国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

鐵路自復(fù)位橋墩地震動(dòng)最不利輸入方向研究

2024-01-01 00:00:00祝浩然夏修身鐘亞偉戴勝勇
地震工程學(xué)報(bào) 2024年6期

摘要: 為探究地震動(dòng)輸入角度對(duì)鐵路自復(fù)位橋墩地震反應(yīng)的影響,以一座簡(jiǎn)支梁橋?yàn)楣こ瘫尘埃⒖臻g自復(fù)位橋墩地震反應(yīng)分析模型,并對(duì)模型進(jìn)行驗(yàn)證。選擇22組強(qiáng)震記錄作為地震動(dòng)輸入,以屈服面函數(shù)Ψ作為判別最不利輸入角度的標(biāo)準(zhǔn),從0°開(kāi)始順時(shí)針旋轉(zhuǎn),每次增加5°,進(jìn)行鐵路自復(fù)位橋墩地震反應(yīng)分析。結(jié)果表明:145°輸入時(shí),Ψ值最大,145°為橋墩最不利輸入角度;在最不利方向下橋墩的地震反應(yīng)大于順橋向和橫橋向。自復(fù)位橋墩設(shè)計(jì)時(shí)若不考慮地震動(dòng)最不利輸入方向,則偏于不安全。

關(guān)鍵詞: 自復(fù)位橋墩; 三維地震動(dòng); 最不利角度; 屈服面函數(shù)

中圖分類(lèi)號(hào): U442.59 文獻(xiàn)標(biāo)志碼:A 文章編號(hào): 1000-0844(2024)06-1380-07

DOI:10.20000/j.1000-0844.20230706001

Critical angle of earthquake input for self-centering

bridge piers of railways

ZHU Haoran1, XIA Xiushen1, ZHONG Yawei2, DAI Shengyong2

(1. Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;

2. China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031, Sichuan, China)

Abstract: To investigate the influence of ground motion input angles on the seismic response of railway self-centering piers, a seismic response analysis model for spatial self-centering bridge piers was established and validated using a simply supported beam bridge as the case study. A total of 22 sets of strong motion records were selected as seismic inputs. The yield surface function Ψ was used to determine the critical input angle. Starting from an initial angle of 0°, the seismic response of the railway self-resetting pier was examined by rotating clockwise, increasing the angle by 5° increments each time. The results show that the value of Ψ was maximized at an input angle of 145°, designating this as the critical input angle for the pier. The seismic response in this critical direction surpassed those observed in the longitudinal and transverse directions. Designs that ignore the critical angle of ground motion in the design of self-centering bridge piers may be unsafe.

Keywords: self-centering pier;three-dimensional ground motion;critical angle;yield surface function

0 引言

由于地震動(dòng)的空間性和不確定性,不同的地震動(dòng)輸入方向會(huì)引起結(jié)構(gòu)不同的地震反應(yīng)。普通橋梁結(jié)構(gòu)只需考慮水平向地震作用,按順橋向或橫橋向分別輸入地震動(dòng),即可得到最不利地震反應(yīng)[1。而地震動(dòng)輸入方向?qū)?fù)雜結(jié)構(gòu)的影響則需要進(jìn)一步研究。Torbol等 [2研究表明不考慮地震動(dòng)的入射角會(huì)明顯低估橋梁結(jié)構(gòu)的地震反應(yīng)。單德山等3利用增量動(dòng)力分析方法探究了薄壁橋墩的最不利輸入角度,發(fā)現(xiàn)橋墩的地震反應(yīng)和地震動(dòng)入射角有關(guān)。李小珍等[4以某鐵路部分斜拉橋?yàn)檠芯繉?duì)象,提出在進(jìn)行地震反應(yīng)分析時(shí),應(yīng)考慮豎向地震動(dòng)及水平地震動(dòng)最不利輸入方向的影響。韓恩圳等[5研究發(fā)現(xiàn),對(duì)于豎向振型為主的結(jié)構(gòu),應(yīng)考慮多維地震動(dòng)輸入并計(jì)算出結(jié)構(gòu)的最不利角度。王滔等[6研究發(fā)現(xiàn),橋墩的最不利方向與結(jié)構(gòu)自身特性和輸入的地震波有關(guān)。國(guó)內(nèi)外學(xué)者對(duì)最不利方向的研究方法主要基于能量法和反應(yīng)譜法。Lpez等[7提出了利用反應(yīng)譜形狀來(lái)確定最不利入射方向的方法。馮云田等8引入結(jié)構(gòu)抗震主軸的概念,利用結(jié)構(gòu)最大變形來(lái)確定地震動(dòng)的最不利輸入方向。范立礎(chǔ)等[9利用輸入能量和屈服面函數(shù)的方法研究了復(fù)雜結(jié)構(gòu)地震動(dòng)輸入最不利方向的標(biāo)準(zhǔn)。

Housner等[10在20世紀(jì)60年代提出搖擺隔震的概念,其可以作為一種有效的隔震方法。司炳君等[11、孫治國(guó)等12和鐘正午等13通過(guò)試驗(yàn)與模擬相結(jié)合,驗(yàn)證了搖擺自復(fù)位橋墩擁有較好的抗震性能。Palermo等[14-16、Solberg等[17和Ou等[18提出了一種采用無(wú)黏結(jié)預(yù)應(yīng)力技術(shù)并內(nèi)置耗能鋼筋的新型搖擺橋墩設(shè)計(jì),通過(guò)擬靜力和擬動(dòng)力試驗(yàn)驗(yàn)證了這種新型搖擺橋墩具有較好的自復(fù)位能力,可以顯著減小橋墩損傷。夏修身等[19-20提出中等高度鐵路橋墩可以采用自由搖擺的方法隔震,并通過(guò)試驗(yàn)證明了隔震搖擺橋墩具有自復(fù)位能力。鐵路自復(fù)位橋墩的墩柱截面多是圓端形,這種截面的縱、橫向尺寸相差大,各個(gè)方向的慣性矩不同,在地震力作用下的抗側(cè)承載力和耗能能力也不同,因此,圓端形截面各個(gè)方向的抗震能力是有差異的。當(dāng)?shù)卣饎?dòng)沿著斜向方向作用時(shí),很難判定橋墩是否被破壞,再加上橋墩的提離搖擺與輸入方向有關(guān),因此,探究鐵路自復(fù)位橋墩的最不利輸入方向是有必要的。

本文以一座鐵路簡(jiǎn)支梁橋?yàn)楣こ瘫尘?,建立空間自復(fù)位橋墩地震反應(yīng)分析模型,并對(duì)模型進(jìn)行驗(yàn)證;選擇22組近斷層地震動(dòng)記錄作為地震動(dòng)輸入,以屈服面函數(shù)作為判別最不利輸入角度的方法,從0°方向開(kāi)始順時(shí)針旋轉(zhuǎn),每次增加5°,對(duì)鐵路自復(fù)位橋墩的地震反應(yīng)進(jìn)行分析,探討其最不利輸入方向。

1 模型的建立與驗(yàn)證

1.1 工程背景

本文以云南省大理至瑞麗線漾濞1號(hào)特大橋18號(hào)橋墩為工程背景(圖1)。上部結(jié)構(gòu)為等跨簡(jiǎn)支箱形梁,跨度32.7 m;下部結(jié)構(gòu)為圓端形空心高墩,墩高58 m,墩底截面尺寸為7 m(順橋向)×9.1 m(橫橋向)×1.12 m(壁厚)。對(duì)傳統(tǒng)的18號(hào)橋墩進(jìn)行再設(shè)計(jì),使其成為自復(fù)位橋墩。再設(shè)計(jì)后的墩底擴(kuò)大基礎(chǔ)為C30混凝土,寬B=10 m,截面面積A0=120 m2,全截面縱向配筋率及配箍率均為0.7%。自復(fù)位橋墩的設(shè)計(jì)過(guò)程及詳細(xì)設(shè)計(jì)參數(shù)見(jiàn)文獻(xiàn)[21]。

1.2 模型建立

采用81個(gè)豎向只受壓不受拉彈簧模型來(lái)模擬三維地震動(dòng)下自復(fù)位橋墩的提離搖擺,基于MIDAS/Civil分析軟件建立自復(fù)位橋墩空間多彈簧模型(圖2)[21。模型橋墩由360個(gè)節(jié)點(diǎn)和430個(gè)單元組成,墩身由梁?jiǎn)卧M,承臺(tái)和擴(kuò)大基礎(chǔ)由剛臂單元模擬。利用集中質(zhì)量模擬橋跨重量,在第27和第230個(gè)節(jié)點(diǎn)處施加靜力荷載,擴(kuò)大基礎(chǔ)的質(zhì)量集中于重心?;A(chǔ)兩端area1、area2區(qū)各布置36根彈簧,基礎(chǔ)中部area3區(qū)布置9根彈簧。只受壓彈簧的模型和力-位移關(guān)系如圖2所示。參考文獻(xiàn)[22],空間多彈簧分布如圖3所示,提離彈簧的豎向剛度按式(1)、(2)計(jì)算(表1)。

karea1amp;2=6.83G/1-ν (1)

karea3=0.73G/1-ν (2)

式中:karea1amp;2為基礎(chǔ)area1區(qū)和area2區(qū)每平方米的彈簧剛度;karea3為基礎(chǔ)area3區(qū)每平方米的彈簧剛度;G為基礎(chǔ)材料的剪切模量;ν為基礎(chǔ)材料的泊松比。

1.3 模型驗(yàn)證

夏修身等[22-23針對(duì)鐵路自復(fù)位橋墩提出了一種簡(jiǎn)化的兩彈簧模型,并通過(guò)振動(dòng)臺(tái)試驗(yàn)驗(yàn)證了用兩彈簧模型模擬自復(fù)位橋墩提離搖擺的合理性。在文獻(xiàn)[24-25]中,兩彈簧模型通過(guò)OpenSees平臺(tái),可以在地震動(dòng)作用下較好地模擬自復(fù)位橋墩的地震反應(yīng),因此,本文利用其對(duì)鐵路自復(fù)位橋墩空間多彈簧模型進(jìn)行驗(yàn)證。選取Northridge波、El-Centro波、Taft波三條強(qiáng)震記錄,將地面峰值加速度(Peak Ground Acceleration,PGA)統(tǒng)一調(diào)整為0.57g。兩彈簧模型和空間多彈簧模型在三種地震波輸入下的墩頂位移和墩底彎矩的對(duì)比列于表2,在Northridge波作用下墩頂位移和墩底彎矩的比較分別如圖4、5所示。

通過(guò)表2可以看出,兩個(gè)模型的墩頂位移在Northridge波下相差最小(0.5%),在El-Centro波下相差4.0%;墩底彎矩在Northridge波、El-Centro波下相差6.3%,在Taft波下相差最大(7.7%)。通過(guò)圖4、5可以看出,在Northridge波下兩個(gè)模型的墩頂位移和墩底彎矩時(shí)程曲線吻合較好。由此可知,空間多彈簧模型可以較好地模擬自復(fù)位橋墩的地震反應(yīng)。

2 地震波選取

根據(jù)Vamvatsikos等[26的研究,20組地震工況即可反映地震動(dòng)的不確定性。將震中距2~15 km,地面峰值速度(Peak Ground Velocity,PGV)>10 cm/s,PGA>0.2g,PGV/PGA較大,速度脈沖的持時(shí)不得小于0.5 s作為選取近斷層地震波的條件,從美國(guó)太平洋強(qiáng)震數(shù)據(jù)庫(kù)(Pacific Earthquake Engineering Research Center,PEER)中選取22組近斷層地震波。每組地震波包括兩個(gè)水平分量(NS,EW)和1個(gè)垂直分量(UP)。

3 算例分析

以1.1節(jié)的背景橋墩作為研究對(duì)象,采用1.3節(jié)中經(jīng)過(guò)驗(yàn)證的空間多彈簧模型,進(jìn)行地震動(dòng)最不利輸入角度分析。以表3中22組近斷層地震波為三向輸入,在0°~180°中,兩個(gè)水平方向的地震動(dòng)沿順時(shí)針輸入,每次輸入角度間隔為5°。

3.1 最不利輸入角度的評(píng)判方法

自復(fù)位橋墩在三向地震動(dòng)輸入下會(huì)產(chǎn)生兩個(gè)方向的彎矩,即順橋向彎矩Mye和橫橋向彎矩Mze。兩個(gè)方向的彎矩相互影響,任何單一方向地震動(dòng)輸入所達(dá)到的最大彎矩不能作為判別截面最不利方向的標(biāo)準(zhǔn)。為了研究自復(fù)位橋墩在三維地震動(dòng)下的最不利方向,采用Bresler等[27和孟杰等28給出的屈服面函數(shù)Ψ[式(3)]作為最不利輸入方向判定標(biāo)準(zhǔn)。當(dāng)Ψlt;1時(shí),橋墩處于線彈性狀態(tài);當(dāng)Ψ≥1時(shí),橋墩則達(dá)到屈服狀態(tài)。

Mye/My02+Mze/Mz02=Ψ (3)

式中:My0為墩底順橋向初始屈服彎矩;Mz0為墩底橫橋向初始屈服彎矩。

3.2 地震動(dòng)最不利輸入角度分析

以22組近斷層地震動(dòng)下橋墩所產(chǎn)生的地震反應(yīng)平均值作為橋墩地震反應(yīng),采用恒載軸力與地震軸力最不利組合FN,計(jì)算18號(hào)橋墩的墩底屈服彎矩My0及Mz0。沿0°方向輸入地震動(dòng)時(shí),順橋向?yàn)镹S,橫橋向?yàn)镋W,豎向?yàn)閁P,22組地震波均為原始數(shù)據(jù)(未調(diào)幅)。地震動(dòng)輸入角度θ為順橋向NS地震波與X軸方向、橫橋向EW地震波與Y軸方向的夾角。為尋找最不利輸入角度,保持輸入地震動(dòng)三向正交不變,將地震動(dòng)輸入方向沿0°方向順時(shí)針旋轉(zhuǎn),每次增加5°。各個(gè)角度下的屈服面函數(shù)Ψ值列于表4(圖6)。

結(jié)合圖6、表4可以看出,屈服面函數(shù)Ψ在地震動(dòng)145°輸入下最大,Ψ為1.008且大于1,這表明此時(shí)自復(fù)位橋墩達(dá)到屈服狀態(tài)。表4中屈服面函數(shù)值在除145°外的其他角度下均小于1,說(shuō)明145°是三向地震動(dòng)輸入時(shí)鐵路自復(fù)位橋墩的最不利輸入角度,且三向地震動(dòng)輸入時(shí)墩底彎矩反應(yīng)也大于順橋向或橫橋向單獨(dú)輸入。因此,自復(fù)位橋墩設(shè)計(jì)時(shí)若不考慮地震動(dòng)最不利輸入方向,則偏于不安全。

4 結(jié)論

(1) 給出了能考慮多角度提離的鐵路自復(fù)位橋墩空間多彈簧模型建立方法,并與經(jīng)過(guò)振動(dòng)臺(tái)試驗(yàn)驗(yàn)證的兩彈簧模型結(jié)果進(jìn)行比較,發(fā)現(xiàn)空間多彈簧模型可以較好地模擬自復(fù)位橋墩的地震反應(yīng)。

(2) 提出了采用屈服面函數(shù)判別鐵路自復(fù)位橋墩地震動(dòng)最不利輸入角度的方法。

(3) 鐵路自復(fù)位橋墩地震動(dòng)最不利輸入方向不一定是順橋向或橫橋向。本研究中橋墩地震動(dòng)最不利輸入角度為145°,在此方向下墩底彎矩反應(yīng)大于順橋向和橫橋向輸入。自復(fù)位橋墩設(shè)計(jì)時(shí)若不考慮地震動(dòng)最不利輸入方向,則偏于不安全。

參考文獻(xiàn)(References)

[1]中華人民共和國(guó)交通運(yùn)輸部.公路橋梁抗震設(shè)計(jì)規(guī)范:JTG/T 2231-01—2020[S].北京:人民交通出版社,2020.

Ministry of Transport of the People's Republic of China.Specifications for seismic design ofhighway bridges:JTG/T 2231-01—2020[S].Beijing:China Communications Press,2020.

[2]TORBOL M,SHINOZUKA M.Effect of the angle of seismic incidence on the fragility curves of bridges[J].Earthquake Engineering amp; Structural Dynamics,2012,41(14):2111-2124.

[3]單德山,韓璐璐,瞿發(fā)憲,等.地震動(dòng)入射角對(duì)空心薄壁高墩橋梁地震易損性的影響[J].交通運(yùn)輸工程學(xué)報(bào),2020,20(6):90-103.

SHAN Deshan,HAN Lulu,QU Faxian,et al.Impact of ground motion incident angles on seismic vulnerability for bridge with thin-walled hollow tall pier[J].Journal of Traffic and Transportation Engineering,2020,20(6):90-103.

[4]李小珍,洪沁燁,雷虎軍,等.地震動(dòng)輸入方向?qū)﹁F路部分斜拉橋地震響應(yīng)的影響[J].橋梁建設(shè),2015,45(1):26-32.

LI Xiaozhen,HONG Qinye,LEI Hujun,et al.Effect of input directions of seismic ground motion on seismic responses of a railway extradosed bridge[J].Bridge Construction,2015,45(1):26-32.

[5]韓恩圳,何浩祥,呂永偉.三維地震動(dòng)下結(jié)構(gòu)最不利入射角度研究[J].振動(dòng)工程學(xué)報(bào),2016,29(1):132-139.

HAN Enzhen,HE Haoxiang,Lü Yongwei.Critical angle of structure subjected to three-dimensional ground motion[J].Journal of Vibration Engineering,2016,29(1):132-139.

[6]王滔,郭恩棟,張麗娜,等.大跨斜拉橋地震動(dòng)最不利輸入方向分析[J].世界地震工程,2007,23(4):107-111.

WANG Tao,GUO Endong,ZHANG Li'na,et al.The critical direction of earthquake input for dynamic analysis of a long span cable-stayed bridge[J].World Earthquake Engineering,2007,23(4):107-111.

[7]LPEZ O A,TORRES R.The critical angle of seismic incidence and the maximum structural response[J].Earthquake Engineering amp; Structural Dynamics,1997,26(9):881-894.

[8]馮云田,李明瑞,林春哲.復(fù)雜結(jié)構(gòu)的彈性地震反應(yīng)分析[J].地震工程與工程振動(dòng),1991,11(4):77-86.

FENG Yuntian,LI Mingrui,LIN Chunzhe.Elastic earthquake response analysis for complex structures[J].Earthquake Engineering and Engineering Vibration,1991,11(4):77-86.

[9]范立礎(chǔ),聶利英,李建中.復(fù)雜結(jié)構(gòu)地震波輸入最不利方向標(biāo)準(zhǔn)問(wèn)題[J].同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2003,31(6):631-636.

FAN Lichu,NIE Liying,LI Jianzhong.Discussion on standard of critical angle of seismic wave in seismic analysis of complicated structures[J].Journal of Tongji University,2003,31(6):631-636.

[10]HOUSNER G W.The behavior of inverted pendulum structures during earthquakes[J].The Bulletin of the Seismological Society of America,1963,53(2):403-417.

[11]司炳君,谷明洋,孫治國(guó),等.近斷層地震動(dòng)下?lián)u擺-自復(fù)位橋墩地震反應(yīng)分析[J].工程力學(xué),2017,34(10):87-97.

SI Bingjun,GU Mingyang,SUN Zhiguo,et al.Seismic response analysis of the rocking self-centering bridge piers under the near-fault ground motions[J].Engineering Mechanics,2017,34(10):87-97.

[12]孫治國(guó),趙泰儀,石巖,等.搖擺-自復(fù)位橋墩抗震性能數(shù)值建模方法研究[J].應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2019,27(6):1357-1369.

SUN Zhiguo,ZHAO Taiyi,SHI Yan,et al.Research on numerical modeling method for rocking self-centering bridge piers[J].Journal of Basic Science and Engineering,2019,27(6):1357-1369.

[13]鐘正午,石巖,秦洪果,等.搖擺-自復(fù)位橋墩的多彈簧模型建模方法研究[J].世界地震工程,2021,37(4):197-205.

ZHONG Zhengwu,SHI Yan,QIN Hongguo,et al.Simulation method for multi-spring model of rocking self-centering pier[J].World Earthquake Engineering,2021,37(4):197-205.

[14]PALERMO A,PAMPANIN S,CALVI G M.Concept and development of hybrid solutions for seismic resistant bridge systems[J].Journal of Earthquake Engineering,2005,9(6):899-921.

[15]PALERMO A,PAMPANIN S,MARRIOTT D.Design,modeling,and experimental response of seismic resistant bridge piers with posttensioned dissipating connections[J].Journal of Structural Engineering,2007,133(11):1648-1661.

[16]PALERMO A,PAMPANIN S.Enhanced seismic performance of hybrid bridge systems:comparison with traditional monolithic solutions[J].Journal of Earthquake Engineering,2008,12(8):1267-1295.

[17]SOLBERG K,MASHIKO N,MANDER J B,et al.Performance of a damage-protected highway bridge pier subjected to bidirectional earthquake attack[J].Journal of Structural Engineering,2009,135(5):469-478.

[18]OU Y C,WANG P H,TSAI M S,et al.Large-scale experimental study of precast segmental unbonded posttensioned concrete bridge columns for seismic regions[J].Journal of Structural Engineering,2010,136(3):255-264.

[19]夏修身,陳興沖.鐵路高墩橋梁基底搖擺隔震與墩頂減震對(duì)比研究[J].鐵道學(xué)報(bào),2011,33(9):102-107.

XIA Xiushen,CHEN Xingchong.Controlled rocking and pier top seismic isolation of railway bridge with tall piers[J].Journal of the China Railway Society,2011,33(9):102-107.

[20]XIA X S,ZHANG X Y,SHI J,et al.Seismic isolation of railway bridges using a self-centering pier[J].Smart Structures and Systems,2021,27(3):447-455.

[21]夏修身,陳興沖,李建中.高墩自復(fù)位隔震機(jī)理[J].中南大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,46(7):2549-2557.

XIA Xiushen,CHEN Xingchong,LI Jianzhong.Isolation mechanism of self-centering tall pier[J].Journal of Central South University (Science and Technology),2015,46(7):2549-2557.

[22]夏修身,陳興沖.樁基礎(chǔ)高墩搖擺隔震分析模型研究[J].鐵道學(xué)報(bào),2013,35(11):86-91.

XIA Xiushen,CHEN Xingchong.Study on analytical model for rocking isolation of tall piers with pile foundations[J].Journal of the China Railway Society,2013,35(11):86-91.

[23]夏修身,唐徑遙,韋性涵,等.自復(fù)位高墩振動(dòng)臺(tái)模型試驗(yàn)[J].世界地震工程,2020,36(1):109-117.

XIA Xiushen,TANG Jingyao,WEI Xinghan,et al.Shaking table test of self-centering model bridge pier[J].World Earthquake Engineering,2020,36(1):109-117.

[24]史軍,夏修身,唐徑遙.遠(yuǎn)場(chǎng)長(zhǎng)周期地震動(dòng)對(duì)自復(fù)位高墩地震反應(yīng)的影響[J].地震工程與工程振動(dòng),2021,41(5):249-255.

SHI Jun,XIA Xiushen,TANG Jingyao.Influence of far-field long-period ground motion on seismic response of self-centering high piers[J].Earthquake Engineering and Engineering Dynamics,2021,41(5):249-255.

[25]夏修身,李建中.近場(chǎng)地震動(dòng)對(duì)樁基礎(chǔ)高墩搖擺反應(yīng)的影響[J].哈爾濱工業(yè)大學(xué)學(xué)報(bào),2014,46(4):82-86.

XIA Xiushen,LI Jianzhong.Effect of near-field ground motion on the rocking response of tall pier with pile foundations[J].Journal of Harbin Institute of Technology,2014,46(4):82-86.

[26]VAMVATSIKOS D,CORNELL C A.Incremental dynamic analysis[J].Earthquake Engineering amp; Structural Dynamics,2002,31(3):491-514.

[27]BRESLER B.Design criteria for reinforced columns under axial load and biaxial bending[J].ACI Journal Journal,1960,57(11):481-490.

[28]孟杰,劉釗.基于屈服面的曲線梁橋地震動(dòng)最不利輸入方向[J].振動(dòng)與沖擊,2013,32(3):115-118.

MENG Jie,LIU Zhao.Critical angle of seismic incidence for curved bridges based on a yield surface[J].Journal of Vibration and Shock,2013,32(3):115-118.

(本文編輯:趙乘程)

西乡县| 富裕县| 遂昌县| 东光县| 丁青县| 佳木斯市| 肇东市| 绥化市| 邢台市| 循化| 聂荣县| 商都县| 容城县| 汉中市| 开封市| 石台县| 章丘市| 花莲县| 双桥区| 宁阳县| 中西区| 梁山县| 米脂县| 民丰县| 阿拉善盟| 太和县| 鹤壁市| 湘乡市| 县级市| 嘉义县| 隆化县| 贡山| 清涧县| 定边县| 昌邑市| 涞源县| 保靖县| 彰化市| 崇阳县| 察雅县| 外汇|