摘要:微裂縫在不同程度上提高了灰?guī)r地層孔隙的滲透性。為了厘清回注過程中微裂縫不同發(fā)育情況對鉆屑廢棄物回注能力的影響機制,確保鉆屑回注安全實施,首先采用X射線CT(計算機斷層攝影)掃描某氣田采集到的灰?guī)r巖心進行數(shù)字重構(gòu),得到其基質(zhì)模型,研究廢棄物顆粒在孔隙中的運移和沉積機制;然后基于數(shù)值算法構(gòu)建裂縫基質(zhì)模型,引入裂縫連通系數(shù)與裂縫走向因子定量表征裂縫的連通性和走向,揭示裂縫開度對回注地層滲透率以及廢棄物回注能力的影響。結(jié)果表明:隨著裂縫走向因子增大,橫向迂曲度呈減小趨勢,減小幅度最大為35.21%,縱向迂曲度呈增大趨勢,增大幅度最大為21.59%;f(裂縫連通系數(shù))越大,裂縫基質(zhì)模型越容易出現(xiàn)優(yōu)勢通道效應(f≥0.7時尤為顯著),滲透率和顆粒逃逸率也越大,其中,
在裂縫開度為80 μm時,
滲透率相比基質(zhì)模型增大了0.671 3 μm2,顆粒逃逸率
相比基質(zhì)模型增大了15.06%。
關(guān)鍵詞:鉆屑;回注;灰?guī)r;微裂縫;連通性;走向;漿液滲流;基質(zhì)模型
doi:10.13278/j.cnki.jjuese.20230013
中圖分類號:X741
文獻標志碼:A
Supported by the National Natural Science Foundation of China (41702340), the Science and Technology Cooperation Project of PetroChina-Southwest Petroleum University Innovation Consortium (2020CX020000) ,the Science and Technology Plan Project of Sichuan Province (2024NSFSC0103),the Key Research and Development Program of Science and Technology Plan of Sichuan Province (2022YFS0447),the National Science and Technology Major Project (2017ZX05013006002) and the Open Fund
of Ecological Security and Protection Key Laboratory of Sichuan Province
(Mianyang Normal University) (ESP1406)
Influence of Micro Fractures on the Reinjection Capacity of Solid Waste in Limestone Stratum
Wei Debao1,Ji Youjun1, 2, 3, Wang Zegen1,Jiang Guobin4
1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
2. Oil amp; Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu 610500, China
3. Ecological Security and Protection Key Laboratory of" Sichuan Province (Mianyang Normal University), Mianyang "621000, Sichuan, China
4." Institute of Safety and Environmental Protection Technology Supervision, Southwest Oil and Gas Field Branch, China Petroleum, "Chengdu 610095, China
Abstract: Microcracks have increased the permeability of pores in limestone formations to varying degrees. In order to clarify the impact mechanism of different development of microcracks on the ability of drilling waste to be reinjected during the reinjection process and ensure the safe implementation of drilling waste reinjection, firstly, X ray CT (computed tomography) scanning was used to digitally reconstruct the limestone core collected from a certain gas field to obtain its matrix model, and the migration and sedimentation mechanism of waste particles in the pores were studied. Then, based on numerical algorithms, a fracture-matrix model is constructed, and the fracture connectivity coefficient and fracture orientation factor are introduced to quantitatively characterize the connectivity and orientation of fractures, and to reveal the influence of fracture opening on the permeability of reinjected formations and the ability of waste reinjection. The results have shown that as the crack direction factor increases, the lateral tortuosity shows a decreasing trend, with a maximum decrease of 35.21%, while the longitudinal tortuosity shows an increasing trend, with a maximum increase of 21.59%. The larger f (fracture connectivity coefficient), the more likely the fracture matrix model is to exhibit dominant channel effects (especially significant when f≥0.7), and the higher the permeability and particle escape rate. Compared with the matrix model, the permeability increases by 0.671 3" μm2, and the particle escape rate increases by 15.06%.
Key words: drilling cuttings; reinjection;limestone;microfracture; connectivity; strike; slurry seepage; matrix model
0 引言
近年來,隨著頁巖氣以及海洋油氣的大力開發(fā),油基鉆屑等廢棄物的產(chǎn)生量急劇增加。油基鉆屑成分復雜[1],這些物質(zhì)不僅難以通過微生物自然降解,還會對人體以及環(huán)境產(chǎn)生極大的危害[2]。與其他廢棄物處理技術(shù)相比[3],鉆屑回注技術(shù)的主要優(yōu)點在于廢棄物零排放、廢棄物處理量大,并且成本較低[4]。目前在許多大型油田,尤其是海上油田,鉆屑回注技術(shù)的應用十分廣泛[5]。
鉆屑回注技術(shù)是先將固體碎屑通過研磨、剪切、篩選等方法處理成細小顆粒,與水(海水)或者化學藥劑混合配置成穩(wěn)定的漿體,使鉆屑達到回注要求,再通過回注井將漿體注到地層中[6]。經(jīng)過多年發(fā)展,鉆屑回注技術(shù)已經(jīng)成為一項公認經(jīng)濟且有效的廢棄物處理技術(shù)。相比于其他發(fā)達國家,我國的廢棄物處理技術(shù)雖然起步較晚,但是發(fā)展較快[7],且已經(jīng)取得一些成果。如我國中海油公司與美國康菲石油公司于2002年首次在蓬萊193油田應用鉆屑回注技術(shù),實現(xiàn)了鉆屑無害化處理[8]。
灰?guī)r地層除了含有基質(zhì)孔隙外,還存在大量微裂縫,這在不同程度上影響了巖石物性[912],使得在孔隙度相同的情況下巖石滲透性差異增大。此外,鉆屑回注施工是以較高的壓力將漿液注入到地層中,該過程中會產(chǎn)生大量裂縫[1314]。因此,厘清裂縫對灰?guī)r地層注漿能力的影響機制尤為重要。
巖石微裂縫通常采用巖石薄片和掃描電鏡等技術(shù)識別[15],但鏡下觀測結(jié)果難以對裂縫形成整體的認知。隨著X射線CT(計算機斷層攝影)掃描技術(shù)與數(shù)字巖心技術(shù)的發(fā)展,其可以直觀展示巖石中裂縫形態(tài),但如何定量地評價裂縫性質(zhì)依舊是難題。由于巖石中裂縫傾角不同,難以使用統(tǒng)一的傾角來評價裂縫的整體走向[16]。通常采用裂縫上的平均交點數(shù)[15]或者裂縫連通部分密度占總裂縫密度的比例[17]來定義裂縫連通性,但局部的密集型裂縫不能合理反映滲透率變化[18]。所以目前尚缺乏可以定量表征裂縫性質(zhì)的有效手段。
本文通過CT技術(shù)獲取某氣田提取到的灰?guī)r巖心參數(shù),并通過圖像處理軟件構(gòu)建二維基質(zhì)模型,引入裂縫連通系數(shù)與裂縫走向因子,通過數(shù)值模擬技術(shù)定量分析裂縫對灰?guī)r地層注漿能力的影響。
1 巖石孔隙結(jié)構(gòu)表征及裂縫評價
1.1 回注地層篩選與巖心重構(gòu)
目前國內(nèi)外針對鉆屑回注技術(shù)回注地層的篩選標準[19]主要有以下幾個方面: 1)為了回注過程的安全實施,應當避開產(chǎn)層和易泄露的地層; 2)優(yōu)選厚層以及水平延伸較好的地層; 3)回注層要有良好的蓋層,阻止裂縫在垂直方向上拓展; 4)回注層要有比較小的破裂壓力,以達到節(jié)約成本的目的。
研究區(qū)主要由東西向的走滑斷裂和南北向的斜轉(zhuǎn)斷裂控制,呈現(xiàn)東高西低的構(gòu)造趨勢。沉積層主要由新生代和中生代地層組成,地層巖性主要為泥巖和灰?guī)r。鉆井資料顯示該地層發(fā)育三套灰?guī)r回注層,其中底部灰?guī)r地層(-2 092.9~-2 060.9 m)滲透性最好,因此選取底部灰?guī)r地層作為回注層。對該層位標準巖心樣品(圖1)進行切割,制備CT樣品。研究區(qū)上覆泥巖層滲透率較低(≤0.000 1 μm2),能有效阻止灌注漿液上竄;回注層屬于孤立的單井縫洞型圈閉,其構(gòu)造位置與同層其他井無連通關(guān)系;地層發(fā)育溶洞,溶洞直徑一般為2~5 mm,騰空體積大,具有較大的灌注空間,符合回注條件?;?guī)r地層中大量發(fā)育形態(tài)復雜的微裂縫,包括構(gòu)造縫、粒間縫、層間縫以及溶蝕縫等,提取到的灰?guī)r巖心絕大多數(shù)微裂縫開度為5.0~500.0 μm,平均裂縫開度為63.4 μm。以上與王敉邦 [20]的認識接近。
將提取到的巖心(圖1)進行濾波處理、二值化處理與圖像分割[21],得到孔隙度、孔隙大小和位置等數(shù)值[22],以此為基礎(chǔ)采用隨機模擬生成符合該井區(qū)喉道結(jié)構(gòu)特征的基質(zhì)模型。重構(gòu)后的基質(zhì)模型長為5.4 cm,寬為4.8 cm,孔隙度為35.76%(圖2),屬于中—高孔隙度。模型中孔隙直徑100~200 μm占比最大,達到46.10%,此外,有7.78%的孔隙直徑大于400 μm(表1),孔隙發(fā)育良好,有利于鉆屑懸浮液運移。
1.2 不規(guī)則裂縫走向評價
孔隙滲流能力與相互連通的孔隙和裂縫有關(guān),而裂縫可以有效連接孤立孔隙,增加漿液滲流通道,進一步提高滲透率。將裂縫簡化為直線,并采用數(shù)值算法隨機插入6條長度為18 mm的線段,構(gòu)建裂縫基質(zhì)模型,允許裂縫相交(圖3)。
裂縫走向因子A[23]定義為
A=wywx=(∑Ni=1wi,y)/(∑Ni=1wi,x)。(1)
式中:wx和wy分別為裂縫在x和y方向上的投影長度之和;wi,x為第i條裂縫在x方向上的投影長度;wi,y為第i條裂縫在y方向上的投影長度;N為裂縫數(shù)量,本文N=6。
裂縫走向不同,A值結(jié)果不同。當
wy>wx時,A<1,反之,A>1。圖3中,A值由0.709 6(圖3a)增大至1.650 0(圖3b)過程中,裂縫由傾向x方向向傾向y方向變化,即隨著A值增大,裂縫整體向y軸方向傾斜。因此可以采用裂縫走向因子定量表征裂縫整體走向。
1.3 不規(guī)則裂縫連通性評價
裂縫可直接連通或者通過基質(zhì)孔隙連通形成新的流動通道。將裂縫與基質(zhì)孔隙相連通的最大投影長度之和(Lf,max)與基質(zhì)模型長度(L)的比值定義為裂縫的連通系數(shù)(f),通過f來表征裂縫產(chǎn)生的滲流通道作用(式(2)),f的計算示意圖見圖4。f取值范圍為0~1,f越接近1,裂縫基質(zhì)模型連通性越好[24]。
f=Lf,maxL=Lf1+Lf2+…+LfnL" 。(2)
式中,Lfn為第n條裂縫的投影長度。
2 漿液微裂縫滲流數(shù)學模型
鉆屑懸浮液成分復雜,回注地層也不盡相同,難以通過一種流變模型描述其流變性。目前鉆井作業(yè)最常用的有賓漢流體和冪律流體,此外還有較為復雜的Herschel-Bulkley(HB)模型和卡森模型等。其中:賓漢流體適用于高黏土含量的鉆井液,如水基鉆井液;冪律流體適用于高分子化合物鉆井液;HB模型與卡森模型相對更為精準,但模型參數(shù)計算復雜。本文回注漿液為高分子化合物流體,其流變特性可以采用冪律模型來表述。
冪律流體流變方程[25]為
τ=cγα。(3)
式中:τ為剪切應力(Pa);c為黏稠系數(shù)(Pa·S);γ為剪切速率(s-1);α為流變指數(shù)。
冪律流體在微裂縫中的流動滿足質(zhì)量守恒方程。由圖5可知冪律流體流動沿y方向有一個壓降[26],因此,
yΔp+τdl=0。(4)
則剪切應力滿足
τ=ydpdx。(5)
將冪律方程代入式(5),可得
dpdxy=cuxα。(6)
式中,u為流速。
由于在裂隙表面流體流速為0,即在邊界條件u=0、y=b的情況下聯(lián)立式(5)與式(6),并利用分離變量積分法可得冪律流體在微裂縫中的流速方程[27]:
u=αα+1y1α+11cdpdx1α-
α1+α1cdpdx1αb2α+1α 。(7)
對式(7)進行積分可得微裂縫內(nèi)流體平均流速u-為
u-=b1α+11/α+21cdpdx1α。(8)
因此某時刻漿液單位流量q[28]為
q=u-·2b·2πr=4πrb1α+21/α+21cdpdx1α" 。(9)
式中,r為漿液擴散半徑。
3 結(jié)果及分析
3.1 數(shù)值模型構(gòu)建
基于回注層巖心微裂縫開度、數(shù)量、長度等參數(shù),將微裂縫開度分別設(shè)置為50和80 μm,采用數(shù)值算法各隨機生成15個裂縫基質(zhì)模型?;刈{液參數(shù)采用Shadizadeh等[29]的實驗參數(shù)(表2)。裂縫基質(zhì)模型采用非結(jié)構(gòu)化網(wǎng)格對模型進行網(wǎng)格劃分,網(wǎng)格尺寸經(jīng)過無關(guān)性驗證。模型上下邊界及顆粒表面均設(shè)為無滑移壁面邊界條件。流體流動方式為層流(雷諾數(shù)Re較小),忽略流動過程中的黏性消耗。
3.2 漿液遷移和沉積機制
圖6為模型內(nèi)不同時刻顆粒相體積分數(shù)變化。0~0.20 s是鉆屑顆粒在流體的裹挾作用下向出口端滲流,顆粒相優(yōu)先向流體流速較大的通道內(nèi)運移(圖6a—c);0.28 s時,部分顆粒由于流動通道變化而與孔壁發(fā)生碰撞,最終在孔隙下側(cè)沉積(圖6d);0.34 s時,后續(xù)注入量增大,顆粒在上側(cè)孔隙喉道處發(fā)生多次碰撞造成顆粒沉積(圖6e);1.00 s時,孔隙下側(cè)在0.28 s產(chǎn)生的顆粒沉積量逐漸減?。▓D6f),說明此處顆粒形成的是暫態(tài)堵塞[30],而上側(cè)喉道處0.34 s形成的喉道顆粒沉積隨著時間增大沉積量不斷加大,后續(xù)顆粒在此處不斷積聚,易導致孔隙堵塞,致使流動通道減少。經(jīng)過計算得到基質(zhì)模型滲透率為0.127 1 μm2,顆粒逃逸率為80.16%。
呈現(xiàn)遞減趨勢,壓降均產(chǎn)生于孔隙喉道處,而壓降大小反映了流體的流動阻力;因此流體在流經(jīng)喉道時阻力增大,形成速度極值(圖7b),對顆粒遷移進行擾動,并隨著喉道直徑減小,流速極大值增大。
3.3 裂縫發(fā)育情況對孔隙度的影響
裂縫可以有效連接孤立孔隙,達到增大孔隙度的目的。圖8為不同裂縫開度下,裂縫基質(zhì)模型孔隙度與裂縫走向因子和裂縫連通性的關(guān)系。當裂縫開度為50 μm時,裂縫走向因子為0.399 6~2.740 0,裂縫連通系數(shù)為0.355 1~0.920 9,裂縫基質(zhì)模型的連通孔隙度為36.03%~40.74%;當裂縫開度為80 μm時,模型裂縫走向因子為0.494 0~2.120 0,裂縫連通系數(shù)為0.452 6~0.915 4,連通孔隙度為36.01%~40.51%。兩種情況下R2(R為擬合相關(guān)系數(shù))均低于0.600 0(表3),即裂縫走向因子和裂縫連通性與裂縫基質(zhì)模型孔隙度無明顯相關(guān)性。
3.4 裂縫走向因子對迂曲度的影響
迂曲度大小可以表征孔隙流動通道的迂回曲折程度,是影響孔隙滲透率的重要參數(shù)。本研究中迂曲度采用Muljadi等[31]提出的方法通過孔隙內(nèi)流速計算:
Tj=uuj。(10)
式中:Tj為j方向上的迂曲度;u為速度分量;j為x(橫向)和y(縱向)方向。
裂縫走向因子與Tx、Ty呈現(xiàn)較好的相關(guān)性,R2均大于0.860 0(表4)。由圖9可知:裂縫走向因子增大時,Tx呈減小趨勢,Ty呈增大趨勢。當裂縫開度為50 μm,且裂縫走向因子從0.399 6增至2.740 0時:Tx從2.076減小到1.345,減小幅度為35.21%;Ty從1.180增大至1.505,增大幅度達21.59%。當裂縫開度為80 μm,且裂縫走向因子從0.494 0增至2.120 0時:Tx從1.897減小至1.351,減小幅度為28.78%;Ty從1.190增大至1.466,增大幅度達18.83%。裂縫基質(zhì)模型的Tx與Ty均低于基質(zhì)模型的Tx(2.121)與Ty (1.563),即微裂縫在不同程度上減小了孔隙迂曲度。
3.5 裂縫連通系數(shù)對滲透率的影響
圖10為顆粒流速矢量圖?;|(zhì)模型流動通道復雜,孔隙喉道對顆粒產(chǎn)生攔截作用,導致部分顆粒滯留下來(圖10a);當裂縫連通系數(shù)為0.452 6時(圖10b),裂縫形成的滲流通道無明顯優(yōu)勢通道效應,對其余通道流量占比影響較??;當裂縫連通系數(shù)為0.731 2和0.915 4時(圖10c、d),裂縫產(chǎn)生的滲流通道具有明顯的優(yōu)勢流動通道效應,其余通道顆粒流量占比大幅減少,且裂縫開度較大,顆粒更容易在水流的攜帶作用下通過孔隙。因此,裂縫連通系數(shù)越大,裂縫基質(zhì)模型越容易產(chǎn)生優(yōu)勢通道效應(f≥0.7時尤為顯著)。
滲透率的大小表示孔隙允許漿液通過的能力,是回注工程應用中非常重要的參數(shù)。當流體通過孔隙流速較低或者雷諾數(shù)較?。≧e<1)時,經(jīng)典的達西定律被廣泛應用于孔隙內(nèi)流體的流動問題。本研究中的滲透率k計算公式[32]為
k=q-vLΔp。 (11)
式中:q-為通過孔隙的平均流量;v為運動黏度;L為孔隙長度。
由表5可知,裂縫連通系數(shù)與滲透率呈良好的正相關(guān)性,R2分別為0.885 0和0.809 5。由圖11可知:當裂縫開度為50 μm,裂縫連通系數(shù)從0.355 1增至0.920 9時,裂縫基質(zhì)模型滲透率
從0.145 3 μm2增至
0.553 9μm2,增大了0.408 6 μm2,相比于基質(zhì)模型的滲透率增大了0.426 8 μm2;當裂縫開度為80 μm,裂縫連通系數(shù)從0.452 6增至0.915 4時,裂縫基質(zhì)模型滲透率
從0.298 4 μm2增至
0.798 4 μm2,增大了0.509 0 μm2,相比于基質(zhì)模型滲透率增大了0.671 3 μm2。可見,隨著裂縫連通系數(shù)增大,裂縫基質(zhì)模型滲透率顯著增大。
3.6 微裂縫開度對回注能力的影響
鉆屑回注過程中顆粒的沉積作用往往會引起孔隙堵塞,因此采用顆粒逃逸率ηe來量化鉆屑在孔隙中的回注能力,即
ηe=memt。(12)
式中:me為逃逸的顆粒總質(zhì)量;mt為注入的顆??傎|(zhì)量。
由表6可知,裂縫連通系數(shù)與顆粒逃逸率有較為良好的正相關(guān)性,R2分別為0.810 0 和0.732 5。由圖12可知:當裂縫開度為50 μm,且裂縫連通系數(shù)從0.355 1增至0.920 9時,裂縫基質(zhì)模型顆粒逃逸率
從81.01%增加,
最大為90.36%,增大了9.35%,相比于基質(zhì)模型增大了10.20%,僅有6.67%的裂縫基質(zhì)模型顆粒逃逸率高于90.00%;當裂縫開度為80 μm且裂縫連通系數(shù)從0.452 6增至0.915 4時,裂縫基質(zhì)模型顆粒逃逸率從83.31%增加,最大為95.22%,增大了11.91%,相比于基質(zhì)模型增大了15.06%,其中33.3%的裂縫基質(zhì)模型顆粒逃逸率高于90.00%。說明隨著裂縫連通系數(shù)增大,顆粒逃逸率增大,即回注能力增加。
4 結(jié)論
1)裂縫走向因子與裂縫連通系數(shù)可以定量表征裂縫的整體走向和連通程度。隨著裂縫走向因子增大,裂縫整體向y軸傾斜;裂縫連通系數(shù)越大,裂縫基質(zhì)模型連通性越好。
2)隨著裂縫走向因子增大,裂縫基質(zhì)模型橫向迂曲度顯著減小,縱向迂曲度呈增大趨勢,且其迂曲度與裂縫走向因子R2均大于0.860 0。
3)隨著裂縫連通系數(shù)增大,裂縫基質(zhì)模型易出現(xiàn)優(yōu)勢通道效應;裂縫連通系數(shù)增大可以顯著提高滲透率和回注能力,且其滲透率和顆粒逃逸率與裂縫連通系數(shù)的R2均大于0.732 5。
參考文獻(References):
[1] Darajah M H, Karundeng I, Setiati R, et al. Drilling""" Waste Management Using Zero Discharge Technology with Drill Cutting Re-Injection (DCRI) Method for Environmental Preservation[C]//IOP Conference Series: Earth and Environmental Science. Hangzhou: IOP Publishing, 2021, 802(1): 012046.
[2] Ripa M, Fiorentino G, Vacca V, et al. The Relevance of Site-Specific Data in Life Cycle Assessment (LCA): The Case of the Municipal Solid Waste Management in the Metropolitan City of Naples (Italy)[J]. Journal of Cleaner Production, 2017, 142: 445460.
[3] Santos J M, Júnior Petri I,Silva Mota A C, et al. Optimization of the Batch Decontamination Process of Drill Cuttings by Microwave Heating[J]. Journal of Petroleum Science amp; Engineering, 2018, 163:S0920410518300032.
[4] 商輝, 翟云娟, 汪天也, 等. 含油鉆屑處理技術(shù)的研究進展[J]. 武漢工程大學學報, 2018, 40(5): 473478.
Shang Hui, Zhai Yunjuan, Wang Tianye, et al. Progress in Treatment of Oil-Contaminated Drill Cuttings[J]. Journal of Wuhan Institute of Technology,2018,40(5):473478.
[5] 蔣振偉," 李寶軍," 張建斌.厄瓜多爾Tambococha油田巖屑回注技術(shù)分析與應用[J].鉆采工藝,2019,42(3):2730.
Jiang Zhenwei, Li Baojun, Zhang Jianbin. Analysis and Application of Cuttings Reinjection Technology in Tambococha Oilfield, Ecuador[J]. Drilling and Production Technology, 2019, 42 (3) : 2730.
[6] 江華杉, 彭景,向啟貴,等.含油巖屑深層回注實驗環(huán)境風險監(jiān)控[J]. 廣東化工, 2021, 48(15):156157.
Jiang Huashan, Peng Jing, Xiang Qigui, et al. Environmental Risk Monitoring of Oil-Bearing Cuttings Deep Reinjection Experiment[J]. Guangdong Chemical Industry, 2021, 48 (15):156157.
[7] 嚴忠,文建勛,王委.厄瓜多爾ITT區(qū)塊巖屑回注技術(shù)[J].復雜油氣藏,2021,14(1):102106.
Yan Zhong, Wen Jianxun, Wang Wei. Cuttings Reinjection Technology in ITT Block, Ecuador[J]. Complex Hydrocarbon Reservoirs, 2021,14(1):102106.
[8] 李斌,耿鐵,張貴磊,等.巖屑回注技術(shù)及其在我國海洋油氣田應用前景展望[J]. 海洋工程裝備與技術(shù), 2019, 6(增刊1):349354.
Li Bin, Geng Tie, Zhang Guilei, et al.Cutting Reinjection Technology and Its Prospective Applications in Offshore Oilfields of China[J]. Marine Engineering Equipment and Technology, 2019, 6 (Sup.1):349354.
[9] 亢佳樂, 盧全中, 占潔偉, 等.隱伏地裂縫破裂擴展物理模型試驗邊界效應[J].吉林大學學報(地球科學版), 2022, 52(3):941954.
Kang Jiale, Lu Quanzhong, Zhan Jiewei, et al. Boundary Effect of Physical Model Tests on Rupture Propagation of Buried Ground Fissures[J]. Journal of Jilin University (Earth Science Edition), 2022, 52(3):941954.
[10] 鄧志穎, 范祥, 何忠明, 等. L形邊裂隙單圓孔砂巖單軸壓縮力學特性[J]. 吉林大學學報(地球科學版), 2023, 53(2): 541554.
Deng Zhiying, Fan Xiang, He Zhongming, et al. Uniaxial Compressive Mechanical Properties of Sandstone with Single Circular Hole and LShaped Side Fissures[J]. Journal of Jilin University (Earth Science Edition), 2023, 53(2): 541554.
[11] 孟振江, 彭建兵, 李超, 等. 耦合型地裂縫活動特征與成因機制模擬研究:以北京宋莊地裂縫為例[J]. 水文地質(zhì)工程地質(zhì),2023,50(3): 138148.
Meng Zhenjiang, Peng Jianbing, Li Chao, et al. A Simulation Study of the Activity Characteristics and Genetic Mechanism of Coupled Ground Fissures: Exemplified by the Songzhuang Ground Fissure in Beijing[J]. Hydrogeology amp; Engineering Geology, 2023, 50(3): 138148.
[12] 王晗, 鄧亞虹, 慕煥東, 等. 西安典型地裂縫場地地脈動測試及地震響應特征分析[J]. 中國地質(zhì)災害與防治學報, 2022, 33(4): 5564.
Wang Han, Deng Yahong, Mu Huandong, et al. Ground Pulsation Tests and Analysis on Seismic Response of Typical Ground Fissure Sites in Xi’an[J]. The Chinese Journal of Geological Hazard and Control, 2022, 33(4): 5564.
[13] Geng T, Lin B, Zhang S, et al. Numerical Simulation Study of Oil-Based Cuttings Re-Injection Induced Fractures[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(6):062081.
[14] Yamamoto K, Koyama T. Geometry of the Fracture for Cuttings Reinjection Operation and Solid Concentration: A Numerical Study[C] // Gulf Rocks 2004, the 6th North America Rock Mechanics Symposium (NARMS). Houston:[s.n.], 2004.
[15] 李瑋,孫文峰,唐鵬,等.基于拓撲結(jié)構(gòu)的巖石裂縫網(wǎng)絡表征方法[J].天然氣工業(yè),2017,37(6): 2227.
Li Wei, Sun Wenfeng, Tang Peng, et al. A Method for Rock Fracture Network Characterization Based on Topological Structure[J]. Natural Gas Industry, 2017,37(6):2227.
[16] 王蓓,劉向君,司馬立強.四川盆地磨溪地區(qū)寒武系龍王廟組縫洞型儲集層分級評價及預測[J].石油勘探與開發(fā),2019,46(2):290301.
Wang Bei, Liu Xiangjun, Sima Liqiang. Grading Evaluation and Prediction of Fracture-Cavity Reservoirs in Cambrian Longwangmiao Formation of Moxi Area, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(2): 290301.
[17] Zhou C, Li K, Pang X. Effect of Crack Density and Connectivity on the Permeability of Microcracked Solids[J]. Mechanics of Materials, 2011,43(12): 969978.
[18] 李樂,李克非.含隨機裂紋網(wǎng)絡孔隙材料滲透率的逾滲模型研究[J].物理學報,2015,64(13): 136402.
Li Le, Li Kefei. Permeability of Cracked Porous Solids Through Percolation Approach[J]. Acta Physica Sinica, 2015, 64(13): 136402.
[19] 周錦程,李超,任培罡,等.基于層次分析法的巖屑回注層篩選決策研究[J].中國石油和化工標準與質(zhì)量,2020,40(14):115116.
Zhou Jincheng, Li Chao, Ren Peigang, et al. Research on Selection Decision of Rock Cutting Reinjection Layer Based on Analytic Hierarchy Process[J]. China Petroleum and Chemical Standards and Quality, 2020,40 (14) : 115116.
[20] 王敉邦.南海LH111礁灰?guī)r油藏高含水期增產(chǎn)措施優(yōu)化研究[D].北京:中國石油大學(北京),2017.
Wang Mibang. Optimization of Stimulation Measures for LH111 Reef Limestone Reservoir in the South China Sea at High Water Cut Stage[D]. Beijing : China University of Petroleum (Beijing), 2017.
[21] 孟祥曦.基于CT成像煤體孔隙結(jié)構(gòu)模型重建及滲流模擬研究[D].阜新:遼寧工程技術(shù)大學,2019.
Meng Xiangxi. Research on Reconstruction of Coal Pore Structure Model and Seepage Simulation Based on CT Imaging [D]. Fuxin : Liaoning University of Engineering and Technology, 2019.
[22] 王平全,陶鵬,劉建儀,等.基于數(shù)字巖心的低滲透儲層微觀滲流機理研究[J].非常規(guī)油氣,2016,3(6):15.
Wang Pingquan, Tao Peng, Liu Jianyi, et al. Microscopic Seepage Mechanism of Low Permeability Reservoir Based on Digital Core[J]. Unconventional Oil and Gas, 2016,3 (6): 15.
[23] Wang Z, Jin X, Wang X, et al. Pore-Scale Geometry Effects on Gas Permeability in Shale[J]. Journal of Natural Gas Science and Engineering, 2016,34: 948957.
[24] 李滔,李騫,胡勇,等.不規(guī)則微裂縫網(wǎng)絡定量表征及其對多孔介質(zhì)滲流能力的影響[J].石油勘探與開發(fā),2021,48(2):368378.
Li Tao, Li Qian, Hu Yong, et al. Quantitative Characterization of Irregular Micro-Fracture Network and Its Effect on the Permeability of Porous Media[J]. Petroleum Exploration and Development, 2021, 48(2): 368378.
[25] 楊志全,盧杰,王淵,等.考慮多孔介質(zhì)迂回曲折效應的冪律流體柱形滲透注漿機制[J].巖石力學與工程學報, 2021, 40(2): 410418.
Yang Zhiquan, Lu Jie, Wang Yuan, et al. Column Penetration Grouting Mechanism for Power-Law Fluids Considering Tortuosity Effect of Porous Media[J]. Journal of Rock Mechanics and Engineering, 2021, 40 (2) : 410418.
[26] 張凱文.微裂隙注漿漿液滲流特性試驗研究[D].徐州:中國礦業(yè)大學,2019.
Zhang Kaiwen. Experimental Study on Seepage Characteristics of Micro-Fracture Grouting Slurry[D]. Xuzhou: China University of Mining and Technology, 2019.
[27] 王東亮,郝兵元,梁曉敏.基于流固耦合的單一裂隙漿液擴散規(guī)律研究[J].采礦與巖層控制工程學報, 2021, 3(1):104112.
Wang Dongliang, Hao Bingyuan, Liang Xiaomin. Slurry Diffusion of Single Fracture Based on Fluid-Solid Coupling[J]. Journal of Mining and Strata Control Engineering, 2021, 3 (1) : 104112.
[28] 王東亮,郝兵元,梁曉敏.不同流型漿液在裂隙內(nèi)擴散規(guī)律的理論與數(shù)值分析[J].中南大學學報(自然科學版),2021,52(10):37603770.
Wang Dongliang, Hao Bingyuan, Liang Xiaomin. Theoretical and Numerical Analysis of Slurry Diffusion with Different Flow Patterns in Fracture[J]. Journal of Central South University (Science and Technology), 2021, 52(10): 37603770.
[29] Shadizadeh S R, Majidaie S, Zoveidavianpoor M. Investigation of Drill Cuttings Reinjection: Environmental Management in Iranian Ahwaz Oilfield[J]. Petroleum Science and Technology, 2011, 29(11):10931103.
[30] 陳佳代. 滲流作用下多孔介質(zhì)內(nèi)顆粒遷移堵塞規(guī)律的試驗研究[D].杭州:浙江大學,2021.
Chen Jiadai. Experimental Study on the Law of Particle Migration and Blockage in Porous Media Under Seepage [D]. Hangzhou: Zhejiang University, 2021.
[31] Muljadi B P, Blunt M J, Raeini A Q, et al. TheImpact of Porous Media Heterogeneity on Non-Darcy Flow Behaviour from Pore-Scale Simulation[J]. Advances in Water Resources, 2016, 95: 329340.
[32] 周鴻翔,鄭延豐,吳勞生,等.孔隙尺度多孔介質(zhì)流體流動與溶質(zhì)運移高性能模擬[J].水科學進展,2020,31(3):422432.
Zhou Hongxiang, Zheng Yanfeng, Wu Laosheng, et al.Pore-Scale Simulations of Fluid Flow and Solute Transport in Porous Media by High-Performance Lattice Boltzmann Method[J]. Water Science Progress, 2020,31 (3) : 422432.