNAs能夠在不同植物花瓣或果實(shí)呈色方面起作用,例如miR858[27-28]、miR156[29]、miR7125[30]、miR477[31]、miR5290[32]等。目前草莓中miRNAs的研究已取得一系列進(jìn)展,主要圍繞果實(shí)發(fā)育、抗性等方面[34-35]。Li等[36]從森林草莓Rugen中發(fā)現(xiàn)miR167及其靶基因生長(zhǎng)素反應(yīng)因子6(ARF6)可調(diào)控草莓根、葉發(fā)育,增加草莓根和葉的數(shù)量。紅花草莓中miRNA調(diào)控花瓣著色的相關(guān)報(bào)道還較少。Yue等[37]利用多組學(xué)聯(lián)合(miRNAs測(cè)序、轉(zhuǎn)錄組測(cè)序和降解組測(cè)序)分析等方法,篩選到了4個(gè)與紅花草莓花瓣顏色調(diào)控相關(guān)的差異表達(dá)的miRNAs,分別為FamiR858_R-2、FamiR828a、FamiR396e和FamiR156a。FamiR156a、FamiR396e和FamiR858_R-2分別靶向FaSPL13A、FabHLH79、FaMyb308,而促進(jìn)紅花草莓花瓣中花青苷的積累;FamiR828a可能通過(guò)靶向FaMYB114抑制紅花草莓花瓣花青苷的積累。此外,已有研究表明,miR156通過(guò)靶向SPL轉(zhuǎn)錄因子正向調(diào)控花青苷的合成,SPL通過(guò)MYB-bHLH-WD40復(fù)合物負(fù)調(diào)控花青素的積累[38];miR828和miR858通過(guò)調(diào)控VvMYB114,促進(jìn)葡萄中花青苷和黃烷醇的積累[27];Xie等[39]研究發(fā)現(xiàn),在蘋果中,miR858、miR828和miR159通過(guò)與多個(gè)MYBs相互作用形成一個(gè)復(fù)雜而龐大的調(diào)控網(wǎng)絡(luò),參與蘋果生長(zhǎng)和花青苷代謝的調(diào)控,并且miR858被預(yù)測(cè)靶向蘋果中高達(dá)66個(gè)MYB轉(zhuǎn)錄因子。這些研究結(jié)果為深入解析紅花草莓花瓣呈色的分子機(jī)制奠定了一些理論基礎(chǔ)。
4 展 望
紅花草莓的主要特征是觀賞性強(qiáng)、花瓣色彩艷麗、一季或四季開(kāi)花、易于繁殖、管理簡(jiǎn)便,既可用作園林綠化,又可用作盆栽,且其果實(shí)鮮美可食用,具有很高的開(kāi)發(fā)價(jià)值。我國(guó)紅花草莓品種選育工作起步較晚,目前我國(guó)自己選育的紅花草莓品種多為一輪花瓣,且主要的繁殖方式是利用匍匐莖來(lái)進(jìn)行無(wú)性繁殖,這些與荷蘭育成的品種相比還存在較大差距?;ㄉ?、花型以及果實(shí)是影響紅花草莓品種是否優(yōu)秀的重要品質(zhì)性狀,這些直接影響到紅花草莓的觀賞價(jià)值和經(jīng)濟(jì)價(jià)值。因此,在紅花草莓育種工作中,我國(guó)要在引進(jìn)國(guó)外優(yōu)良品種的同時(shí),拓寬雜交親本的遺傳背景,開(kāi)展大量的雜交選育工作,并充分挖掘和利用我國(guó)豐富的近緣屬植物資源,運(yùn)用常規(guī)雜交育種和現(xiàn)代分子生物育種技術(shù)手段相結(jié)合,培育出一批具有我國(guó)自主知識(shí)產(chǎn)權(quán)的更優(yōu)紅花草莓新品種。同時(shí),今后應(yīng)加強(qiáng)紅花草莓的推廣、宣傳工作,以提高對(duì)賞食兼用草莓新品種的認(rèn)知度,并促進(jìn)紅花草莓更廣泛的普及。
參考文獻(xiàn) References:
[1] 薛莉,雷家軍,劉源. 紅花草莓育種研究進(jìn)展[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2012,43(10):172-176.
XUE Li,LEI Jiajun,LIU Yuan. Review on pink-flowered strawberry breeding[J]. Journal of Northeast Agricultural University,2012,43(10):172-176.
[2] SHANG Y J,VENAIL J,MACKAY S,BAILEY P C,SCHWINN K E,JAMESON P E,MARTIN C R,DAVIES K M. The molecular basis for venation patterning of pigmentation and its effect on pollinator attraction in flowers of Antirrhinum[J]. The New Phytologist,2011,189(2):602-615.
[3] WANG Y L,WANG Y Q,SONG Z Q,ZHANG H Y. Repression of MYBL2 by both microRNA858a and HY5 leads to the activation of anthocyanin biosynthetic pathway in Arabidopsis[J]. Molecular Plant,2016,9(10):1395-1405.
[4] 曹琳嬌,李曉杰,焦棒棒,梁毅,馬長(zhǎng)生. 蔬菜花青苷生物合成及轉(zhuǎn)錄調(diào)控的研究進(jìn)展[J]. 中國(guó)瓜菜,2019,32(12):1-7.
CAO Linjiao,LI Xiaojie,JIAO Bangbang,LIANG Yi,MA Changsheng. Advances in biosynthesis and transcriptional regulation of anthocyanin in vegetables[J]. China Cucurbits and Vegetables,2019,32(12):1-7.
[5] BENTVELSEN G,BOUW B. Breeding ornamental strawberries[J]. Acta Horticulturae,2006(708):455-458.
[6] NIEMIROWICZ-SZCZYTT K. The results of intergeneric pollination of Fragaria × ananassa Duch. and Fragaria virginiana Duch. by Potentilla species[J]. Acta Societatis Botanicorum Poloniae,2014,53(4):443-454.
[7] 閆玉華,代漢萍,雷家軍. 紅花草莓及其雜交育種研究[J]. 沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào),2005,36(5):612-614.
YAN Yuhua,DAI Hanping,LEI Jiajun. Study on red-flowered strawberry (Fragaria × Potentilla) and its breeding[J]. Journal of Shenyang Agricultural University,2005,36(5):612-614.
[8] MABBERLEY D. Potentilla and Fragaria (Rosaceae) reunited[J]. Telopea,2002,9(4):793-801.
[9] SAYEGH A J,HENNERTY M J. Intergeneric hybrids of Fragaria and Potentilla[J]. Acta Horticulturae,1993(348):151-154.
[10] AMBROS E,NOVIKOVA T. Productivity characteristics of F1 ornamental progenies between Fragaria × ananassa Duchesne ex Rozier. and Potentilla nepalensis Hook[J]. BIO Web of Conferences,2021,38:00003.
[11] KHANIZADEH S,DESCH?NES M,DUB? C. ‘Roseberry strawberry[J]. HortScience,2010,45(10):1545-1546.
[12] OLBRICHT K,POHLHEIM F,EPPENDORFER A,VOGT F,RIETZE E. Strawberries as balcony fruit[J]. Acta Horticulturae,2014,1049:215-218.
[13] BENTVELSEN G,VAN DER VANGE A. Advances in F1 hybrid day-neutral strawberry breeding at ABZ Seeds,Andijk,The Netherlands[J]. Acta Horticulturae,2021(1309):241-246.
[14] 雷家軍,薛莉,代漢萍,鄧明琴. 紅花草莓新品種‘粉佳人和‘俏佳人[J]. 園藝學(xué)報(bào),2015,42(3):599-600.
LEI Jiajun,XUE Li,DAI Hanping,DENG Mingqin. Two new pink-flowered strawberry cultivars ‘Pink Beauty and ‘Pretty Beauty[J]. Acta Horticulturae Sinica,2015,42(3):599-600.
[15] XUE L,LEI J J,DAI H P. Two new pink-flowered strawberry cultivars ‘Sijihong and ‘Xiaotaohong[J]. Acta Horticulturae,2017(1156):141-144.
[16] XUE L,DAI H P,LEI J J. Creating high polyploidy pink-flowered strawberries with improved cold tolerance[J]. Euphytica,2015,206(2):417-426.
[17] 王慶蓮,趙密珍,王壯偉,吳偉民,錢亞明. 紅花草莓新品種‘紫金紅[J]. 園藝學(xué)報(bào),2017,44(12):2425-2426.
WANG Qinglian,ZHAO Mizhen,WANG Zhuangwei,WU Weimin,QIAN Yaming. ‘Zijinhong,a new red-flowered strawberry cultivar[J]. Acta Horticulturae Sinica,2017,44(12):2425-2426.
[18] 王慶蓮,趙密珍,王壯偉,關(guān)玲,劉佳全,蔡偉建,夏瑾,陳志京. 紅花草莓新品種紫金粉玉的選育[J]. 果樹(shù)學(xué)報(bào),2021,38(7):1214-1216.
WANG Qinglian,ZHAO Mizhen,WANG Zhuangwei,GUAN Ling,LIU Jiaquan,CAI Weijian,XIA Jin,CHEN Zhijing. Breeding report of a new strawberry cultivar with red flower Zijin Fenyu[J]. Journal of Fruit Science,2021,38(7):1214-1216.
[19] XUE L,WANG Z G,ZHANG W,LI Y X,WANG J,LEI J J. Flower pigment inheritance and anthocyanin characterization of hybrids from pink-flowered and white-flowered strawberry[J]. Scientia Horticulturae,2016,200:143-150.
[20] 王鍵,張瑩瑩,薛莉,雷家軍. 紅花草莓雜交后代花瓣色素成分分析[J]. 東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2016,47(11):9-16.
WANG Jian,ZHANG Yingying,XUE Li,LEI Jiajun. Analysis on flower pigment components in petals of hybrid offspring of pink-flowered strawberry[J]. Journal of Northeast Agricultural University,2016,47(11):9-16.
[21] KOSAR M,KAFKAS E,PAYDAS S,BASER K H C. Phenolic composition of strawberry genotypes at different maturation stages[J]. Journal of Agricultural and Food Chemistry,2004,52(6):1586-1589.
[22] XUE L,WANG J,ZHAO J,ZHENG Y,WANG H F,WU X,XIAN C,LEI J J,ZHONG C F,ZHANG Y T. Study on cyanidin metabolism in petals of pink-flowered strawberry based on transcriptome sequencing and metabolite analysis[J]. BMC Plant Biology,2019,19(1):423.
[23] 洪燕紅,葉清華,李澤坤,王威,謝倩,陳清西,陳建清. 紅花草莓‘莓紅花瓣花色苷積累及其MYB基因的表達(dá)分析[J]. 園藝學(xué)報(bào),2021,48(8):1470-1484.
HONG Yanhong,YE Qinghua,LI Zekun,WANG Wei,XIE Qian,CHEN Qingxi,CHEN Jianqing. Accumulation of anthocyanins in red-flowered strawberry ‘Meihong petals and expression analysis of MYB gene[J]. Acta Horticulturae Sinica,2021,48(8):1470-1484.
[24] LIU J X,WANG J,WANG M Q,ZHAO J,ZHENG Y,ZHANG T,XUE L,LEI J J. Genome-wide analysis of the R2R3-MYB gene family in Fragaria × ananassa and its function identification during anthocyanins biosynthesis in pink-flowered strawberry[J]. Frontiers in Plant Science,2021,12:702160.
[25] PILLET J,YU H W,CHAMBERS A H,WHITAKER V M,F(xiàn)OLTA K M. Identification of candidate flavonoid pathway genes using transcriptome correlation network analysis in ripe strawberry (Fragaria × ananassa) fruits[J]. Journal of Experimental Botany,2015,66(15):4455-4467.
[26] SALVATIERRA A,PIMENTEL P,MOYA-LEON M A,CALIGARI P D S,HERRERA R. Comparison of transcriptional profiles of flavonoid genes and anthocyanin contents during fruit development of two botanical forms of Fragaria chiloensis ssp. chiloensis[J]. Phytochemistry,2010,71(16):1839-1847.
[27] TIRUMALAI V,SWETHA C,NAIR A,PANDIT A,SHIVAPRASAD P V. miR828 and miR858 regulate VvMYB114 to promote anthocyanin and flavonol accumulation in grapes[J]. Journal of Experimental Botany,2019,70(18):4775-4792.
[28] ZHANG B,YANG H J,YANG Y Z,ZHU Z Z,LI Y N,QU D,ZHAO Z Y. Mdm-miR828 participates in the feedback loop to regulate anthocyanin accumulation in apple peel[J]. Frontiers in Plant Science,2020,11:608109.
[29] WANG Y M,LIU W W,WANG X W,YANG R J,WU Z Y,WANG H,WANG L,HU Z B,GUO S Y,ZHANG H L,LIN J X,F(xiàn)U C X. MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar[J]. Horticulture Research,2020,7:118.
[30] HU Y J,CHENG H,ZHANG Y,ZHANG J,NIU S Q,WANG X S,LI W J,ZHANG J,YAO Y C. The MdMYB16/MdMYB1-miR7125-MdCCR module regulates the homeostasis between anthocyanin and lignin biosynthesis during light induction in apple[J]. The New Phytologist,2021,231(3):1105-1122.
[31] DONG X N,LIU C R,WANG Y Q,DONG Q,GAI Y P,JI X L. MicroRNA profiling during mulberry (Morus atropurpurea Roxb) fruit development and regulatory pathway of miR477 for anthocyanin accumulation[J]. Frontiers in Plant Science,2021,12:687364.
[32] CHEN R C,MAO L C,GUAN W L,WEI X B,HUANG Z H,WU Y Y. ABA-mediated miR5290 promotes anthocyanin biosynthesis by inhibiting the expression of FaMADS1 in postharvest strawberry fruit[J]. Postharvest Biology and Technology,2022,189:111934.
[33] LIANG Y X,GUAN Y H,WANG S X,LI Y J,ZHANG Z H,LI H. Identification and characterization of known and novel microRNAs in strawberry fruits induced by Botrytis cinerea[J]. Scientific Reports,2018,8(1):10921.
[34] XU X B,MA X Y,LEI H H,YIN L L,SHI X Q,SONG H M. MicroRNAs play an important role in the regulation of strawberry fruit senescence in low temperature[J]. Postharvest Biology and Technology,2015,108:39-47.
[35] ZHENG G H,WEI W,LI Y P,KAN L J,WANG F X,ZHANG X,LI F,LIU Z C,KANG C Y. Conserved and novel roles of miR164-CUC2 regulatory module in specifying leaf and floral organ morphology in strawberry[J]. The New Phytologist,2019,224(1):480-492.
[36] LI T Y,WANG S X,TANG X G,DONG X X,LI H. The FvemiR167b-FveARF6 module increases the number of roots and leaves in woodland strawberry[J]. Scientia Horticulturae,2022,293:110692.
[37] YUE J Y,LIU Z X,ZHAO C,ZHAO J,ZHENG Y,ZHANG H W,TAN C H,ZHANG Z T,XUE L,LEI J J. Comparative transcriptome analysis uncovers the regulatory roles of microRNAs involved in petal color change of pink-flowered strawberry[J]. Frontiers in Plant Science,2022,13:854508.
[38] GOU J Y,F(xiàn)ELIPPES F F,LIU C J,WEIGEL D,WANG J W. Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor[J]. The Plant Cell,2011,23(4):1512-1522.
[39] XIE K B,SHEN J Q,HOU X,YAO J L,LI X H,XIAO J H,XIONG L Z. Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice[J]. Plant Physiology,2012,158(3):1382-1394.