林嬌嬌 蒙慶華 吳哲鋒 常洪娟 倪淳宇 邱鄒全 李華榮 黃玉清
收稿日期:2023-07-19 接受日期:2023-11-12
基金項(xiàng)目:廣西科技基地和人才專項(xiàng)(桂科AD20238059);廣西學(xué)位與研究生教育改革項(xiàng)目(JGY2022220);廣西普通本科高校示范性現(xiàn)代產(chǎn)業(yè)學(xué)院-南寧師范大學(xué)智慧物流產(chǎn)業(yè)學(xué)院建設(shè)項(xiàng)目示范性現(xiàn)代產(chǎn)業(yè)學(xué)院(6020303891823)
作者簡(jiǎn)介:林嬌嬌,女,在讀碩士研究生,主要研究方向?yàn)榻t外高光譜成像。E-mail:615912553@qq.com
*通信作者 Author for correspondence. E-mail:mqhgx@163.com
DOI:10.13925/j.cnki.gsxb.20230269
摘? ? 要:【目的】近紅外高光譜成像技術(shù)(NIR-HSI)在水果內(nèi)部品質(zhì)的無損檢測(cè)方面具有快速、準(zhǔn)確和無損的特點(diǎn)。旨在利用NIR-HSI技術(shù)分析不同品種杧果的可溶性固形物含量,并探討400~1000 nm波段范圍內(nèi)的光譜差異和可溶性固形物含量的響應(yīng)?!痉椒ā窟x擇貴妃杧果和臺(tái)農(nóng)1號(hào)杧果作為研究對(duì)象,使用NIR-HSI技術(shù)獲取杧果樣本的光譜數(shù)據(jù)。采用CARS-PLS模型分析可溶性固形物含量與各波段光譜反射率的相關(guān)系數(shù)。為了驗(yàn)證模型的性能,計(jì)算了建模R2、斜率Slope、截距和RMSE等指標(biāo)?!窘Y(jié)果】得到CARS-PLS模型的性能指標(biāo):建模R2為0.880 6,斜率為0.851 5,截距為12.208,RMSE為0.636 6。這些指標(biāo)表明該模型具有較高的建模擬合度和預(yù)測(cè)精度。【結(jié)論】應(yīng)用NIR-HSI技術(shù)對(duì)杧果可溶性固形物含量進(jìn)行檢測(cè)具有可行性。為進(jìn)一步研究不同水果可溶性固形物含量的高精度模型奠定了基礎(chǔ)。通過NIR-HSI技術(shù)的應(yīng)用,可以提供一種非破壞性且高效準(zhǔn)確的方法,用于水果品質(zhì)評(píng)估和檢測(cè)。這對(duì)農(nóng)產(chǎn)品質(zhì)量控制和市場(chǎng)營(yíng)銷具有重要的意義。
關(guān)鍵詞:杧果;近紅外(NIR);高光譜成像(HSI);可溶性固形物含量;無損檢測(cè);光譜差異
中圖分類號(hào):S667.7 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)01-0122-11
Fruit soluble solids content non-destructive detection based on visible/near infrared hyperspectral imaging in mango
LIN Jiaojiao1, 2, MENG Qinghua1, 2*, WU Zhefeng1, 2, CHANG Hongjuan1, 2, NI Chunyu1, 2, QIU Zouquan1, 2, LI Huarong1, HUANG Yuqing3
(1School of Physics and Electronics, Nanning Normal University, Nanning 530001, Guangxi, China; 2Guangxi Key Laboratory of Information Functional Materials and Intelligent Information Processing, Nanning Normal University, Nanning 530001, Guangxi, China; 3Key Laboratory of Environmental Evolution and Resource Utilization of the Beibu Gulf, Ministry of Education & Guangxi/Key Laboratory of Earth Surface Processes and Intelligent Simulation/Nanning Normal University, Nanning 530001, Guangxi, China)
Abstract: 【Objective】 The city of Baise, located in Guangxi, China, exhibits a subtropical monsoon climate. The distinctive flavor of mangoes in this city is attributed to the unique combination of both climatic conditions and geographical environment. Baise's mango is characterized as a small core, high nutritional value and low fiber content, making it highly favored by consumers. Sugar content is an important indicator of the intrinsic quality of mangoes. With the increasing demand for mango grading and deep processing due to the improvement of peoples living standards, it is imperative to develop a simple, rapid and non-destructive technique for detecting mango brix content. However, most researchers have focused on developing detection models for single species or classes of fruits using spectrometers with low stability and weak universality that hinder the industrialization of scientific research outcomes. Therefore, this study aimed to explore the differences in brix spectra and characteristic response band ranges among different types of mangoes using NIR-HSI technology. The ultimate goal was to establish a high-precision detection model for sugar content in various fruits with Guifei mango and Tainong No. 1 mango serving as research objects. 【Methods】 The hyperspectral image data were acquired using a hyperspectral imaging system. A total of 327 bands of hyperspectral images were obtained in the spectral range between 400-1000 nm for this experiment. The digital refractometer that we used was a portable digital refractometer PAL-1 from ATAGO, Japan. Measurements were taken three times independently, and the average value was calculated as the reference value for soluble solids in mango samples. After opening the original spectral image with ENVI software and extracting the original spectral data within a pixel square 10×10, the average spectral data of each region were manually selected and extracted. Subsequently, MATLAB R2018b software was employed to perform spectral data modeling and original segmentation of the image data. The multiple scattering correction (MSC) algorithm was chosen to effectively reduce random noise in the spectral data, with its noise reduction effect being influenced by the number of smoothing points utilized. Therefore, MSC preprocessing was applied to process the spectral data accordingly. To model different types of mango brix values along with their corresponding spectral reflectance as training data, we employed the KS algorithm. The remaining brix values and their corresponding spectral reflectance were treated as test data. The PLS model can be utilized to select a smaller set of new variables that replaced a larger set without losing crucial spectral information. This addressed challenges posed by overlapping bands in spectroscopy analysis. 【Results】 The analysis of the spectral curves of different mango varieties showed that there were consistent overall trends among them. Notably, absorption peaks occurred at approximately 509, 680, 857 and 963 nm wavelengths. In the red light region (680-750 nm), reflectance showed a distinct increasing trend with a steep slope formation. Thus, the characteristic wavebands for mango pulp can be identified as the range of 680-750 nm and specific bands at 509, 550, 680, 857 and 963 nm. Within the range of 500-750 nm, Tainong No. 1 mango exhibited significantly higher spectral reflectance compared to Guifei mango. Moreover, both fruits displayed steep slope formations in their spectral curves when sugar levels were similar; however, these slopes occurred at different positions. Specifically, Tainong No. 1 mango's steep slope was observed around wavelengths of 500-640 nm while Guifei mangos occurred around wavelengths of 680-750 nm. Both varieties exhibited absorption peaks near wavelengths of approximately 680 and 857 nm, while similar trends were displayed in spectral reflectance within the range of 750-1000 nm. The response of spectral reflectance to sugar content varied widely among different mango varieties; nevertheless, a strong correlation existed within the red light range (600-700 nm) for all varieties. It was found that precise determination of characteristic wavelengths corresponding to chemical information in mangos remained challenging, which may impact model accuracy. Therefore, this issue needs to be addressed in future studies to enhance accurate prediction models for determining mango saccharinity. Combined with the spectral reflectance data of different mango varieties, we can analyze the effect of their respective band ranges on sugar content. The peak response was observed at about 670 nm with a correlation coefficient of 0.837, indicating the highest spectral sensitivity. Notably, the CARS-PLS prediction model exhibited superior accuracy and reliability in predicting mango brix levels. The regression analysis revealed an ideal correlation between measured and predicted values, represented by the equation y=0.851 5x+12.208 (R2=0.880 6). This relationship was further supported by a slope of 0.851 5, an intercept of 12.208, and RMSECV=0.636 6. The PLS model constructed using wavelengths with high correlation coefficients between brix and spectral reflectance in each band gave better results in predicting mango brix. 【Conclusion】 Both the calibration set and the prediction set showed that the predicted values were very close to the corresponding actual values. The results showed that it was feasible to apply hyperspectral imaging technology to detect mango brix. This study successfully employed NIR-HSI technology to analyze the differences in spectral and characteristic response bands of mangoes with varying sugar contents. The developed high-precision detection model demonstrated promising results in predicting mango brix. These findings have validated the feasibility of employing hyperspectral imaging technology for mango brix detection, with great potential applications in mango grading and processing. Further research is warranted to enhance accurate saccharinity prediction by precisely identifying characteristic wavelengths associated with chemical information in mangoes.
Key words: Mango; Near-infrared (NIR); Hyperspectral imaging (HSI); Soluble solids content; Nondestructive testing; Spectral difference
中國(guó)廣西百色盛產(chǎn)杧果,杧果品種豐富、肉質(zhì)嫩滑、營(yíng)養(yǎng)價(jià)值高,深受人們喜愛。可溶性固形物含量是評(píng)價(jià)杧果內(nèi)部品質(zhì)的重要指標(biāo)[1-2],可確定杧果的收獲時(shí)間。傳統(tǒng)的水果內(nèi)部品質(zhì)檢測(cè)方法為化學(xué)分析方法[3],它是將待測(cè)水果用組織粉碎機(jī)粉碎,榨汁過濾后測(cè)定。這種破壞水果樣品外觀的化學(xué)分析檢測(cè)方法,過程費(fèi)時(shí)費(fèi)力且效率低下,無法實(shí)現(xiàn)實(shí)時(shí)在線檢測(cè)。隨著成像和光譜技術(shù)的快速發(fā)展,近紅外高光譜成像技術(shù)(NIR-HSI)已經(jīng)廣泛應(yīng)用于農(nóng)產(chǎn)品品質(zhì)的快速無損檢測(cè)[4]。NIR-HSI正越來越多地與果實(shí)分選系統(tǒng)、成熟度監(jiān)測(cè)和貯藏果實(shí)成熟度水平的決策相結(jié)合[5]。隨著人們生活水平的日益提高,對(duì)杧果分級(jí)和精深加工的要求也越來越高,因此研究一種簡(jiǎn)單、快速、非破壞性的杧果可溶性固形物含量檢測(cè)技術(shù)很有必要[6]。
國(guó)內(nèi)外進(jìn)行了水果無損檢測(cè)研究,其中研究者通過高光譜成像技術(shù)開展了多項(xiàng)探索。高升等[7]研究了紅提的可溶性固形物含量和硬度的無損檢測(cè)方法,發(fā)現(xiàn)基于隨機(jī)森林(RF)建立的模型在預(yù)測(cè)可溶性固形物含量和硬度方面效果較好。特別是針對(duì)可溶性固形物含量,他們采用遺傳算法(GA)優(yōu)化的隨機(jī)森林模型,取得了高度準(zhǔn)確的預(yù)測(cè)結(jié)果。Yuan等[8]針對(duì)桃果實(shí)的可溶性固形物含量提出了一種融合共識(shí)模型的策略,旨在克服遺傳算法在模型優(yōu)化中的不確定性,最大限度地利用光譜信息來實(shí)現(xiàn)快速檢測(cè)。此外,Seki等[9]開發(fā)了一種可視化白草莓果肉中糖含量的方法,為未來設(shè)計(jì)非接觸式質(zhì)量監(jiān)測(cè)系統(tǒng)提供了重要見解。Gao等[10]對(duì)海棠果的可溶性固形物含量和硬度指數(shù)進(jìn)行了研究,利用近紅外高光譜成像結(jié)合化學(xué)計(jì)量學(xué)建立了多種模型,以提高無損檢測(cè)效率,結(jié)果顯示這種方法用于海棠果的質(zhì)量評(píng)估是可行的。最后,Riccioli等[11]應(yīng)用HSI技術(shù)對(duì)橙的質(zhì)量屬性進(jìn)行量化,找到了最佳分類策略,以獲得質(zhì)量屬性的空間分布信息。這些研究強(qiáng)調(diào)了高光譜成像技術(shù)在水果無損檢測(cè)中的潛力,以及通過不同方法和模型的應(yīng)用,可以實(shí)現(xiàn)對(duì)水果內(nèi)部質(zhì)量的準(zhǔn)確和高效檢測(cè),這為農(nóng)產(chǎn)品質(zhì)量控制和市場(chǎng)監(jiān)測(cè)提供了重要的工具和方法。
然而,大多數(shù)研究者利用光譜儀檢測(cè)果類品質(zhì)、可溶性固形物含量、酸度等時(shí),研究單一品種或單一類水果的檢測(cè)模型其穩(wěn)定性低、普適性弱,不能較好地實(shí)現(xiàn)科研成果產(chǎn)業(yè)化的發(fā)展。在對(duì)NIR-HSI光譜數(shù)據(jù)進(jìn)行建模處理的過程中,需要識(shí)別潛在的峰,以避免共線性問題,然后使用從這些相應(yīng)的峰中提取的信息來校準(zhǔn)模型[12],提高模型準(zhǔn)確性。因此筆者在本研究中以貴妃杧果和臺(tái)農(nóng)1號(hào)杧果為研究對(duì)象,利用NIR-HSI技術(shù),研究不同品種杧果不同可溶性固形物含量光譜差異及特征響應(yīng)波段范圍,為建立不同水果可溶性固形物含量高精度檢測(cè)模型奠定基礎(chǔ)。
1 材料和方法
1.1 杧果樣本
實(shí)驗(yàn)所用樣本果實(shí)采摘于廣西壯族自治區(qū)百色市田陽區(qū)正義杧果園,果實(shí)大小均勻,無病蟲害、機(jī)械傷和破損。為了實(shí)現(xiàn)NIR-HSI技術(shù)對(duì)杧果可溶性固形物含量的無損檢測(cè),對(duì)杧果樣本進(jìn)行標(biāo)號(hào),臺(tái)農(nóng)1號(hào)杧果y1~y150,貴妃杧果g1~g134,常溫靜置24 h后進(jìn)行高光譜圖像的獲取,然后進(jìn)行質(zhì)量屬性檢測(cè),主要針對(duì)杧果的可溶性固形物含量進(jìn)行檢測(cè)。
1.2 高光譜圖像獲取
高光譜圖像數(shù)據(jù)通過高光譜成像系統(tǒng)采集得到,高光譜成像系統(tǒng)由美國(guó)的Headwall Micro-Hyperspec VNIR A高光譜成像儀、一個(gè)300 W的鹵素?zé)艉鸵粋€(gè)可移動(dòng)云臺(tái)組成,如圖1所示。試驗(yàn)采集得到光譜范圍是400~1000 nm,獲取的高光譜圖像共327個(gè)波段。圖像3-d數(shù)據(jù)立方體由高光譜系統(tǒng)測(cè)量,包括樣本的光譜(x,y)和空間(x,y)信息。為了減少暗電流噪聲的影響,并降低高光譜成像系統(tǒng)的光照在圖像中產(chǎn)生一定的噪聲,在樣本采集前需要對(duì)高光譜圖像進(jìn)行黑白校正。使用標(biāo)準(zhǔn)白板掃描得到的白色參考像Iwhite和無光照覆蓋鏡頭得到的黑色參考像Idark進(jìn)行校正。從理論上講,校正后的圖像R由原始的高光譜圖像I根據(jù)以下公式進(jìn)行變換:
[R/%=I-IdarkIwhite-Idark]×100。
1.3 提取光譜和圖像數(shù)據(jù)
在杧果頂部、中部、底部標(biāo)記區(qū)域作為杧果可溶性固形物含量測(cè)試部位,每個(gè)杧果正反各掃描一次。運(yùn)用ENVI的感興趣區(qū)域提取功能,提取可溶性固形物含量測(cè)量區(qū)域的平均光譜,將此平均光譜與其對(duì)應(yīng)的可溶性固形物含量建立對(duì)應(yīng)關(guān)系。在提取和保存相應(yīng)的光譜信息和圖像信息后,使用MATLAB R2018b軟件執(zhí)行光譜數(shù)據(jù)建模和圖像數(shù)據(jù)原始分割。由于光譜數(shù)據(jù)容易受到光線、噪音、基線漂移等因素的干擾,因此需要對(duì)原始數(shù)據(jù)進(jìn)行預(yù)處理[13]。多重散射校正(MSC)算法可以有效消減光譜數(shù)據(jù)中的隨機(jī)噪聲,消噪效果受平滑點(diǎn)數(shù)的影響[14],本文中選擇 MSC預(yù)處理對(duì)光譜數(shù)據(jù)進(jìn)行處理。
1.4 杧果可溶性固形物含量測(cè)量
采集完所有樣本的光譜圖像信息后,當(dāng)天進(jìn)行并完成杧果可溶性固形物含量測(cè)定。將杧果頂部、中部、底部標(biāo)記區(qū)域的果皮削掉,取出適量果肉壓汁,隨后用數(shù)字折射計(jì)測(cè)定可溶性固形物含量,讀出該樣本的可溶性固形物含量理化值示數(shù)。每個(gè)樣本以3次平行測(cè)定結(jié)果的算術(shù)平均值作為該杧果樣本的可溶性固形物含量參考值。數(shù)字折射儀是由日本ATAGO公司生產(chǎn)的便攜式數(shù)顯折射計(jì)PAL-1,也稱為數(shù)顯可溶性固形物計(jì),測(cè)量范圍是0.0%~53.0%。
1.5 建模與檢驗(yàn)數(shù)據(jù)
原始數(shù)據(jù)集包含134個(gè)貴妃杧果樣本和150個(gè)臺(tái)農(nóng)1號(hào)杧果樣本,通過KS算法分別劃分為兩個(gè)獨(dú)立數(shù)據(jù)集:貴妃杧果校正集由101個(gè)樣本組成,預(yù)測(cè)集覆蓋剩余的33個(gè)樣本見表1;臺(tái)農(nóng)1號(hào)杧果校正集由113個(gè)樣本組成,預(yù)測(cè)集覆蓋剩余的37個(gè)樣本見表2。表1、表2分別顯示不同品種杧果校正集和預(yù)測(cè)集的質(zhì)量屬性的最小值、最大值、平均值、標(biāo)準(zhǔn)差(s)以及變異系數(shù)(CV)。
共獲取了134個(gè)貴妃杧果樣本和150個(gè)臺(tái)農(nóng)1號(hào)杧果樣本的可溶性固形物含量值(分別在杧果的頂部、中部、底部3個(gè)位置取樣),以及其對(duì)應(yīng)區(qū)域的平均光譜反射率。采用KS算法對(duì)不同種類的杧果可溶性固形物含量值及其光譜反射率作為建模數(shù)據(jù),其余可溶性固形物含量值及對(duì)應(yīng)的光譜反射率作為檢驗(yàn)數(shù)據(jù)。筆者在本研究中采用PLS模型[15],可以在不丟失主要光譜信息的前提下選擇為數(shù)較少的新變量來代替原來較多的變量,解決了由于譜帶的重疊而無法分析的問題。PLS回歸揭示了光譜變量(X)與樣本性質(zhì)(Y)[16]之間的線性關(guān)系,得到的模型可表示為:
Y=bX+e。
式中,b和e分別為回歸系數(shù)和預(yù)測(cè)誤差。PLS建模效果由相關(guān)系數(shù)(R2)和均方根誤差(RMSE)評(píng)估,R2和RMSE分別表示實(shí)際值和可溶性固形物含量的預(yù)測(cè)值之間的相關(guān)性和偏差。通常,良好的模型具有高R2值和低RMSE值[17]。
2 結(jié)果與分析
2.1 貴妃杧果不同可溶性固形物含量的光譜分析
貴妃杧果原始光譜數(shù)據(jù)在400~1000 nm范圍的平均光譜反射率曲線如圖2曲線(A)所示。結(jié)果表明,所有樣品均表現(xiàn)出相似的光譜曲線趨勢(shì),不同可溶性固形物含量在540~630 nm和750~900 nm區(qū)間差異明顯,540~630 nm的光譜反射率隨著可溶性固形物含量升高呈降低的趨勢(shì),750~900 nm的光譜反射率隨著可溶性固形物含量升高呈升高的趨勢(shì)。貴妃杧果在550、857 nm附近出現(xiàn)小峰值,這是由貴妃杧果的有機(jī)分子中含O-H基團(tuán)振動(dòng)的合頻、各級(jí)倍頻的吸收作用引起的;在509、680、963 nm左右處出現(xiàn)較寬的吸收帶,509 nm處與類胡蘿卜素的存在有關(guān);680 nm左右的低反射率表明該區(qū)域的高吸光度,吸收紅色的色素,主要原因是葉綠素的存在使果實(shí)具有特有的綠色[18];在680 nm處的峰值之后,反射率急劇上升,這與杧果含有番茄紅素有關(guān);963 nm可能與水和碳水化合物的變化或組織結(jié)構(gòu)的變化引起的散射有關(guān)[19];在940~947 nm處為可溶性固形物含量的吸收峰,該波段為C-H基團(tuán)的三級(jí)倍頻特征吸收峰[20];970~980 nm出現(xiàn)的吸收峰主要與杧果的含水量有關(guān),該波段為O-H基團(tuán)的二級(jí)倍頻特征吸收峰[18]。
2.2 臺(tái)農(nóng)1號(hào)杧果不同可溶性固形物含量的光譜分析
臺(tái)農(nóng)1號(hào)杧果原始光譜數(shù)據(jù)在400~1000 nm范圍的平均光譜反射率曲線如圖2曲線(B)所示。結(jié)果表明,所有樣品均表現(xiàn)出相似的光譜曲線趨勢(shì),500~640 nm紅黃光區(qū)域反射率呈直線上升,這與杧果表皮顏色有關(guān)。由曲線看出,不同可溶性固形物含量在600~750 nm區(qū)間差異明顯,600~700 nm的光譜反射率隨著可溶性固形物含量升高呈降低的趨勢(shì)。680 nm周圍的吸收帶同貴妃杧果相似,反映了花青素和葉綠素引起的果實(shí)顏色的變化;光譜在720~960 nm之間無明顯吸收峰,在857 nm處有較小吸收峰,963 nm處有明顯吸收峰,這是由貴妃杧果的碳水化合物和水中含O-H基團(tuán)振動(dòng)的合頻、各級(jí)倍頻的吸收作用引起的[21]。
2.3 可溶性固形物含量相近時(shí)不同品種杧果的光譜曲線分析
杧果品種不同,但其光譜曲線吸收峰位置大致相近,在509、680、857、963 nm等4個(gè)波長(zhǎng)附近有4個(gè)吸收峰,如圖3所示。兩個(gè)品種杧果在400~500 nm范圍內(nèi),光譜曲線無明顯變化,但在500~750 nm范圍內(nèi),光譜曲線差異顯著,是由于臺(tái)農(nóng)1號(hào)杧果果實(shí)呈黃色,葉綠素含量較少,對(duì)紅色色素的吸收率相對(duì)較少,因此在680 nm左右光譜反射率高于貴妃杧果,反映了花青素和葉綠素引起的果實(shí)顏色的變化;在500~640 nm范圍內(nèi)臺(tái)農(nóng)1號(hào)杧果光譜反射率直線上升,形成陡坡,而貴妃杧果光譜反射率趨于平穩(wěn);在750~1000 nm范圍內(nèi),兩個(gè)品種的杧果光譜曲線變化趨勢(shì)相似。
2.4 水果可溶性固形物含量與光譜反射率的相關(guān)性分析及模型構(gòu)建
杧果光譜反射率對(duì)可溶性固形物含量的響應(yīng)差異較大,如圖4所示。對(duì)臺(tái)農(nóng)1號(hào)杧果而言,在400~920 nm范圍內(nèi),其光譜反射率與可溶性固形物含量呈正相關(guān);700 nm左右光譜反射率急劇下降,在725~920 nm平緩下降至0,其中920 nm處為零界點(diǎn),即與可溶性固形物含量相關(guān)性為0;在920~1000 nm范圍內(nèi),其光譜反射率與可溶性固形物含量呈負(fù)相關(guān)。在509、675、963 nm附近,臺(tái)農(nóng)1號(hào)杧果光譜反射率與可溶性固形物含量形成3個(gè)峰值,因此,509、675、963 nm可作為臺(tái)農(nóng)1號(hào)杧果對(duì)可溶性固形物含量的3個(gè)特征響應(yīng)波段。從圖4可知,對(duì)于貴妃杧果而言,光譜反射率與可溶性固形物含量在400~736 nm范圍內(nèi)呈正相關(guān),在455 nm附近出現(xiàn)1個(gè)谷值,該谷值為0.2,即相關(guān)系數(shù)為0.2;700 nm左右光譜反射率急劇下降,在736 nm處為零界點(diǎn),即與可溶性固形物含量相關(guān)性為0;在550~675 nm范圍內(nèi),貴妃杧果的光譜反射率與可溶性固形物含量相關(guān)性較為穩(wěn)定,相關(guān)系數(shù)保持在0.7左右;貴妃杧果在736~1000 nm范圍內(nèi),其光譜反射率與可溶性固形物含量呈負(fù)相關(guān)。圖中顯示臺(tái)農(nóng)1號(hào)杧果與貴妃杧果的可溶性固形物含量與各波段的光譜反射率相關(guān)系數(shù)較高的集中在550~700 nm,其中相關(guān)系數(shù)最高的是670 nm左右處,其相關(guān)系數(shù)為 0.837。并且在700 nm左右處,臺(tái)農(nóng)1號(hào)杧果與貴妃杧果反射率都呈現(xiàn)急劇下降至0趨勢(shì)。
2.4.1 基于CARS特征波長(zhǎng)選擇的PLS模型 用CARS進(jìn)行特征波長(zhǎng)選擇,選擇最小RMSECV的運(yùn)行最佳。特征光譜變量的數(shù)量隨著采樣次數(shù)的增加先迅速下降然后平緩減少(圖5-A)。說明CARS有“粗選”和“精選”2個(gè)選擇方式,極大地提高了變量選擇效率。隨著采樣次數(shù)的增加,RMSECV呈先緩慢減小后陡然增大的趨勢(shì)(圖5-B)。這是因?yàn)橄藷o信息變量,然后有效變量的數(shù)量迅速增加。特征光譜變量隨著采樣次數(shù)變化的回歸系數(shù)路徑如圖5-C。當(dāng)圖5-B中RMSECV值達(dá)到最小值時(shí),各特征光譜變量的回歸系數(shù)位于圖5-C中的“*”所在的垂直線位置。RMSECV=0.636 6為最低時(shí),提取出16個(gè)特征光譜變量,占全波段的4.9%。提取的特征光譜為:431、509、596、698、709、807、809、824、851、857、863、900、952、963、989、991 nm。
2.4.2 基于GA提取特征波長(zhǎng)選擇的PLS模型 在GA運(yùn)算過程中,設(shè)定初始群體為30,交叉率為50%,變異率為1%,迭代次數(shù)為100。以最小的RMSECV值為標(biāo)準(zhǔn),RMSECV變化圖如圖6-A所示。篩選出波長(zhǎng)點(diǎn)在迭代過程中出現(xiàn)頻次較多的波長(zhǎng)點(diǎn)為最優(yōu)波長(zhǎng)點(diǎn),最終選定特征波長(zhǎng)點(diǎn)為38個(gè),如圖6-B所示,占原始光譜的11.6%。提出的特征波長(zhǎng)如下:507、509、510、512、514、588、590、592、597、599、601、603、605、607、620、788、807、809、818、857、859、861、863、864、866、868、903、905、907、909、911、913、963、985、987、989、997、992 nm。
2.4.3 基于UVE提取特征波長(zhǎng)選擇的PLS模型 在UVE算法中,以噪聲矩陣處最大穩(wěn)定性絕對(duì)值的99%作為剔除閾值。如圖7所示,左側(cè)曲線代表光譜變量的穩(wěn)定性值,右側(cè)曲線代表噪聲變量的穩(wěn)定性值,兩水平虛線為變量的選擇閾值(±28.74)。虛線內(nèi)部為無用信息,外部為有用信息。最終選取了36個(gè)特征波長(zhǎng),占原始光譜的11.0%。提出的特征波長(zhǎng)為:416、421、433、460、492、531、533、592、594、597、618、622、625、627、629、635、646、648、649、657、661、664、666、668、670、679、685、794、826、837、857、950、956、963、966、992 nm。
由3種特征波長(zhǎng)提取方法提取的特征波長(zhǎng)可以看出,其中包括可溶性固形物含量與各波段的光譜反射率相關(guān)系數(shù)較高的波長(zhǎng)(509、550、680、857、963 nm)。由此得出由葉綠素、花青素、碳水化合物和O-H對(duì)應(yīng)特征波段建模,模型的準(zhǔn)確率更高,進(jìn)而區(qū)分不同品種杧果以及對(duì)杧果可溶性固形物含量進(jìn)行預(yù)測(cè)。其中用準(zhǔn)確性和可靠性最高的是CARS-PLS預(yù)測(cè)模型,可視化可溶性固形物含量實(shí)測(cè)值和預(yù)測(cè)值分布的散點(diǎn)圖如圖8所示,實(shí)線為實(shí)測(cè)值與預(yù)測(cè)值之間理想相關(guān)性對(duì)應(yīng)的回歸線y=0.851 5x+12.208,決定系數(shù)R2為0.880 6,斜率Slope為0.851 5、截距為12.208,RMSECV為0.636 6。結(jié)果表明,由可溶性固形物含量與各波段的光譜反射率相關(guān)系數(shù)較高的波長(zhǎng)構(gòu)建的PLS模型對(duì)杧果可溶性固形物含量的預(yù)測(cè)具有較好的效果,無論是校正集還是預(yù)測(cè)集,預(yù)測(cè)值都最接近相應(yīng)的實(shí)際值。
3 討 論
在這項(xiàng)研究中,筆者深入研究了不同品種杧果可溶性固形物含量與杧果光譜反射率的對(duì)應(yīng)關(guān)系。隨著生活水平的提高,消費(fèi)者對(duì)準(zhǔn)確分級(jí)和加工的杧果的需求持續(xù)激增,開發(fā)一種簡(jiǎn)單、快速和非破壞性的技術(shù)來評(píng)估杧果糖度水平變得勢(shì)在必行。
筆者的方法涉及高光譜成像的利用,這有助于獲取覆蓋400~1000 nm光譜范圍內(nèi)327個(gè)波段的詳細(xì)光譜數(shù)據(jù)。杧果樣品中可溶性固形物含量的參考值是通過便攜式數(shù)字折光儀(ATAGO,日本)經(jīng)過三次單獨(dú)測(cè)量獲得的,以平均值作為可溶性固形物含量的參考值。使用ENVI軟件打開原始光譜圖像后,筆者手動(dòng)從10×10像素的正方形區(qū)域中選擇并提取平均光譜數(shù)據(jù)。隨后采用MATLAB R2018b軟件進(jìn)行光譜數(shù)據(jù)預(yù)處理,具體采用多重散射校正(MSC)算法,有效降低隨機(jī)噪聲。選擇K均值聚類(KS)算法來模擬杧果可溶性固形物含量值及其光譜反射率。剩余的可溶性固形物含量值和相應(yīng)的光譜反射率作為測(cè)試數(shù)據(jù)。此外,筆者利用偏最小二乘(PLS)建模的力量,使筆者能夠提取必要的光譜信息,同時(shí)降低原始數(shù)據(jù)的維度。
經(jīng)過光譜分析,筆者發(fā)現(xiàn)杧果皮細(xì)胞表現(xiàn)出更致密的結(jié)構(gòu),導(dǎo)致對(duì)可見光譜的吸收更強(qiáng)。值得注意的是,509 nm和680 nm附近的吸收峰分別與花青素和葉綠素有關(guān),這使得它們對(duì)評(píng)估果實(shí)成熟度很有價(jià)值。筆者的發(fā)現(xiàn)與Cen等[22]的研究一致,他們也確定了與花青素和葉綠素相關(guān)的525 nm和675 nm左右的吸收水平,為評(píng)估水果成熟度提供了可行性。隨著杧果成熟,其綠色果皮顏色逐漸褪色,導(dǎo)致525 nm處的吸收系數(shù)增大,675 nm處的吸收系數(shù)減小。雖然筆者的研究沒有深入研究杧果果肉組織的吸收和散射系數(shù),但筆者利用了CARS特征波長(zhǎng)提取方法。這使筆者能夠構(gòu)建基于特征波長(zhǎng)帶的PLS模型,從而為杧果可溶性固形物含量預(yù)測(cè)帶來有希望的結(jié)果。此外,筆者的結(jié)果與Wilson等[23]的結(jié)果相似,他們證明近紅外區(qū)域比可見光區(qū)域包含更多與CH和OH基團(tuán)相關(guān)的共振信息。在筆者的研究中,在963 nm處觀察到明顯的吸收峰,這是由于碳水化合物和水中OH基團(tuán)振動(dòng)的組合頻率吸收。
通過分析不同杧果品種的光譜曲線,筆者發(fā)現(xiàn)這些曲線表現(xiàn)出相似的總體趨勢(shì)。值得注意的是,509、680、857和963 nm附近的吸收峰始終存在,其中680~750 nm范圍顯示反射率呈上升趨勢(shì),形成明顯的斜率。因此,680~750 nm波段范圍以及509、550、680、857和963 nm五個(gè)波段被確定為杧果果肉的特征波段。特別重要的是,與貴妃杧果相比,臺(tái)農(nóng)1號(hào)杧果在500~750 nm范圍內(nèi)表現(xiàn)出明顯更高的光譜反射率。此外,盡管波長(zhǎng)范圍不同,但這兩個(gè)杧果品種都顯示出陡峭的斜坡結(jié)構(gòu)。在600~700 nm紅光范圍內(nèi)所有品種的光譜反射率與可溶性固形物含量呈顯著相關(guān)。
然而,精確確定杧果中的化學(xué)信息相對(duì)應(yīng)的特征波長(zhǎng)仍然是一個(gè)挑戰(zhàn),可能會(huì)影響模型的準(zhǔn)確性。未來的研究工作應(yīng)該致力于解決這個(gè)問題,從而進(jìn)一步提高杧果可溶性固形物含量預(yù)測(cè)的精度??傊?,筆者的研究強(qiáng)調(diào)了杧果果實(shí)可溶性固形物含量及其光譜特征。通過高光譜成像獲得的研究結(jié)果有望更準(zhǔn)確地評(píng)估杧果質(zhì)量和成熟度,并在杧果分級(jí)和加工方面具有潛在應(yīng)用價(jià)值。
4 結(jié) 論
綜合不同品種的杧果光譜反射率,分析其可溶性固形物含量的響應(yīng)波段范圍。研究表明,波段響應(yīng)最高的是670 nm左右處,其相關(guān)系數(shù)為0.837,利用可溶性固形物含量與各波段光譜反射率的相關(guān)系數(shù)高低對(duì)CARS-PLS建模進(jìn)行檢驗(yàn),其建模R2為0.880 6、斜率Slope為0.851 5、截距為12.208、RMSE為0.636 6,取得較好的效果。研究結(jié)果表明,應(yīng)用高光譜成像技術(shù)檢測(cè)杧果可溶性固形物含量具有可行性。
參考文獻(xiàn) References:
[1] GAO Q,WANG P,NIU T,HE D J,WANG M L,YANG H J,ZHAO X Q. Soluble solid content and firmness index assessment and maturity discrimination of Malus micromalus Makino based on near-infrared hyperspectral imaging[J]. Food Chemistry,2022,370:131013.
[2] 曹霞,周學(xué)成,范品良. 基于近紅外漫反射光譜技術(shù)的杧果糖度無損檢測(cè)方法研究[J]. 農(nóng)機(jī)化研究,2013,35(1):177-180.
CAO Xia,ZHOU Xuecheng,F(xiàn)AN Pinliang. Nondestructive detection on predicting sugar content of mango by near-infrared diffuse reflectance[J]. Journal of Agricultural Mechanization Research,2013,35(1):177-180.
[3] WEINGERL V,UNUK T. Chemical and fruit skin colour markers for simple quality control of tomato fruits[J]. Croatian Journal of Food Science and Technology,2015,7(2):76-85.
[4] 張保華,李江波,樊書祥,黃文倩,張馳,王慶艷,肖廣東. 高光譜成像技術(shù)在果蔬品質(zhì)與安全無損檢測(cè)中的原理及應(yīng)用[J]. 光譜學(xué)與光譜分析,2014,34(10):2743-2751.
ZHANG Baohua,LI Jiangbo,F(xiàn)AN Shuxiang,HUANG Wenqian,ZHANG Chi,WANG Qingyan,XIAO Guangdong. Principles and applications of hyperspectral imaging technique in quality and safety inspection of fruits and vegetables[J]. Spectroscopy and Spectral Analysis,2014,34(10):2743-2751.
[5] WALSH K B,MCGLONE V A,HAN D H. The uses of near infra-red spectroscopy in postharvest decision support:A review[J]. Postharvest Biology and Technology,2020,163:111139.
[6] 何馥嫻,蒙慶華,唐柳,黃新,盧旭恒,王瑞揚(yáng),張克智,李鈺. 高光譜成像技術(shù)在水果品質(zhì)檢測(cè)中的研究進(jìn)展[J]. 果樹學(xué)報(bào),2021,38(9):1590-1599.
HE Fuxian,MENG Qinghua,TANG Liu,HUANG Xin,LU Xuheng,WANG Ruiyang,ZHANG Kezhi,LI Yu. Research progress in hyperspectral imaging technology for fruit quality detection[J]. Journal of Fruit Science,2021,38(9):1590-1599.
[7] 高升,王巧華,付丹丹,李慶旭. 紅提糖度和硬度的高光譜成像無損檢測(cè)[J]. 光學(xué)學(xué)報(bào),2019,39(10):355-364.
GAO Sheng,WANG Qiaohua,F(xiàn)U Dandan,LI Qingxu. Nondestructive detection of sugar content and firmness of red globe grape by hyperspectral imaging[J]. Acta Optica Sinica,2019,39(10):355-364.
[8] YUAN L M,YOU L F,YANG X F,CHEN X J,HUANG G Z,CHEN X,SHI W,SUN Y Y. Consensual regression of soluble solids content in peach by near infrared spectrocopy[J]. Foods,2022,11(8):1095.
[9] SEKI H,MA T,MURAKAMI H,TSUCHIKAWA S,INAGAKI T. Visualization of sugar content distribution of white strawberry by near-infrared hyperspectral imaging[J]. Foods,2023,12(5):931.
[10] GAO Q,WANG P,NIU T,HE D J,WANG M L,YANG H J,ZHAO X Q. Soluble solid content and firmness index assessment and maturity discrimination of Malus micromalus Makino based on near-infrared hyperspectral imaging[J]. Food Chemistry,2022,370:131013.
[11] RICCIOLI C,P?REZ-MAR?N D,GARRIDO-VARO A. Optimizing spatial data reduction in hyperspectral imaging for the prediction of quality parameters in intact oranges[J]. Postharvest Biology and Technology,2021,176:111504.
[12] SAEYS W,DO TRONG N N,VAN BEERS R,NICOLA? B M. Multivariate calibration of spectroscopic sensors for postharvest quality evaluation:A review[J]. Postharvest Biology and Technology,2019,158:110981.
[13] MISHRA P,KARAMI A,NORDON A,RUTLEDGE D N,ROGER J M. Automatic de-noising of close-range hyperspectral images with a wavelength-specific shearlet-based image noise reduction method[J]. Sensors and Actuators B:Chemical,2019,281:1034-1044.
[14] HELLAND I S,NAES T,ISAKSSON T. Related versions of the multiplicative scatter correction method for preprocessing spectroscopic data[J]. Chemometrics and Intelligent Laboratory Systems,1995,29(2):233-241.
[15] GELADI P,KOWALSKI B R. Partial least-squares regression:A tutorial[J]. Analytica Chimica Acta,1986,185:1-17.
[16] LIU D,SUN D W,ZENG X A. Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry[J]. Food and Bioprocess Technology,2014,7(2):307-323.
[17] RYCKEWAERT M,H?RAN D,F(xiàn)EILHES C,PREZMAN F,SERRANO E,COURAND A,MAS-GARCIA S,METZ M,BENDOULA R. Dataset containing spectral data from hyperspectral imaging and sugar content measurements of grapes berries in various maturity stage[J]. Data in Brief,2023,46:108822.
[18] PU H B,LIU D,WANG L,SUN D W. Soluble solids content and pH prediction and maturity discrimination of lychee fruits using visible and near infrared hyperspectral imaging[J]. Food Analytical Methods,2016,9(1):235-244.
[19] FENG Y Z,SUN D W. Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets[J]. Talanta,2013,109:74-83.
[20] WU D,WANG S J,WANG N F,NIE P C,HE Y,SUN D W,YAO J S. Application of time series hyperspectral imaging (TS-HSI) for determining water distribution within beef and spectral kinetic analysis during dehydration[J]. Food and Bioprocess Technology,2013,6(11):2943-2958.
[21] MISHRA P,WOLTERING E,BROUWER B,ECHTELT E H V. Improving moisture and soluble solids content prediction in pear fruit using near-infrared spectroscopy with variable selection and model updating approach[J]. Postharvest Biology and Technology,2021,171:111348.
[22] CEN H Y,LU R F,MENDOZA F,BEAUDRY R M. Relationship of the optical absorption and scattering properties with mechanical and structural properties of apple tissue[J]. Postharvest Biology and Technology,2013,85:30-38.
[23] WILSON R H,NADEAU K P,JAWORSKI F B,TROMBERG B J,DURKIN A J. Review of short-wave infrared spectroscopy and imaging methods for biological tissue characterization[J]. Journal of Biomedical Optics,2015,20(3):030901.