国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

張廣才嶺北部早侏羅世花崗巖年代學(xué)、地球化學(xué)特征及其地質(zhì)意義

2024-01-01 00:00:00于躍江趙忠海李新鵬馬麗玲
關(guān)鍵詞:侏羅世鋯石花崗巖

摘要:為探討張廣才嶺北部構(gòu)造格架及其演變,對(duì)張廣才嶺北部二長(zhǎng)花崗巖、正長(zhǎng)花崗巖及堿長(zhǎng)花崗巖進(jìn)行LAMCICPMS鋯石UPb年代學(xué)、巖石學(xué)、巖石地球化學(xué)等方面的研究,確定了其形成時(shí)代及巖石成因。研究結(jié)果表明:2件二長(zhǎng)花崗巖、1件正長(zhǎng)花崗巖及1件堿長(zhǎng)花崗巖樣品的鋯石UPb年齡分別為(191.4 ±1.1)、(202.6 ±1.0)、(190.8 ±1.5)、和(198.1±1.0)Ma,總體年齡介于202~190 Ma之間,時(shí)代為早侏羅世;二長(zhǎng)花崗巖、正長(zhǎng)花崗巖和堿長(zhǎng)花崗巖總體屬于低鋁質(zhì),以高鉀鈣堿性系列為主,顯示富集Rb、Ba、K等大離子親石元素和輕稀土元素,虧損Nb、P、Ti等高場(chǎng)強(qiáng)元素和重稀土元素;二長(zhǎng)花崗巖、正長(zhǎng)花崗巖和堿長(zhǎng)花崗巖顯示出I型花崗巖特征。結(jié)合區(qū)域?qū)Ρ燃熬C合研究,初步認(rèn)為張廣才嶺北部早侏羅世花崗巖的構(gòu)造環(huán)境為古太平洋板塊向歐亞大陸俯沖形成的活動(dòng)大陸邊緣環(huán)境。

關(guān)鍵詞:二長(zhǎng)花崗巖;正長(zhǎng)花崗巖;堿性花崗巖;鋯石UPb年齡;巖石學(xué);地球化學(xué);張廣才嶺北部

doi:10.13278/j.cnki.jjuese.20230177

中圖分類號(hào):P59;P588.1

文獻(xiàn)標(biāo)志碼:A

Supported by the Natural Science Foundation of Liaoning Province(2020BS258) and the Geological Exploration in Heilongjiang Province(DZKCGY2018003)

Geochronology, Geochemistry and Geological Significance of Early Jurassic Granites in Nothern Zhangguangcai Mountains

Yu Yuejiang1, Zhao Zhonghai2, Li Xinpeng1, Ma Liling1

1. Heilongjiang Institute of Natural Resources Survey, Harbin 150036, China

2. College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning, China

Abstract: In order to discuss the tectonic framework and evolution of the Northern Zhangguangcai Mountains, LAMCICPMS zircon UPb chronology, petrology, and petrogeochemistry studies were conducted on monzonitic granite, syenite granite and alkali-feldspar granite in this area. The zircon UPb ages of two monzonitic granites, one syenite granite, and one alkali feldspar granite are (191.4±1.1)Ma, (202.6±1.0)Ma, (190.8±1.5)Ma, and (198.1±1.0)Ma, respectively, in Early Jurassic. These granites are mainly classified as low aluminous, high potassium, and calc-alkaline series, have enrichment of large ion lithophile elements and lightly rare earth elements, like Rb, Ba, K, etc., whlie have depletion of high field strength elements and heavy rare earth elements, such as Nb, P, Ti, etc.. They exhibit characteristics of I-type granite, indicative of an active continental margin environment resulting from Paleo-Pacific plate subduction to Eurasia.

Key words: monzogranite;syenogranite;alkalifeldspar granite;zircon UPb age;petrogeochemistry;geochemistry;Nothern Zhangguangcai Mountains

0 引言

東北地區(qū)位于中亞造山帶的東段,古生代經(jīng)歷了古亞洲洋構(gòu)造體系的演化[17],主要表現(xiàn)為多個(gè)微陸塊之間的拼合及古生代晚期—中生代早期古亞洲洋的最終閉合[817]。在中生代,東北地區(qū)疊加了環(huán)太平洋構(gòu)造體系及蒙古—鄂霍茨克構(gòu)造體系的改造[1820]。前人已經(jīng)對(duì)東北地區(qū)中生代花崗巖做了大量的年代學(xué)與地球化學(xué)方面的研究[10,2129],很多關(guān)鍵的地帶已經(jīng)建立了花崗巖的年代學(xué)格架[3036],深化了對(duì)東北地區(qū)中生代花崗巖及其構(gòu)造演化的認(rèn)識(shí)。雖然對(duì)東北地區(qū)中生代花崗巖年代學(xué)做過(guò)大量的研究工作,但對(duì)張廣才嶺地區(qū)中生代花崗巖的形成時(shí)代、成因及其構(gòu)造背景的研究較少。本文對(duì)張廣才嶺北部二長(zhǎng)花崗巖、正長(zhǎng)花崗巖及堿長(zhǎng)花崗巖進(jìn)行了鋯石UPb同位素測(cè)年和地球化學(xué)分析,探討其形成時(shí)代、成因類型及其形成的構(gòu)造背景,為進(jìn)一步探討張廣才嶺北部構(gòu)造格架及其演變提供證據(jù)。

1 區(qū)域地質(zhì)背景及主要巖石特征

研究區(qū)位于張廣才嶺北部,行政區(qū)劃隸屬于延壽縣。區(qū)域大地構(gòu)造屬于興蒙造山系(Ⅰ級(jí))、小興安嶺—張廣才嶺巖漿?。á蚣?jí))、伊春—延壽巖漿弧(Ⅲ級(jí))(圖1)。小興安嶺北部出露的最古老結(jié)晶基底為中—新元古界的東風(fēng)山巖群,古生代下寒武統(tǒng)西林群,奧陶系寶泉組、小金溝組及大青組,泥盆系黑龍宮組,石炭系唐家屯組、楊木崗組,二疊系張廣才嶺群,中生代主要為中—酸性火山巖,并伴隨不同期次的巖漿活動(dòng),中生代形成伊春—延壽花崗巖帶。研究區(qū)地層較發(fā)育,古生界出露的地層有奧陶系中統(tǒng)小金溝組、泥盆系中統(tǒng)福興屯組,中生界三疊系上統(tǒng)冷山組及白堊系下統(tǒng)淘淇河組。侵入巖發(fā)育,占全區(qū)面積的80%,時(shí)代均為早侏羅世,以酸性及堿性侵入巖為主。4個(gè)同位素測(cè)年樣品巖石類型為二長(zhǎng)花崗巖、正長(zhǎng)花崗巖及堿長(zhǎng)花崗巖,分布于區(qū)內(nèi)北部、中部及東南部。其中:樣品P1TC102,巖性為二長(zhǎng)花崗巖,取樣位置:128°40′06″E,45°26′44″N;樣品P17TC91,巖性為二長(zhǎng)花崗巖,取樣位置:128°56′30″E,45°14′01″N;樣品P17TC29,巖性為正長(zhǎng)花崗巖,取樣位置:128°34′46″E,45°29′06″N;樣品P10TC1,巖性為堿長(zhǎng)花崗巖,取樣位置:128°40′02″E,45°20′56″N,具體測(cè)年樣品取樣位置見(jiàn)圖2。

26個(gè)地球化學(xué)樣品中,二長(zhǎng)花崗巖13個(gè)樣品在研究區(qū)均有分布;正長(zhǎng)花崗巖10個(gè)樣品分布在研究區(qū)中南部、西北角及東南角;堿長(zhǎng)花崗巖3個(gè)樣品分布在慶陽(yáng)公社和民志附近。經(jīng)探槽揭露,正長(zhǎng)花崗巖和堿長(zhǎng)花崗巖分別侵入二長(zhǎng)花崗巖。二長(zhǎng)花崗巖、正長(zhǎng)花崗巖及堿長(zhǎng)花崗巖薄片照片見(jiàn)圖3,手標(biāo)本照片見(jiàn)圖4。

細(xì)粒二長(zhǎng)花崗巖,淺肉紅色,細(xì)?;◢徑Y(jié)構(gòu),塊狀構(gòu)造。該巖石主要由鉀長(zhǎng)石(約40%)、斜長(zhǎng)石(約30%)、石英(約25%)、黑云母(約5%)等礦物組成。鉀長(zhǎng)石呈半自形板狀,為正條紋長(zhǎng)石、微斜條紋長(zhǎng)石,雜亂分布,條紋呈雨點(diǎn)狀、細(xì)脈狀等,大小一般為0.20~2.00 mm,少量為2.00~2.60 mm,不均勻黏土化、黝簾石化,粒內(nèi)及邊緣嵌布斜長(zhǎng)石等顆粒,交代斜長(zhǎng)石;斜長(zhǎng)石呈半自形板狀,雜亂分布,大小一般為0.20~1.50 mm,不均勻黝簾石化、黏土化、絹云母化等,隱約可見(jiàn)環(huán)帶構(gòu)造,與鉀長(zhǎng)石接觸部位可見(jiàn)蠕蟲(chóng)、凈邊結(jié)構(gòu);石英呈他形粒狀,雜亂分布,大小為0.20~1.80 mm,粒內(nèi)輕微波狀、帶狀消光;黑云母呈片狀,零星分布,大小為0.20~1.30 mm,部分綠泥石化、白云母化,少量綠簾石化。

細(xì)粒正長(zhǎng)花崗巖,淺肉紅色,細(xì)?;◢徑Y(jié)構(gòu),塊狀構(gòu)造。該巖石礦物成分由鉀長(zhǎng)石(約52%)、斜長(zhǎng)石(約20%)、石英(約25%)及黑云母(約3%)組成。鉀長(zhǎng)石主要為微斜條紋長(zhǎng)石、正條紋長(zhǎng)石,半自形板狀,粒徑一般0.20~1.70 mm,雜亂分布,明顯高嶺土化,鈉質(zhì)條紋主要呈樹(shù)枝狀,可能為交代成因形成,局部交代斜長(zhǎng)石;斜長(zhǎng)石呈半自形板狀,粒徑一般為0.20~1.10 mm,雜亂分布,明顯高嶺土化、絹云母化,少量綠簾石化、白云母化,部分隱約可見(jiàn)聚片雙晶、環(huán)帶構(gòu)造,與鉀長(zhǎng)石接觸部位見(jiàn)少量交代蠕蟲(chóng)結(jié)構(gòu);石英呈他形粒狀,粒徑一般為0.10~2.00 mm,雜亂分布,表面干凈,粒內(nèi)輕波狀消光;黑云母,葉片狀,片徑一般為0.10~0.70 mm,零散狀分布,黑云母多色性明顯,少量綠泥石化、褐鐵礦化。巖石伴隨輕微鈉長(zhǎng)石化特征,鉀長(zhǎng)石、斜長(zhǎng)石局部被鈉長(zhǎng)石交代。

細(xì)粒堿長(zhǎng)花崗巖,淺肉紅色,細(xì)?;◢徑Y(jié)構(gòu),塊狀構(gòu)造。該巖石礦物成分由鉀長(zhǎng)石(約74%)、斜長(zhǎng)石(約5%)、石英(約20%)及黑云母(約1%)組成。鉀長(zhǎng)石呈半自形板狀,粒徑一般為0.20~2.00 mm,雜亂分布,為條紋長(zhǎng)石,具高嶺土化,部分具鈉長(zhǎng)石化;斜長(zhǎng)石呈半自形板狀,粒徑一般為0.20~1.00 mm,零星分布,可見(jiàn)聚片雙晶,斜長(zhǎng)石牌號(hào)An=37,屬于中長(zhǎng)石,具黏土化、絹云母化;石英呈他形粒狀,粒徑一般為0.10~1.75 mm,雜亂分布,表面干凈,部分粒內(nèi)可見(jiàn)波狀消光;黑云母呈鱗片狀、片狀,片徑一般為0.20~0.75 mm,零星分布,單偏光下具黃褐—黃色多色性。

2 分析方法

2.1 鋯石篩選

鋯石分選、投射光、反射照相、陰極發(fā)光(CL)成像、鋯石UPb定年和鋯石微量元素分析均在北京燕都中實(shí)測(cè)試技術(shù)有限公司實(shí)驗(yàn)室完成。首先用清水將野外采集的新鮮樣品表面清洗干凈后晾干,并粉碎至80目;然后經(jīng)過(guò)用水粗淘、強(qiáng)磁分選、電磁分選和酒精細(xì)淘之后,在實(shí)體顯微鏡下手工挑選出裂隙少、表面潔凈、透明度較好的鋯石制作環(huán)氧樹(shù)脂樣品靶。

2.2 鋯石測(cè)年及數(shù)據(jù)處理

處理數(shù)據(jù)的基本原則為:尊重及保證測(cè)試數(shù)據(jù)的客觀性;鋯石同位素標(biāo)樣數(shù)據(jù)信號(hào)平穩(wěn)且同位素比值穩(wěn)定,本實(shí)驗(yàn)室計(jì)數(shù)(校準(zhǔn)標(biāo)樣)范圍分布在(2~10)×104之間,視樣品測(cè)試所需,調(diào)整信號(hào)強(qiáng)度;PLE(Plesovice)信號(hào)穩(wěn)定且年齡在推薦范圍誤差范圍之內(nèi);所測(cè)鋯石數(shù)據(jù)有效信號(hào)段需大于20 s,所取信號(hào)積分區(qū)間內(nèi)的同位素比值穩(wěn)定;所取信號(hào)積分區(qū)間時(shí)間坐標(biāo)盡量與鋯石標(biāo)樣相同;所處理數(shù)據(jù)不以測(cè)試數(shù)據(jù)的高協(xié)和度為直接目標(biāo);校準(zhǔn)標(biāo)206Pb/238U年齡誤差通常保持在0.5%~1.0%之間,待測(cè)樣品單點(diǎn)通常也在此誤差范圍之內(nèi)。測(cè)試鋯石微量元素質(zhì)量分?jǐn)?shù)和UPb同位素定年利用LAQICPMS同時(shí)分析完成。激光剝蝕系統(tǒng)為New Wave UP213,ICPMS為布魯克M90。激光剝蝕過(guò)程中采用氦氣作載氣、氬氣為補(bǔ)償氣以調(diào)節(jié)靈敏度,二者在進(jìn)入ICP之前通過(guò)1個(gè)Y型接頭混合。每個(gè)時(shí)間分辨分析數(shù)據(jù)包括20~30 s的空白信

號(hào)和50 s的樣品信號(hào)。對(duì)分析數(shù)據(jù)的離線處理(包括對(duì)樣品和空白信號(hào)的選擇、儀器靈敏度漂移校正、元素質(zhì)量分?jǐn)?shù)、UThPb同位素比值和年齡計(jì)算)采用軟件ICPMSDataCal[37]完成。鋯石微量元素利用SRM610作為多外標(biāo)、Si 作內(nèi)標(biāo)的方法進(jìn)行定量計(jì)算。UPb同位素定年中采用鋯石標(biāo)準(zhǔn)GJ1作外標(biāo)進(jìn)行同位素分餾校正,每分析5~10個(gè)樣品點(diǎn)分析2次GJ1。對(duì)于與分析時(shí)間有關(guān)的UThPb同位素比值漂移,利用GJ1的變化采用線性內(nèi)插的方式進(jìn)行了校正。鋯石樣品的UPb年齡協(xié)和圖繪制和年齡權(quán)重平均計(jì)算均采用Isoplot/Ex_ver3[38]完成。本次測(cè)試剝蝕直徑根據(jù)實(shí)際情況選擇30 μm。

2.3 全巖主微量元素檢測(cè)

全巖主量元素和微量元素分析在河北省區(qū)域地質(zhì)礦產(chǎn)調(diào)查研究所實(shí)驗(yàn)室完成。主量元素分析采用X熒光光譜儀測(cè)定,微量元素采用等離子質(zhì)譜儀(ICPMS)測(cè)定,測(cè)試環(huán)境為溫度25 ℃、濕度65%,分析精密優(yōu)于5%。

3 鋯石UPb定年結(jié)果

本文對(duì)2件二長(zhǎng)花崗巖、1件正長(zhǎng)花崗巖及1件堿長(zhǎng)花崗巖樣品進(jìn)行了LAMCICPMS鋯石UPb年代學(xué)測(cè)試,分析結(jié)果見(jiàn)表1。4件樣品年齡樣分析點(diǎn)均為30個(gè),參與成圖的點(diǎn)分別為19個(gè)、24個(gè)、18個(gè)、22個(gè)。因?yàn)辄c(diǎn)位的UPb同位素體系不好,如有捕虜體、鉛丟失、鉛擴(kuò)散,以及不能校正的普通鉛,導(dǎo)致部分點(diǎn)不能參與作圖。

二長(zhǎng)花崗巖(P1TC102),鋯石外形特征多呈自形—半自形、短柱狀,少數(shù)呈長(zhǎng)柱狀。陰極發(fā)光圖像顯示多數(shù)具有清晰、致密的韻律環(huán)帶結(jié)構(gòu)(圖5a),鋯石的Th/U值在0.41~1.12之間,均值為0.68(大于0.1),為典型的巖漿成因鋯石。粒徑一般為120~160 μm,個(gè)別達(dá)200 μm,長(zhǎng)寬比值多為1∶0.8,個(gè)別為2∶1。其鋯石UPb同位素LAMCICPMS測(cè)年共打點(diǎn)30個(gè)(表1)。11個(gè)點(diǎn)因鉛丟失以及不能校正的普通鉛,未參與成圖;19個(gè)點(diǎn)在協(xié)和圖上分布于協(xié)和線上及其附近,協(xié)和度較好。加權(quán)平均年齡為(191.4±1.1)Ma(圖5b、c),時(shí)代為早侏羅世,代表了其成巖年齡。

二長(zhǎng)花崗巖(P17TC91),鋯石外形特征多呈自形—半自形、長(zhǎng)柱狀,少數(shù)呈短柱狀。陰極發(fā)光圖像顯示多數(shù)具有清晰、致密的韻律環(huán)帶結(jié)構(gòu)(圖6a),表現(xiàn)為巖漿震蕩生長(zhǎng)環(huán)帶,鋯石的Th/U值在0.46~0.95之間,均值為0.60(大于0.1),為典型的巖漿成因鋯石。粒徑一般為130~180 μm,個(gè)別達(dá)200 μm,長(zhǎng)寬比值多為1∶0.7,個(gè)別為2∶1。其鋯石UPb同位素LAMCICPMS測(cè)年共打點(diǎn)30個(gè)(表1)。6個(gè)點(diǎn)無(wú)法進(jìn)行鉛校正,未參與成圖;24個(gè)點(diǎn)在協(xié)和圖上分布于協(xié)和線上及其附近,協(xié)和度較好。加權(quán)平均年齡為(202.6±1.0)Ma(圖6b、c),時(shí)代為早侏羅世,代表了其成巖年齡。

正長(zhǎng)花崗巖(P17TC29),鋯石粒度比較均勻,其陰極發(fā)光圖像顯示鋯石大部分呈自形—半自形的粒狀或柱狀,具有巖漿震蕩生長(zhǎng)環(huán)帶(圖7a),為巖漿成因鋯石。因Th、U質(zhì)量分?jǐn)?shù)高,其鋯石陰極發(fā)光的強(qiáng)度較弱,環(huán)帶結(jié)構(gòu)略不明顯。采樣部位基本都位于鋯石的邊部,粒徑比較均勻,一般為100~120 μm,個(gè)別達(dá)150 μm,長(zhǎng)寬比值多為1.2∶1,個(gè)別為2∶1.5。其鋯石UPb同位素LAMCICPMS測(cè)年共打點(diǎn)30個(gè)(表1)。12個(gè)點(diǎn)為捕獲鋯石年齡,未參與成圖;18個(gè)點(diǎn)在協(xié)和圖上分布于協(xié)和線附近,協(xié)和度較好。加權(quán)平均年齡為(190.8±1.5)Ma(圖7b、c),時(shí)代為早侏羅世,代表了其成巖年齡。

堿長(zhǎng)花崗巖(P10TC1),鋯石外形特征多呈自形—半自形、長(zhǎng)柱狀,少數(shù)呈短柱狀,少許鋯石形態(tài)不完整。陰極發(fā)光圖像顯示多數(shù)具有清晰、致密的韻律環(huán)帶結(jié)構(gòu)(圖8a),表現(xiàn)為巖漿震蕩生長(zhǎng)環(huán)帶,鋯石的Th/U值在0.55~1.11之間,均值為0.76(大于0.1),屬于典型的巖漿成因鋯石。粒徑比較均勻,一般為80~130 μm,個(gè)別達(dá)180 μm,長(zhǎng)寬比值多為1.2∶1,個(gè)別為2∶1.5。其鋯石UPb同位素LAMCICPMS測(cè)年共打點(diǎn)30個(gè)(表1)。8個(gè)點(diǎn)無(wú)法進(jìn)行鉛校正,未參與成圖;22個(gè)點(diǎn)在協(xié)和圖上分布于協(xié)和線上,協(xié)和度較好。加權(quán)平均年齡為(198.1±1.0)Ma(圖8b、c),時(shí)代為早侏羅世,代表了其成巖年齡。

4 巖石地球化學(xué)特征

4.1 主量元素

本次研究工作共取26件樣品開(kāi)展了主量元素和微量元素分析,分析測(cè)試結(jié)果見(jiàn)表2。二長(zhǎng)花崗巖、正長(zhǎng)花崗巖與堿長(zhǎng)花崗巖w(SiO2)為71.67%~78.07%、w(Al2O3)為11.72%~14.09%、w(Fe2O3)為0.14%~2.56%、w(FeO)為0.05%~0.99%、w(CaO)為0.12%~1.55%、w(MgO)為0.00%~0.83%、w(TiO2)為0.03%~0.44%、w(MnO)為0.01%~0.10%、w(P2O5)為0.01%~0.13%、w(K2O)為3.46%~7.17%;分異指數(shù)(ID)在85.39~97.10之間,表明巖漿分離結(jié)晶分作用強(qiáng)烈,為酸性、堿性巖石;里特曼指數(shù)(σ)為1.57~2.76,顯示巖石為鈣堿性。根據(jù)w(K2O+Na2O)w(SiO2)判別圖解(圖9a),二長(zhǎng)花崗巖、正長(zhǎng)花崗巖與堿長(zhǎng)花崗巖樣品點(diǎn)均落入花崗巖區(qū)域,與巖相學(xué)觀察特征基本一致;在w(K2O)w(SiO2)判別圖解(圖9b)中,樣品點(diǎn)均落入高鉀鈣堿性區(qū)域;在A/NKA/CNK圖解(圖9c)中,樣品落在準(zhǔn)鋁質(zhì)—弱過(guò)鋁質(zhì)區(qū)域;w(K2O)w(Na2O)判別圖(圖9d)上,樣品主要落在鉀質(zhì)區(qū)域。二長(zhǎng)花崗巖、正長(zhǎng)花崗巖與堿長(zhǎng)花崗巖屬準(zhǔn)鋁質(zhì)—弱過(guò)鋁質(zhì)高鉀鈣堿性巖系。

4.2 微量元素

在微量元素特征(表2)上,二長(zhǎng)花崗巖、正長(zhǎng)花崗巖與堿性花崗巖稀土總量w(∑REE)=(67.39~286.23)×10-6,輕稀土元素總量為(47.40~257.67)×10-6,重稀土元素總量為(7.47~28.56)×10-6,LREE/HREE為2.37~17.04,輕稀土元素富集程度明顯增高,重稀土元素較為貧化。δEu=0.05~0.71,銪具明顯負(fù)異常,說(shuō)明源區(qū)有斜長(zhǎng)石殘留。稀土元素球粒隕石標(biāo)準(zhǔn)化配分曲線分布型式為輕稀土元素相對(duì)富集、重稀土元素相對(duì)虧損的右傾型(圖10a),其輕稀土元素配分曲線斜率較大,表明輕稀土元素經(jīng)歷了較高的分異變化。微量元素原始地幔標(biāo)準(zhǔn)化蛛網(wǎng)圖(圖10b)上表現(xiàn)出總體右傾趨勢(shì),大離子親石元素Ba、Sr和高場(chǎng)強(qiáng)元素Nb、Ti、Eu、Ta和P 相對(duì)于其他不相容元素為負(fù)異常,構(gòu)成了4個(gè)明顯的虧損槽。

5 討論

5.1 巖石成因類型

研究區(qū)二長(zhǎng)花崗巖、正長(zhǎng)花崗巖及堿長(zhǎng)花崗巖中出現(xiàn)暗色礦物黑云母,顯示具有I型花崗巖的特點(diǎn);從主量元素分析結(jié)果可以看出,其具有準(zhǔn)鋁—弱過(guò)鋁質(zhì)巖石的特點(diǎn),屬于高鉀鈣堿性系列的花崗巖。在w(Al2O3)w(SiO2)、w(P2O5)w(SiO2)判別圖解(圖11a、b)中,隨著w(SiO2)的增高,Al和P質(zhì)量分?jǐn)?shù)逐漸降低,與S型花崗巖演化趨勢(shì)具有明顯差異[3032],具有I型花崗巖的演化趨勢(shì)。在w(Ce)w(SiO)2判別圖解(圖11c)中,樣品多數(shù)落在I型花崗巖區(qū),個(gè)別落在A型花崗巖區(qū);在w(Na2O)w(K2O)判別圖解(圖11d)中,樣品多數(shù)落在A型花崗巖區(qū),個(gè)別落在I型花崗巖區(qū);在w(Y)w(SiO2)判別圖解(圖12a)中,樣品落在I型花崗巖區(qū),在w(Zr)w(SiO2)判別圖解(圖12b)中,樣品多數(shù)落在I型花崗巖區(qū),個(gè)別落在A型花崗巖區(qū)。綜上所述,研究區(qū)花崗巖為準(zhǔn)鋁-弱過(guò)鋁質(zhì)、高鉀鈣堿性的I型花崗巖。

本次研究的早侏羅世二長(zhǎng)花崗巖、正長(zhǎng)花崗巖及堿長(zhǎng)花崗巖具有高硅和貧鈣、鐵、鎂的地球化學(xué)特征,在稀土元素球粒隕石標(biāo)準(zhǔn)化分布圖解上,花崗巖均體現(xiàn)出輕稀土元素相對(duì)富集、重稀土元素相對(duì)虧損的“右傾”配分模式,Eu具明顯的負(fù)異常,說(shuō)明在分餾作用中斜長(zhǎng)石從巖漿分離出來(lái)或在部分熔融作用下斜長(zhǎng)石殘留在源區(qū)。巖石中Yb和Y的質(zhì)量分?jǐn)?shù)較高,說(shuō)明殘留相中沒(méi)有石榴子石,P和Ti元素的虧損,可能與磷灰石、榍石等含P、Ti礦物的分離結(jié)晶作用有關(guān);Nb、Ta元素的強(qiáng)烈虧損,表明巖漿為地殼來(lái)源或受到地殼物質(zhì)的混染[35];Nb元素的負(fù)異常也是大陸地殼的特征,可能指示地殼物質(zhì)參與了巖漿過(guò)程[33]。二長(zhǎng)花崗巖、正長(zhǎng)花崗巖及堿長(zhǎng)花崗巖的Zr/Hf(wàn)值分別為16.78~43.94(均值為31.04)、14.35~47.22(均值為25.36)及31.77~38.(均值為35.21),基本介于地幔均值(30.74)和地殼均值(44.68)之間,接近于地幔值;Nb/Ta值分別為13.24~22.77(均值為19.37)、11.80~22.78(均值為16.01)和10.69~17.95(均值為14.50),基本介于地殼均值(12.30)和地幔均值(17.50)之間,個(gè)別大于地幔值。綜上所述,研究區(qū)花崗巖巖漿可能來(lái)源于殼?;旌显磪^(qū)。

5.2 構(gòu)造背景及地質(zhì)意義

關(guān)于區(qū)域構(gòu)造背景前人提出不同的觀點(diǎn)。吉黑東部—朝鮮半島北端的早侏羅世陸緣鈣堿性火成巖到小興安嶺—張廣才嶺—遼東半島地區(qū)的典型雙峰式火山巖組合,為古太平洋板塊向歐亞大陸下俯沖形成的活動(dòng)大陸邊緣環(huán)境和弧后伸展環(huán)境,進(jìn)一步說(shuō)明古太平洋板塊向歐亞大陸下的俯沖作用始于早侏羅世[8,20,44];賦存在早侏羅世似斑狀花崗閃長(zhǎng)巖內(nèi)的新安屯鎢鉬礦床,屬于太平洋板塊俯沖作用下的活動(dòng)大陸邊緣構(gòu)造環(huán)境下的產(chǎn)物[45];松嫩地塊上的早侏羅世斑巖型、夕卡巖型等礦床受控于松嫩地塊與佳木斯地塊碰撞拼合和古太平洋板塊俯沖的構(gòu)造背景[46];張廣才嶺南部中侏羅世似斑狀二長(zhǎng)花崗巖形成于同碰撞構(gòu)造環(huán)境,成巖構(gòu)造環(huán)境與佳木斯地塊和松嫩地塊碰撞拼合作用密切相關(guān)[47];小興安嶺平頂山一帶早侏羅世花崗巖類為松嫩地塊與佳木斯地塊沿嘉蔭—牡丹江縫合帶碰撞拼合后伸展環(huán)境下的產(chǎn)物,巖漿起源于下地殼火成巖物質(zhì)的部分熔融[48];額爾古納地塊的西緣也存在一套早、中侏羅世二長(zhǎng)花崗巖與正長(zhǎng)花崗巖組合,為活動(dòng)陸緣的構(gòu)造背景[18,48]。這也在額爾古納地塊中早侏羅世(185 Ma)鈣堿性火山巖的發(fā)現(xiàn)中得到證實(shí)[49],這種活動(dòng)陸緣背景應(yīng)是蒙古—鄂霍茨克洋向額爾古納地塊之下俯沖作用的結(jié)果[11];早白堊世花崗巖構(gòu)造環(huán)球粒隕石數(shù)據(jù)和原始地幔數(shù)據(jù)據(jù)文獻(xiàn)[42]。

區(qū)域大地構(gòu)造屬于興蒙造山系(Ⅰ級(jí))、小興安嶺張廣才嶺巖漿?。á蚣?jí))、伊春—延壽巖漿?。á蠹?jí))。該地區(qū)經(jīng)歷了古亞洲洋擴(kuò)張、萎縮、陸緣增生演化階段和古太平洋板塊活動(dòng)階段及濱太平洋大陸邊緣活動(dòng)階段3個(gè)主要的構(gòu)造發(fā)展階段[19]。中三疊世以來(lái)全省進(jìn)入了古太平洋陸緣發(fā)展演化階段,晚三疊世—早侏羅世小興安嶺—張廣才嶺以強(qiáng)烈的陸緣巖漿弧型侵入巖的侵入作用為特征,構(gòu)成了著名的伊春延壽花崗巖帶。黑龍江省中生代受古太平洋、鄂霍茨克洋構(gòu)造域控制。蒙古鄂霍茨克構(gòu)造體系在黑龍江省影響的空間范圍主要在大興安嶺和松遼盆地以西地區(qū),小興安嶺—張廣才嶺及東部地區(qū)屬古太平洋構(gòu)造域[18]。在w(Rb)w(Y+Nb)構(gòu)造判別圖解(圖13a)上,花崗巖樣品點(diǎn)均落入火山弧花崗巖和板內(nèi)花崗巖的交匯區(qū)域;在w(Nb)w(Y)構(gòu)造判別圖解(圖13b)上,樣品點(diǎn)落在板內(nèi)花崗巖和火山弧花巖+同碰撞花崗巖的交匯區(qū)域;在w(Ta)w(Yb)構(gòu)造判別圖解(圖13c)上,樣品均落入火山弧花崗巖和板內(nèi)花崗巖的交匯區(qū)域;在w(Rb)w(Yb+Ta)構(gòu)造判別圖解(圖13d)上,樣品點(diǎn)均落入板內(nèi)花崗巖和火山弧花崗巖的交匯區(qū)域內(nèi),主要落在火山弧花崗巖區(qū)域。研究區(qū)所有樣品都表現(xiàn)出負(fù)Nb異常,且其他高場(chǎng)強(qiáng)元素相對(duì)虧損,呈現(xiàn)出與俯沖有關(guān)的巖漿特征,也可見(jiàn)于以島弧物質(zhì)為物源的殼源花崗巖中[3335]。綜上所述,研究區(qū)花崗巖巖漿可能來(lái)源于殼?;旌显磪^(qū),構(gòu)造環(huán)境為古太平洋板塊向歐亞大陸下俯沖形成的活動(dòng)大陸邊緣環(huán)境。

6 結(jié)論

1)本文對(duì)研究區(qū)二長(zhǎng)花崗巖、正長(zhǎng)花崗巖及堿長(zhǎng)花崗巖樣品進(jìn)行了LAMCICPMS鋯石UPb測(cè)年,同位素年齡分別為(191.4±1.1)、(202.6±1.0)、(190.8±1.5)及(198.1±1.0)Ma,時(shí)代為早侏羅世。

2)花崗巖為準(zhǔn)鋁質(zhì)—弱過(guò)鋁質(zhì)高鉀鈣堿性的I型花崗巖。

3)研究區(qū)早侏羅世花崗巖的構(gòu)造環(huán)境為古太平洋板塊向歐亞大陸俯沖形成的活動(dòng)大陸邊緣環(huán)境。

致謝:黑龍江省第十一地質(zhì)勘查院王雪松等為本文提供資料,這里表示感謝!

參考文獻(xiàn)(References):

[1] 陳會(huì)軍,付俊彧,錢程,等.東北地區(qū)前中生代花崗巖類年齡與時(shí)空分布[J].地質(zhì)通報(bào),2021,40(6):827844.

Chen Huijun,F(xiàn)u Junyu,Qian Cheng,et al.Chronology and Spatiotemporal Distribution of Pre-Mesozoic Granites in

Northeast China[J].Geological Bulletin of China,2021,40(6):827844.

[2] 杜慶祥,伍賽男,張永,等.內(nèi)蒙古北山造山帶圓包山—希熱哈達(dá)地區(qū)白山組火山巖鋯石UPb年齡、地球化學(xué)特征及對(duì)古亞洲洋俯沖作用的啟示[J].地質(zhì)通報(bào),2023,42(11):18751893.

Du Qingxiang,Wu Sainan,Zhang Yong,et al.Zircon UPb Ages and Geochemistry of Volcanic from the Baishan Formation in the Yuanbaoshan-Xirehada Area in Beishan Orogenic Collage,Inner Mongolia,NW China,and Implications for the Subduction History of the Paleo-Asian[J]. Glogical Bulletin of China,2023,42(11):18751893.

[3] 佟鑫,施建榮,王惠初,等.內(nèi)蒙古固陽(yáng)地區(qū)角閃石等礦物分離結(jié)晶形成的新太古代 TTG片麻巖:來(lái)自元素地球化學(xué)和熱力學(xué)模擬的證據(jù)[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2023,53(6):17341759.

Tong Xin,Shi Jianrong,Wang Huichu,et al. Neoarchean TTG Gneisses Generated Through Amphibole-Dominated Fractionation in Guyang, Inner Mongolia: Evidence from Elemental Geochemistry and Thermodynamic Modelling[J].Journal of Jilin University(Earth Science Edition),2023,53(6):17341759.

[4] 雷聰聰,薄海軍,丁海生,等.內(nèi)蒙古雅干地區(qū)晚石炭世白山組火山巖 LAICPMS鋯石UPb年齡及其構(gòu)造環(huán)境[J].地質(zhì)通報(bào),2023,42(12):20962108.

Lei Congcong,Bo Haijun,Ding Haisheng,et al.Zircon LAICPMS UPb Dating and Tectonic Setting of Volcanic Rocks from Baishan Formation in Late Carboniferous in Yagan Area,Inner Mongolia[J].Geological Bulletin of China,2023,42(12):20962108.

[5] 張坤,史冬巖,常翔鯤,等. 伸展背景下的埃達(dá)克質(zhì)巖:黑龍江呼瑪?shù)貐^(qū)早白堊世侵入巖的年代學(xué)和地球化學(xué)特征[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2023,53.doi:10.13278/j.cnki.jjuese.20230059.

Zhang Kun, Shi Dongyan, Chang Xiangkun, et al. Adakitic-Like Rocks in Extensional Setting: Chrono Logical and Geochemical Characteristicsof Early Cretaceous Intrusive Rocks in Huma Area, Heilongjiang Province[J]. Journal of Jilin University (Earth Science Edition),2023,53.doi:10.13278/j.cnki.jjuese.20230059.

[6] 李猛興,王麗娟,張利明,等.興安地塊南段霍布林巖體成因及其對(duì)蒙古鄂霍茨克洋演化的啟示[J].地質(zhì)通報(bào),2023,42(9):15411555.

Li Mengxing,Wang Lijuan, Zhang Liming,et al. Petrogenesis of the Huobulin Granite in Southern Part of the Xing’an Block and Its Insight into the Evolution of the Mongol-Okhotsk Ocean[J].Geological Bulletin of China, 2023,42(9):15411555.

[7] 劉宇崴,杜兵盈.張廣才嶺南部歪鼻子組火山巖形成時(shí)代及其古洋盆俯沖地質(zhì)記錄[J/OL].地質(zhì)通報(bào),2024:112[20240624].https://link.cnki.net/urlid/11.4648.P.20240412.1713.008.

Liu Yuwei, Du Bingying. Age of Volcanic Rocks of the Waibizi Formation in the Southern Zhangguangcai Range and Their Paleo-Oceanic Subduction Geological Records[J/OL].Geological Bulletin of China,2024:112[20240624].https://link.cnki.net/urlid/11.4648.P.20240412.1713.008.

[8] 唐杰,許文良,王楓,等.張廣才嶺帽兒山組雙峰式火山巖成因:年代學(xué)與地球化學(xué)證據(jù)[J].世界地質(zhì),2011,30(4):508520.

Tang Jie,Xu Wenliang,Wang Feng,et al. Petrogenesis of Bimodal Volcanic Rocks from Maoershan Formation in Zhangguangcai Range:Evidence from Geochronology and Geochemistry[J].Global Geology,2011,30(4):508520.

[9] 李錦軼,牛寶貴,宋彪.長(zhǎng)白山北段地殼的形成與演化[M].北京:地質(zhì)出版社,1999:1136.

Li Jinyi,Niu Baogui, Song Biao.Crustal Formation and Evolution of Northern Changbai Mountains,Northeast China[M].Beijing:Geological Publishing House,1999:1136.

[10] Wu F Y,Sun D Y,Li H M,et al.A-Type Granites in Northeastern China:Age and Geochemical Constraints on Their Petrogenesis[J].Chemical Geology,2002, 187(1/2):143173.

[11] Wu F Y,Yang J H,Lo C H,et al.The Heilongjiang Group:A Jurassic Accretionary Complex in the Jiamusi Massif at the Western Pacific Margin of Northeastern China[J].Island Arc,2007,16(1):156172.

[12] Li J Y.Permian Geodynamic Setting of Northeast China and Adjacent Regions:Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate[J].Journal of Asian Earth Sciences,2006,26(3/4):207224.

[13] Xu W L,Ji W Q,Pei F P,et al.Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces,NE China:Chronology,Geochemistry,and Tectonic Implications[J].Journal of Asian Earth Sciences,2009,34(3):392402.

[14] Meng E,Xu W L,Pei F P,et al.Detrital-Zircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province,NE China:Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt[J].Tectonophysics,2010,485(1/2/3/4):4251.

[15] Wang F,Xu W L,Meng E,et al.Early Paleozoic Amalgamation of the Songnen-Zhangguangcai Range and Jiamusi Massifs in the Eastern Segment of the Central Asian Orogenic Belt:Geochronological and Geochemical Evidence from Granitoids and Rhyolites[J].Journal of Asian Earth Sciences,2012,49:234248.

[16] Wang F,Xu W L,Gao F H,et al.Tectonic History of the Zhangguangcailing Group in Eastern Heilongjiang Province,NE China:Constraints from UPb Geochronology of Detrital and Magmatic Zircons[J].Tectonophysics,2012,566/567:105122.

[17] 徐美君,許文良,孟恩,等.內(nèi)蒙古東北部額爾古納地區(qū)上護(hù)林—向陽(yáng)盆地中生代火山巖LAICPMS鋯石UPb年齡和地球化學(xué)特征[J].地質(zhì)通報(bào),2011,30(9):13211338.

Xu Meijun,Xu Wenliang,Meng En,et al.LAICPMS Zircon UPb Chronology and Geochemistry of Mesozoic Volcanic Rocks from the Shanghulin-Xiangyang Basin in Ergun Area,Northeastern Inner Mongolia[J].Geological Bulletin of China,2011,30(9):13211338.

[18] 許文良,王楓,裴福萍,等.中國(guó)東北中生代構(gòu)造體制與區(qū)域成礦背景:來(lái)自中生代火山巖組合時(shí)空變化的制約[J].巖石學(xué)報(bào),2013,29(2):339353.

Xu Wenliang,Wang Feng,Pei Fuping,et al.Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China:Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations[J].Acta Petyologica Sinica,2013,29(2):339353.

[19] 尹志剛,龐學(xué)昌,王春生,等.小興安嶺南部早侏羅世二長(zhǎng)花崗巖形成時(shí)代、地球化學(xué)特征及地質(zhì)意義[J].地質(zhì)通報(bào),2020,39(1):2739.

Yin Zhigang,Pang Xuechang,Wang Chunsheng,et al.Formation Age,Geochemical Characteristics and Geological Significance of the Early Jurassic Monzonitic Granites in Southern Xiao Hinggan Mountains[J]. Geological Bulletin of China,2020,39(1):2739.

[20] Yu J J,Wang F,Xu W L,et al.Early Jurassic Mafic Magmatism in the Lesser Xing’an-Zhangguangcai Range,NE China,and Its Tectonic Implications:Constraints from Zircon UPb Chronology and Geochemistry[J]. Lithos,2012,142/143:256266.

[21] Jahn B M,Wu F Y,Chen B.Massive Granitoid Generation in Central Asia:Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic[J]. Episodes,2000,23(2):8292.

[22] 吳福元,Wilde S A,孫德有.佳木斯地塊片麻狀花崗巖的鋯石離子探針UPb年齡[J].巖石學(xué)報(bào),2001,17(3):443452.

Wu Fuyuan,Wilde S A,Sun Deyou.Zircon SHRIMP UPb Ages of Gneissic Granites in Jiamusi Massif,Northeastern China[J]. Acta Petrologica Sinica,2001,17(3):443452.

[23] David L,Wolf M B,Morgan G B,et al.Experimental Silicate-Phosphate Equilibria in Peraluminous Granitic Magmas,with a Case Study of the Alburquerque Batholith at Tres Arroyos,Badajoz,Spain[J]. Journal of Petrology,1999,40:215240.

[24] Broska I,Williams C T,Uher P,et al.The Geochemistry of Phosphorus in Different Granite Suites of the Western Carpathians,Slovakia:The Role of Apatite and P-Bearing Feldspar[J].Chem Geol,2004,205:115.

[25] 鄧晉福,羅照華,蘇尚國(guó),等.巖石成因、構(gòu)造環(huán)境與成礦作用[M].北京:地質(zhì)出版社,2004.

Deng Jinfu,Luo Zhaohua,Su Shangguo,et al. Petrogenesis,Tectonic Environment and Mineralization[M].Beijing:Geological Publishing House,2004.

[26] 李佐臣,裴先治,李瑞保,等.西秦嶺糜署嶺花崗巖體年代學(xué)、地球?qū)W特征及其構(gòu)造意義[J].巖石學(xué)報(bào),2013,29(8):26172634.

Li Zuochen,Pei Xianzhi,Li Ruibao,et al. LAICPMS Zircon UPb Dating,Geochemistry of the Mishuling Intrusion in Western Qinling and Their Tectonic Significance[J].Acta Petrologica Sinica,2013,29(8):26172634.

[27] Briqueu L,Bougault H,Joron J L,et al.Quantificationf Nb,Ta,Ti and V Anomalies in Magmas Associated with Subduction Zones:Petrogenetic Implications[J].Earth and Planetary Science Letters,1984,68(2):297308.

[28] Ma C Q ,Li Z C,Ehlers C,et al.A Post-Collisional Magmatic Plumbing System: Mesozoic Granitoid Plutons from the Dabieshan High-Pressure and Ultrahigh-Pressure Metamorphic Zone,East-Central China[J]. Lithos,1998,45(14):431456.

[29] 趙克強(qiáng),孫景貴,程琳,等.內(nèi)蒙古白土營(yíng)子鉬礦床成礦年代學(xué)及成礦流體特征[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2023,53(3):822839.

Zhao Keqiang,Sun Jinggui,Cheng Lin,et al.Geochronology and Ore-Forming Fluid Characteristics of Baituyingzi Molybdenum Deposit,Inner Mongolia[J].Journal of Jilin University(Earth Science Edition),2023,53(3):822839.

[30] 吳福元,楊進(jìn)輝,柳小明.遼東半島中生代花崗質(zhì)巖漿作用的年代學(xué)格架[J].高校地質(zhì)學(xué)報(bào),2005,11(3):305317.

Wu Fuyuan,Yang Jinhui,Liu Xiaoming.Geochronological Framework of the Mesozoic Granitic Magmatism in the Liaodong Peninsula,Northeast China[J].Geological Journal of China Universities,2005,11(3):305317.

[31] Wu F Y,Sun D Y,Ge W C,et al. Geochronology of the Phanerozoic Granitoids in Northeastern China[J].Journal of Asian Earth Sciences,2011,41(1):130.

[32] 張艷斌,吳福元,李惠民,等.吉林黃泥嶺花崗巖體的單顆粒鋯石UPb年齡[J].巖石學(xué)報(bào),2002,18(4):475481.

Zhang Yanbin,Wu Fuyuan,Li Huimin,et al. Single Grain Zircon UPb Ages of the Huangniling Granite in Jilin Province[J]. Acta Petrologica Sinica,2002,18(4):475481.

[33] 孫德有,吳福元,張艷斌,等.西拉木倫河—長(zhǎng)春—延吉板塊縫合帶的最后閉合時(shí)間:來(lái)自吉林大玉山花崗巖體的證據(jù)[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2004,34(2):174181.

Sun Deyou, Wu Fuyuan, Zhang Yanbin, et al. The Final Closing Time of the West Lamulun River-Changchun-Yanji Plate Suture Zone:Evidence from the Dayushan Granitic Pluton,Jilin[J].Journal of Jilin University(Earth Science Editi),2004, 34(2):174181.

[34] 孫德有,吳福元,高山,等.吉林中部晚三疊世和早侏羅世兩期鋁質(zhì)A型花崗巖的厘定及對(duì)吉黑東部構(gòu)造格局的制約[J].地學(xué)前緣,2005,12(2):263275.

Sun Deyou,Wu Fuyuan,Gao Shan, et al.Confirmation of Two Episodes of A-Type Granite Emplacement During Late Triassic and Early Jurassic in the Central Jilin Province,and Their Constraints on the Structural Pattern of Eastern Jilin-Heilongjiang Area,China[J].Earth Science Frontiers,2005,12(2):263275.

[35] 孫德有,鈴木和博,吳福元,等.吉林省南部荒溝山地區(qū)中生代花崗巖 CHIME 定年[J].地球化學(xué),2005,34(4):305314.

Sun Deyou,Suzuki K,Wu Fuyuan, et al.CHIME Dating and Its Application for Mesozoic Granites of Huanggoushan,Jilin Province[J].Geochimica,2005,34(4):305314.

[36] 徐美君,許文良,王楓,等.小興安嶺中部早侏羅世花崗質(zhì)巖石的年代學(xué)與地球化學(xué)及其構(gòu)造意義[J].巖石學(xué)報(bào),2013, 29(2):354368.

Xu Meijun,Xu Wenliang,Wang Feng,et al. Geochronology and Geochemistry of the Early Jurassic Granitoids in the Central Lesser Xing’an Range,NE China and Its Tectonic Implications[J]. Acta Petrologica Sinica,2013,29(2):354368.

[37] Liu Y S,Hu Z C,Zong K Q,et al. Reappraisement and Refinement of Zircon UPb Isotope and Trace Element Analyses by LAICPMS[J]. Chinese Science Bulletin,2010,55(15):15351546.

[38] Ludwig K R. ISOPLOT 3.0:A Geochronological Toolkit for Microsoft Excel[M]. Berkeley:Berkeley Geochronology Center Special Publication,2003.

[39] Middlemost E. Naming Materials in the Magma/Igneous Rock System[J].Earth-Science Reviews,1994,37(3/4):215224.

[40] Peccerillo A,Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey[J].Contributions to Mineralogy amp; Petrology,1976, 58(1):6381.

[41] Maniar P D,Piccoli P M. Tectonic Discrimination of Granitoids[J].Geological Society of America Bulletin,1989.Doi:10.1130/00167606(1989)1012.3.CO;2.

[42] Sun S S,Mc Donough W F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[J]. Geological Society Special Publication,1989,42:313345.

[43] Collins W J,Beams S D,White A J R,et al. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia [J]. Contributions to Mineralogy and Petrology,1982(2):189200.

[44] 裴福萍,許文良,孟恩,等.古太平洋俯沖作用的開(kāi)始:來(lái)自吉黑東部早—中侏羅世火山巖的年代學(xué)及地球化學(xué)證據(jù)[J].礦物巖石地球化學(xué)通報(bào),2008,27(增刊l):268.

Pei Fuping,Xu Wenliang,Meng En,et al.The Beginning of the Paleo Pacific Plate Subduction:Geochronological and Geochemical Evidence from the Early-Middle Jurassic Volcanic Rocks in the Eastern of Jilin and Heilongjiang Provinces[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2008,27(Sup.l):268.

[45] 王存柱,高全,任龍,等.吉林省蛟河市新安屯鎢鉬礦流體包裹體、氫氧同位素及成礦時(shí)代研究[J].地質(zhì)與勘探,2019,55(3):673684.

Wang Cunzhu,Gao Quan,Ren Long,et al.Fluid Inclusions,HO Isotope and Metallogenic Epoch of the Xin’antun WMo Deposit in Jiaohe City,Jilin Province[J].Geology and Exploration,2019,55(3):673684.

[46] 杜兵盈,劉飛,劉勇,等.黑龍江省中東部地區(qū)二疊紀(jì)—早侏羅世洋陸演化過(guò)程及成礦動(dòng)力學(xué)背景探討[J].地質(zhì)論評(píng),2022,68(2):431451.

Du Bingying, Liu Fei,Liu Yong, et al. Permian-Early Jurassic Ocean-Continent Evolution and Metallogenic Dynamic Setting in the Central and Eastern Part of Heilongjiang Province[J].Geological Review, 2022, 68(2):431451.

[47] 張國(guó)賓,陳興凱,趙越,等.張廣才嶺南部中侏羅世似斑狀二長(zhǎng)花崗巖年代學(xué)、地球化學(xué)特征及其地質(zhì)意義[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2022,52(6):19071925.

Zhan Guobin, Chen Xingkai, Zhao Yue, et al. Geochronology, Geochemistry and Geological Significance of the Middle Jurassic Porphyritic Monzogranite in the Southern Zhangguangcai Range, Heilongjiang Province[J]. Journal of Jilin University(Earth Science Edition),2022,52(6):19071925.

[48] 尹志剛,宮兆民,王春生,等.小興安嶺平頂山一帶早侏羅世花崗巖類年代學(xué)、地球化學(xué)特征及其地質(zhì)意義[J].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2021,51(1):107125.

Yin Zhigang,Gong Zhaomin,Wang Chunsheng,et al,Chronological,Gecohemical Characteristics and Chronological Significance of Early Jurassic Granitesin Pingdingshan Area of Lesser Xing’an Range[J].Journal of Jilin University(Earth Science Edition),2021,51(1):107125.

[49] 于躍江,趙忠海,楊欣欣,等.大興安嶺北段漠河前陸盆地早侏羅世火山巖時(shí)代的厘定[J].中國(guó)地質(zhì),2021,48(2):580592.

Yu Yuejiang, Zhao Zhonghai, Yang Xinxin,et al.Dating of Early Jurassic Volcanic Rocks in the Mohe Foreland Basin of Northern Greater Khingan" Mountains,Notrtheast China[J].Geology in China,2021,48(2):580592.

[50] 劉永強(qiáng),呂志成,王虎,等.大興安嶺南段內(nèi)蒙古小大川鉛鋅銅礦黑云母二長(zhǎng)花崗巖鋯石UPb年齡、地球化學(xué)特征及其成礦背景[J/OL].地質(zhì)通報(bào),2024,124[20240624].https://link.cnki.net/urlid/11.4648.P.20240117.1131.002.

Liu Yongqiang,Lü Zhicheng,Wang Hu,et al. Zircon UPb Age and Geochemical Characteristics of Biotite Monzonitic Granite and Mineralization Background in Xiaodachuan PbZnCu Deposit of Inner Mongolia, the Southern Great Xing’an Range[J/OL],Geological Bulletin of China,

2024:124[20240624].

https://link.cnki.net/urlid/11.4648.P.20240117.1131.002.

[51] 張國(guó)賓,馮玥,宋學(xué)權(quán),等.大興安嶺中段金江溝巖體侏羅紀(jì)花崗巖年代學(xué)、地球化學(xué)特征及其構(gòu)造意義[J/OL].吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2024:120[20240624].doi:10.13278/j.cnki.jjuese.20210367.

Zhang Guobin,F(xiàn)eng Yue,Song Xuequan,et al. Geochronology,Geochemistry and Tectonic Significance o f the Jurassic Granite from the Central Great Xing’an Range in Jinjiang Ravine[J]. Journal of Jilin University(Earth Science Edition),2024:120[20240624].doi:10.13278/j.cnki.jjuese.20210367.

[52] 李猛興,王麗娟,李珍,等.內(nèi)蒙古東中生代馬拉格復(fù)式巖體成因及對(duì)區(qū)域構(gòu)造演化的制約[J/OL].地質(zhì)通報(bào), 2024:117[20240624].https://link.cnki.net/urlid/11.4648.P.20240412.1713.008.

Li Mengxing,Wng Lijuan,Li Zhen,et al. Mesozoic Malage Complex Pluton in the East Inner Mongolia:Constraints on the Regional Tectonic Evolution[J].Glogical Bulletin of China, 2024:117[20240624].https://link.cnki.net/urlid/11.4648.P.20240412.1713.008.

[53] Pearce J A. A User’s Guide to Basalt Discrimination Diagrams[J]. Geological Society Special Publication,1996,12:79133.

[54] Pearce J A,Harris N B W,Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J].Journal of Petrology,1984,25:956983.

猜你喜歡
侏羅世鋯石花崗巖
鋯石成因礦物學(xué)及Lu-Hf同位素的應(yīng)用
奇特的智利龍
花崗巖
淺議大興安嶺北段霍洛臺(tái)地區(qū)早侏羅世侵入巖與礦產(chǎn)的關(guān)系
抗剝落劑TR-500S改善花崗巖混合料路用性能研究
石油瀝青(2020年1期)2020-05-25 06:53:56
俄成功試射“鋯石”高超音速巡航導(dǎo)彈
軍事文摘(2020年24期)2020-02-06 05:56:36
中國(guó)遼寧首次發(fā)現(xiàn)侏羅紀(jì)多瘤齒獸類哺乳動(dòng)物
鋯石微區(qū)原位U-Pb定年的測(cè)定位置選擇方法
花崗巖儲(chǔ)集層隨鉆評(píng)價(jià)方法及應(yīng)用
鉆石與鋯石的區(qū)別知多少?
台湾省| 仪征市| 安平县| 金阳县| 永和县| 阿坝| 绥德县| 宿迁市| 延津县| 鞍山市| 天祝| 太谷县| 宁国市| 准格尔旗| 涟水县| 冷水江市| 电白县| 安塞县| 堆龙德庆县| 晋城| 永济市| 仙居县| 会昌县| 松阳县| 五原县| 万全县| 永寿县| 江山市| 报价| 柞水县| 黄浦区| 昌吉市| 焦作市| 静宁县| 冷水江市| 青海省| 邯郸县| 安义县| 六安市| 三河市| 延川县|