摘要:基于變指數(shù)Fourier-Besov函數(shù)空間理論,利用Littlewood-Paley分解工具、Fourier局部化方法和Banach壓縮映射原理,通過建立線性項(xiàng)與非線性項(xiàng)的估計(jì),證明分?jǐn)?shù)階Boussinesq-Coriolis方程在臨界變指數(shù)空間)(R3)中解的整體適定性和Gevrey類正則性.
關(guān)鍵詞:Boussinesq-Coriolis方程;變指數(shù)Fourier-Besov空間;整體適定性;Gevrey類正則性
中圖分類號:O174.2文獻(xiàn)標(biāo)志碼:A文章編號:1671-5489(2024)05-1043-09
Global Well-Posedness and Regularity of Solutions to Fractional Boussinesq-Coriolis Equations in Variable Exponent Fourier-Besov Spaces
LI Fengjuan,SUN Xiaochun,WU Yulian
(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,China)
Abstract:Based on the theory of variable exponent Fourier-Besov function spaces,we used Littlewood-Paley decomposition tools,F(xiàn)ourier localization methods and Banach contraction mapping principle.By establishing estimations for both linear and nonlinear terms,we proved the global well-posedness and the Gevrey class regularity of the solutions to the fractional Boussinesq-Coriolis equations in critical variable exponent Fourier-Besov spaces 3)(R3).
Keywords:Boussinesq-Coriolisequation;variable exponent Fourier-Besovspace;globalwell-posedness;Gevrey class regularity
0引言
考慮三維分?jǐn)?shù)階不可壓縮Boussinesq-Coriolis方程解的初值問題:
其中:u=(u(x,).u2(x.).3(x.t),=p(x.),=(x.t)分別為流體在點(diǎn)(x,t)∈R3X(0,∞)的未知速度、未知壓力和溫度;正常數(shù)v,μ和g分別為黏度系數(shù)、熱擴(kuò)散系數(shù)和重力加速度;e3×u為CiR為流體燒垂直單位矢量e=0裝速gk表示浮力△=表示Laplace算子.文獻(xiàn)[1-3]給出了問題(1)的物理意義.Wang證明了三維分?jǐn)?shù)階磁流體方程在臨界變指數(shù)Fourier-Besov空間中解的整體適定性和解析性;Abidin等5]證明了當(dāng)初值。屬于變指數(shù)Fourier-Besov-Morrey空間時(shí),分?jǐn)?shù)階Navier-Stokes方程解的整體適定性;Abidin等]證明了Prandtl常數(shù)為1時(shí)三維地球物理原始方程在變指數(shù)Fourier-Besov空間中小初值意義下解的整體適定性和解析性;當(dāng)方程(1)中a=1時(shí),Sun等證明了當(dāng)旋轉(zhuǎn)速度“2”充分大時(shí),方程(1)在Besov空間中整體溫和解的存在唯一性;Sun等證明了當(dāng)初值(u。,)屬于變指數(shù)Fourier-Besov空間時(shí),方程(1)解的整體適定性.文獻(xiàn)[9-16]給出了不可壓縮Navier-Stokes方程、微極流體方程、磁流體方程、多孔介質(zhì)方程和地球物理原始方程在變指數(shù)函數(shù)空間中解的適定性結(jié)果.本文主要研究v=μ=1的情形.
二階橢圓微分算子的原型是Lpc算子A=∑Fourier換的象征為ー.Lace算子與Brown運(yùn)動中的Markov運(yùn)動有關(guān),即一個(gè)給定的微分算子構(gòu)造一個(gè)Markov過程.例如與L次Markov半群相關(guān)的Hunt過程就是利用微分算子構(gòu)造的.Demuth和van Casteren發(fā)展的隨機(jī)譜分析理論用一般對稱的Feller過程代替了Laplace運(yùn)動或Brown運(yùn)動n.分?jǐn)?shù)階Laplace算子(-△)是橢圓微分算子的推廣,其象征為“ξ”2”.Riesz在處理分?jǐn)?shù)階Laplace算子(一△)時(shí)首先注意到了該算子的非局部特征,該特征不僅與物理學(xué)中的擴(kuò)散過程、材料學(xué)中的熱傳導(dǎo)等問題密不可分,而且在圖像處理、信號處理和金融學(xué)等領(lǐng)域應(yīng)用廣泛[7
與Fourier-Besov空間相比,一般的變指數(shù)Fourier-Besov空間中不再具有平移不變性質(zhì),從而使一些經(jīng)典理論如Young不等式和乘積定理均不再成立.因此,在變指數(shù)函數(shù)空間中研究方程的適定性有一定困難.本文研究分?jǐn)?shù)階Boussinesq-Coriolis方程在變指數(shù)Fourier-Besov空間中解的整體適定性和Gevrey類正則性,所得結(jié)果推廣了文獻(xiàn)[8]的相應(yīng)結(jié)果.
1預(yù)備知識
設(shè)9(R3)是R3上的光滑速降函數(shù)空間,9(R3)表示9(R3)的拓?fù)鋵ε伎臻g,也稱為緩增分布空間.設(shè)非負(fù)光滑函數(shù)X,∈9(R3)滿足
其中1(E)=φ(2-ξ).定義局部化算子
其中∫,=9-.由上述定義可知,當(dāng)|iーi|≥2時(shí),,恒為0;當(dāng)ー|≥5時(shí),(,-1-△)恒為0.
對可測函數(shù)p(·),記
變指數(shù)Lebesgue函數(shù)空間定義為LM)={f:R3→R,‖f‖(.)lt;∞},f的L()范數(shù)定義為
由于L中不具有平移不變性,為保證Hardy-Littlewood極大算子在L()(R3)上有界,因此假設(shè)p(·)滿足log-Holder連續(xù)條件.
若存在正常數(shù)Cag(p),使得對任意的x,y∈R3且x≠y,p(·)滿足
或若存在正常數(shù)Clog(p)和p,使得對任意的x∈R3,p(·)滿足
則p(·)分別稱為局部log-Holder連續(xù)的和整體log-Holder連續(xù)的.本文所考慮的p(·)屬于既局部log-Holder連續(xù)又整體log-Holder連續(xù)的函數(shù)空間,記為Clog(R3).
設(shè)p(·),q(·)∈%(R3),l()(L())表示由R3上所有可測函數(shù)序列{f};∈z組成的函數(shù)空間,記
其中
假設(shè)qlt;P)z)=成立
定義1設(shè)p(·),q(·)∈Cng(R3)∩%(R3)且s(·)∈Cg(R3),則齊次變指數(shù)Besov空間定義為
f的范數(shù)定義為
其中9'(R3)表示y(R3)={f∈(R3):(D)(0)=0,a∈N+}的對偶空間.
設(shè)Tgt;0,p∈[1,∞],L°(0,T;B)空間中緩增分布函數(shù)f的范數(shù)定義為
L°(0,T;)空間中緩增分布函數(shù)f的范數(shù)定義為
記L:=L°(0,T;),L:=L°(0,T;).根據(jù)Minkowski不等式,有
定義2(齊次變指數(shù)Fourier-Besov空間)設(shè)p(·).q(·)∈C(R3)(R3)且s(·)∈Clog(R3),則齊次變指數(shù)Fourier-Besov空間定義為
f的B()范數(shù)定義為
類似可定義L°(0,T;FB),L°(0,T;B)空間中緩增分布函數(shù)f的范數(shù).
引理Ice不等給定一個(gè)可測集A和可測函數(shù)r(())(A),則存在一個(gè)常數(shù)C使得當(dāng)()gA(A)時(shí)有
引理2
引理3(Sobolev不等式)[18]設(shè)po(·),p1(·)∈(R3)且50(·),s1(·)∈L(R3)∩C(R3)(s,(·)gt;s1(·).
1)若((R)和()“()-”是局部I,則
2)若%()()+是局部log-Holder連續(xù)的,則()()()(),其中ess infe(x)gt;0.
引理4(Mollification:不萬等式)設(shè)p(·)∈Cn(R3),f∈L(R3),ゅ∈L(R3),(x)=y“(y)”可積,則有
其中()C依賴于
引理5[10]設(shè)0≤a≤2且0lt;5≤tlt;∞,則對任意的y,z∈R3,有
2線性項(xiàng)和非線性項(xiàng)的估計(jì)
考慮下列方程:
方程(4)的解可由Stokes-Coriolis半群Ta(t)表示為
其中u∈(R3),I是M3x3(R)中的單位矩陣,R(ξ)是斜對稱矩陣:
根據(jù)Duhamel原則,方程(1)的解可寫為
對Tn.a(t)的推導(dǎo)可參考文獻(xiàn)[20].
下面給出關(guān)于半群{Ta(t)1gt;的估計(jì)
引理6(GR()(·))=4+1且…則有
其中0∈R.
證明:由定義2、引理1和Fourier乘子T.(t)有界可得
其中第4行不等式的估計(jì)用到了如下估計(jì)結(jié)果:
引理7 設(shè)G)(·-+.1則有
其中Ω∈R.
證明:由定義2、引理1、引理3、引理4和Hausdorff-Young不等式,可得
其中最后一個(gè)不等式的估計(jì)用到了如下估計(jì)結(jié)果:
3 分?jǐn)?shù)階Boussinesq-Coriolis方程解的整體適定性
定理1設(shè)(·C(R%().lt;1.·=41存在一個(gè)足夠小的常數(shù)egt;0,使得uol+Ilt;則此時(shí)方程(1)有唯一的整體解
進(jìn)一歩設(shè)()CR(R)(·)C(R)(·)=42+g-若存在一個(gè)常數(shù)cgt;0,使得2≤1(·)≤c≤p(·)≤6/(5-4a),則上述解仍滿足
證明:設(shè)M,6gt;0,
在該空間上定義度量為
易見(X,d)是一個(gè)度量空間.考慮映射:
其中AΩ,α(t)= TΩ,α(t) 0 0 e-t(-Δ) ? è ?? ? ? α ÷÷ ,P∶=I-?(-Δ)-1 為零散度向量域上的 Helmholtz投影.下面證明中下E:(X,d)→(X,d)是一個(gè)壓縮映射
首先,估計(jì)線性項(xiàng)Tn.。(t)u。和e-“-△00.根據(jù)引理6,有
且‖e-(-)?!?.00()≤‖0?!?(),類似地,有
此外,對于p=∞和p1(·)=p(·),Tn.a(t)uo和e——△)。的估計(jì)如下:
其次,估計(jì)剩余項(xiàng).根據(jù)定義2、引理2~引理4和Hausdorff-Young不等式,有
其中第3行不等式的估計(jì)用到了如下估計(jì)結(jié)果:
同理,根據(jù)引理7和式(6),可得
此外,還有
最后,證明解的存在性和唯一性.設(shè)Y=L(0,∞;2))(0,∞;+52-2)L(0,∞;2/2-2a),則有
令=M=2(ol+I-)lt;2C,若e足夠小,則有‖更(u)l+‖()l≤+-.且d((),()lt;d().())當(dāng)e足夠小時(shí),由Banach壓縮映射原理可知三維分?jǐn)?shù)階Boussinesq-Coriolis方程具有唯一的整體解,且滿足
另一方面,設(shè)
則有
設(shè)
若足夠小,則有‖u+=且d
當(dāng)ε足夠小時(shí),由Banach壓縮映射原理可知三維分?jǐn)?shù)階Boussinesq-Coriolis方程具有唯一的整體解,且滿足
注1變指數(shù)Fourier-Besov空間)是方程(1)的臨界空間.若u(t,x)是方程(1)的解,則u(t.x)=2u(t,x)也是方程(1)的一個(gè)解,且
4分?jǐn)?shù)階Boussinesq-Coriolis方程解的Gevrey類正則性
定理2(Gery類正則性)設(shè)p(·)∈C(R2)(R2),lt;a1.2≤(·)≤(·)≤≤2-對任意初()()若存在一個(gè)正常數(shù)使待l(o,)lt;,則定理1的解是正則的,且滿足
其中eID|°是一個(gè)Fourier乘子,其象征定義為e.
證明:設(shè) Bu B ? è ? ? ? ÷ θ =Hα(t) ?u è ? ? ? ÷ θ ,其中 Hα(t)= et D α 0 0 et D ? è ? ? ? ? ÷ α ÷ ,由式(5)得
類似定理1的證明,只需證以下結(jié)論.由e1-11=eー2+lt;e和引理5,有
其中,
參考文獻(xiàn)
[1]KANG K,LEE J,NGUYEN DD.Global Well-Posedness and Stability of the 2D Boussinesq Equations with Partial Dissipation Near a Hydrostatic Equilibrium[J].Journal of Differential Equations,2024,393(1):1-57.
[2] IBRAHIM S.SULAIMAN T A,YUSUF A,etal.Wave Propagation to the Doubly Dispersive Equation and the Improved Boussinesq Equation[J/OL].Optical and Quantum Electronics,(2023-11-23)[2024-01-11].https://doi.org/10.1007/s11082-023-05571-5.
[3]SUN J Y,CUI S B.Sharp Well-Posedness and Ill-Posedness of the Three-Dimensional Primitive Equations of Geophysics in Fourier-Besov Spaces[J].Nonlinear Analysis:Real World Applications,2019,48:445-465.
[4]WANG W H.Global Well-Posedness and Analyticity for the 3D Fractional Magnetohydrodynamics Equations in Variable Fourier-Besov Spaces[J].Zeitschrift fur AngewandteMathematik und Physik,2019,70(6):163-1-163-16.
[5]ABIDIN M Z,CHEN J C.Global Well-Posedness for Fractional Navier-Stokes Equations in Variable Exponent Fourier-Besov-Morrey Spaces[J].Acta Mathematica Scientia:Series B(English Edition),2021,41(1):164-176.
[6]ABIDIN M Z,ULLAH N,OMER O A.Global Well-Posedness and Analyticity of the Primitive Equations of Geophysics in Variable Exponent Fourier-Besov Spaces[J].Symmetry,2022,14(1):165-1-165-12.
[7]SUN J Y,LIU C L,YANG M H.Global Solutions to 3D Rotating Boussinesq Equations in Besov Spaces[J].Journal of Dynamics and Differential Equations,2020,32(2):589-603.
[8]SUN X C,WU Y L,XU G T.Global Well-Posedness for the 3D Rotating Boussinesq Equations in Variable Exponent Fourier-Besov Spaces[J].AIMS Mathematics,2023,8(11):27065-27079.
[9]汝少雷.不可壓Navier-Stokes方程在變指標(biāo)函數(shù)空間上的整體適定性[J].中國科學(xué):數(shù)學(xué),2018,48(10):1427-1442.(RU S L.Global Well-Posedness of the Incompressible Navier-Stokes Equations in Function Spaces with Variable Exponents[J].Scientia Sinica:Mathematics,2018,48(10):1427-1442.)
[10]OUIDIRNE F.AZANZAL A,ALLALOU C,etal.Well-Posedness and Analyticity for the Viscous Primitive Equations of Geophysics in Critical Fourier-Besov-Morrey Spaces with Variable Exponents[J].International Journal of Nonlinear Analysis and Applications,2023,14(1):2915-2929.
[11]ABIDIN M Z,MARWAN M,ULLAH N,etal.Well-Posedness in Variable-Exponent Function Spaces for the Three-Dimensional Micropolar Fluid Equations[J/OL].Journal of Mathematics,(2023-12-26)[2024-07-07].doi:10.1155/2023/4083997.
[12]ABIDIN M Z,CHEN J C.Global Well-Posedness of the Generalized Rotating Magnetohydrodynamics Equations in Variable Exponent Fourier-Besov Spaces[J].Journal of Applied Analysis and Computation,2021,11(3):1177-1190.
[13]OUIDIRNE F,ALLALOU C,OUKESSOU M.Analyticity for the Fractional Navier-Stokes Equations in Critical Fourier-Besov-Morrey Spaces with Variable Exponents[J/OL].Boletim da SociedadeParanaense de Matematica(3rd Serie),(2024-05-02)[2024-07-07].https://doi.org/10.5269/bspm.62956.
[14]OUIDIRNE F,SRHIRI H,ALLALOU C,etal.Global Existence for the 3-D Generalized Micropolar Fluid System in Critical Fourier-Besov Spaces with Variable Exponent[J].Nonlinear Dynamics and Systems Theory,2023,23(3):338-347.
[15]AZANZAL A,ALLALOU C,MELLIANI S.Well-Posedness,Analyticity and Time Decay of the 3D Fractional Magneto-Hydrodynamics Equations in Critical Fourier-Besov-Morrey Spaces with Variable Exponent[J].Journal of Elliptic and Parabolic Equations,2022,8(2):723-742.
[16]ABIDIN M Z.CHEN J C.Global Well-Posedness and Analyticity of Generalized Porous Medium Equation in Fourier-Besov-Morrey Spaces with Variable Exponent[J/OL].Mathematics,(2021-02-28)[2024-07-07].https://doi.org/10.3390/math9050498.
[17]JACOBN.Pseudo Differential Operators and Markov Processes:Vol.3[M].London:Imperial College Press.2005:1-474.
[18]ALMEIDAà,H?ST?P.Besov Spaces with Variable Smoothness and Integrability[J].Journal of FunctionalAnalysis,2010,258(5):1628-1655.
[19]ABIDIN M Z,CHEN J C.Global Well-Posedness of Generalized Magnetohydrodynamics Equations in Variable Exponent Fourier-Besov-Morrey Spaces[J].Acta Mathematica Sinica(English Series),2022,38(12):2187-2198.
[20]WANG W H,WU G.Global Mild Solution of the Generalized Navier-Stokes Equations with the Coriolis Force[J].Applied Mathematics Letters,2018,76(1):181-186.
(責(zé)任編輯:趙立芹)