顏培涵,羅健銘,郝晨星,孫紫青,葉蓉春,李益,劉戀,盛玲,馬先鋒,鄧子牛
枸櫞C-05上游轉(zhuǎn)錄因子CmWRKY75的篩選及其抗?jié)儾」δ芊治?/p>
顏培涵,羅健銘,郝晨星,孫紫青,葉蓉春,李益,劉戀,盛玲,馬先鋒,鄧子牛
湖南農(nóng)業(yè)大學(xué)園藝學(xué)院/園藝作物種質(zhì)創(chuàng)新與新品種選育教育部工程研究中心/國家柑橘改良中心長沙分中心,長沙 410128
【背景】柑橘潰瘍?。–itrus canker)是由黃單胞桿菌柑橘致病變種(subsp.)引起的危害嚴重的柑橘病害之一,目前尚無根治方法,而現(xiàn)有栽培品種中很少有對柑橘潰瘍病存在顯著抗性的品種,因此,抗病品種的選育對根治該病害尤其重要,而抗性基因的發(fā)掘又非常利于抗病育種?!灸康摹恳澡蹤碈-05的抗?jié)儾∠嚓P(guān)基因為誘餌,篩選其上游轉(zhuǎn)錄因子,探究轉(zhuǎn)錄因子參與調(diào)控枸櫞C-05抗?jié)儾〉墓δ茏饔?,為選育柑橘抗病品種提供基因信息?!痉椒ā炕谇捌诒浅群丸蹤碈-05葉片接種的轉(zhuǎn)錄組測序結(jié)果,結(jié)合實時熒光定量PCR分析在抗病和感病種質(zhì)中的表達差異,使用PlantCARE對枸櫞C-05(抗?。┖捅浅龋ǜ胁。﹩幼有蛄羞M行差異分析,利用酵母單雜交篩選上游轉(zhuǎn)錄因子,并使用酵母回轉(zhuǎn)驗證、雙熒光素酶驗證和候選轉(zhuǎn)錄因子的互作關(guān)系。在8種抗病和感病柑橘種質(zhì)中,人工接種后,于0、2、4、6和8 d時取注射點附近的葉片,對轉(zhuǎn)錄因子的表達水平進行分析,驗證其與抗病的關(guān)系。通過農(nóng)桿菌介導(dǎo)瞬時轉(zhuǎn)化法,將帶有35S啟動子的轉(zhuǎn)錄因子載體在枸櫞C-05和冰糖橙葉片中瞬時過表達,使用qRT-PCR對轉(zhuǎn)錄因子和表達水平進行分析,并在瞬時過表達24 h后接種,進行菌定量和癥狀觀察。【結(jié)果】接種的枸櫞C-05和冰糖橙的轉(zhuǎn)錄組分析及定量PCR表達結(jié)果顯示,在接種4、6和8 d時,抗病種質(zhì)枸櫞C-05中的表達量顯著高于感病的冰糖橙。枸櫞C-05和冰糖橙的啟動子在-236 bp處存在順式作用元件W-box的差異,以此為依據(jù)進行啟動子短截并構(gòu)建誘餌載體。依據(jù)自激活結(jié)果,在200 ng·mL-1的金擔子素(AbA)濃度下,以為誘餌,在枸櫞C-05受誘導(dǎo)下的酵母文庫中進行酵母單雜交篩選,表明CmWRKY75可以與互作,雙熒光素酶報告系統(tǒng)也證實二者的互作關(guān)系,且CmWRKY75正調(diào)控的表達。在8種柑橘種質(zhì)葉片接種后進行的表達模式分析表明,表達量在抗病種質(zhì)枸櫞C-05、美國枸櫞AV、矮果香櫞中顯著上調(diào),在感病種質(zhì)冰糖橙、沙田柚及檸檬、南川香櫞和丹娜香櫞中只出現(xiàn)微量上調(diào)。在枸櫞C-05和冰糖橙葉片中瞬時過表達WRKY75,發(fā)現(xiàn)的表達量在接種4 d時顯著上調(diào)且能增強葉片對的抗性。【結(jié)論】CmWRKY75可以結(jié)合到啟動子的W-box上,并正調(diào)控的表達,增強葉片對的抗性。同時的表達受誘導(dǎo),在抗病種質(zhì)中呈顯著上調(diào)表達,與在抗病感種質(zhì)中的表達變化趨勢一致,可能是上游調(diào)控因子WRKY75在不同抗病和感病柑橘種質(zhì)中表達差異導(dǎo)致,從而使其在枸櫞C-05抗?jié)儾∵^程中起作用。
柑橘潰瘍?。昏蹤碈-05;;轉(zhuǎn)錄因子;WRKY75
【研究意義】柑橘潰瘍病是一種世界性的檢疫性病害,是柑橘植株所面臨的最為嚴重的細菌性病害之一,對柑橘的生產(chǎn)栽培造成了嚴重的危害[1]。柑橘潰瘍病由柑橘黃單胞桿菌柑橘亞種(subsp.,)所引起[2],主要從傷口、氣孔等處侵入植物葉片、新梢和幼果,形成火山口狀典型病斑,嚴重時會導(dǎo)致落葉、落果,使果實產(chǎn)量、品質(zhì)下降,甚至失去商業(yè)價值[3]。目前,柑橘潰瘍病尚無根治方法,生產(chǎn)中主要采取預(yù)防為主、綜合防治的策略[4]。因此,挖掘抗性基因、選育抗病品種具有重要意義?,F(xiàn)有栽培種中很少對柑橘潰瘍病有顯著抗性的品種,而筆者課題組經(jīng)過十余年的篩選,獲得了能夠穩(wěn)定抗柑橘潰瘍病的柑橘屬種質(zhì)——枸櫞C-05[5],并鑒定到與枸櫞C-05抗性相關(guān)的調(diào)控基因[6]。因此,明確枸櫞C-05中存在的抗病調(diào)控基因,闡明調(diào)控柑橘抗?jié)儾〉淖饔脵C理,對選育抗病柑橘種質(zhì)具有重要意義。【前人研究進展】植物在生長發(fā)育的過程中總是受到各種病原微生物(如細菌、真菌和病毒等)的侵害,因此進化出復(fù)雜的抗性機制。植物的免疫應(yīng)答調(diào)控機制分為兩種,一種是通過模式識別受體(pattern recognition receptors,PRRs)識別病原菌相關(guān)分子模式(pathogen-associated molecular pattern,PAMP)后進行跨膜信號傳導(dǎo)的PTI(pattern-triggered immunity)反應(yīng);另一種依靠R基因編碼的具有多態(tài)性的NB-LRR蛋白識別病原菌效應(yīng)子(effector)而觸發(fā)的ETI(effector-triggered immunity)反應(yīng)[7-8]。植物病程相關(guān)(pathogenesis related,PR)基因編碼的病程相關(guān)蛋白(pathogenesis-related proteins,PRs)在體外試驗中具有抑制病原菌生理活性的潛在作用,并且在響應(yīng)生物脅迫或非生物脅迫過程中,其編碼的病程相關(guān)蛋白的積累和植株抗性存在緊密關(guān)系[9]。各種病原菌都可以引起的生成,而且不僅在受感染的組織中表達,還在其他未受感染的組織中逐漸積累。這些基因能夠在相當長的時間內(nèi)有效地抵抗該病原菌或其他病原體的入侵,從而使整個植株具備了系統(tǒng)性獲得抗性(systemic acquired resistance,SAR)[10-11]。PR蛋白根據(jù)來源植物、氨基酸序列特征、酶活性等分為17個家族[12-13],其中,PR4基因家族編碼幾丁質(zhì)酶,能夠通過降解真菌細胞壁中的幾丁質(zhì)來增強對真菌的抵抗力[14-15],同時也能夠?qū)毦圆『Ξa(chǎn)生防御反應(yīng)[16]。有研究表明,毛花獼猴桃PR2蛋白對由丁香假單胞桿菌獼猴桃致病變種引起的獼猴桃潰瘍病菌具有一定的抗性[17];在甘蔗白條黃單胞菌的侵染下顯著提高[18];柑橘潰瘍病作為一種由柑橘黃單胞桿菌引起的嚴重細菌性病害,在侵染柑橘葉片后會引起、、、、和的顯著上調(diào)表達[6]。這些均說明PR蛋白作為植物抗病性的標志,在植株抵御細菌性病害中起到重要作用。PR4家族根據(jù)其是否有幾丁質(zhì)結(jié)合域(chitin-binding domain,CBD)分為兩大類:I類PR4蛋白含有CBD,如擬南芥PR4蛋白[19];II類PR蛋白不含有CBD,只含有Barwin結(jié)構(gòu)域,如煙草PR4蛋白[20]和辣椒PR4蛋白[21]。已有研究表明,VpPR4-1與中國野生葡萄抵御白粉病相關(guān)[22],MdPR4與蘋果對再植病害病原的識別和抗性反應(yīng)相關(guān)[23]。筆者課題組前期研究發(fā)現(xiàn),抗病種質(zhì)枸櫞C-05葉片中表達量顯著高于感病種質(zhì),且PR4A蛋白可以抑制柑橘潰瘍病菌生長[6]。植物免疫反應(yīng)中信號通路的有序傳導(dǎo)與轉(zhuǎn)錄因子的調(diào)節(jié)密不可分,其中,WRKY轉(zhuǎn)錄因子起著重要的作用,它能夠特異性地識別并結(jié)合W-box(TTGACC/T)DNA順式作用元件[24],因此,可以通過分析目標基因啟動子是否含有W-box元件來篩選WRKY轉(zhuǎn)錄因子。WRKYs轉(zhuǎn)錄因子在植物先天免疫系統(tǒng)的兩個分支(PTI和ETI)中發(fā)揮著重要作用,可以正向或負向調(diào)節(jié)不同病原菌侵染的抗性反應(yīng)[25-28]。在水稻中,WRKY62過表達和敲除株系呈現(xiàn)出對白葉枯病抗感性的相反趨勢,過表達植株更易感病,而敲除植株抗病性更強[28]。將在葡萄中篩選得到的抗性基因轉(zhuǎn)入擬南芥可以增強轉(zhuǎn)基因植株對白粉病的抗性,卻降低了對灰霉病的抗性[29]。蘋果MdWRKY75能夠與啟動子中的W-box結(jié)合,導(dǎo)致根系木質(zhì)素積累從而增強蘋果對腐皮鐮孢菌的抗性[30]。此外,WRKY轉(zhuǎn)錄因子可以與其家族中的其他蛋白質(zhì)相互作用,共同調(diào)節(jié)植物對病原體的抗性。OsWRKY13能夠與的啟動子結(jié)合,增強表達,從而增強水稻對白葉枯病的抗性反應(yīng)[31]。因此,作為植物特有的轉(zhuǎn)錄調(diào)節(jié)因子,WRKY轉(zhuǎn)錄因子在植物的抗病調(diào)控過程中起重要作用?!颈狙芯壳腥朦c】筆者課題組前期發(fā)表的轉(zhuǎn)錄組數(shù)據(jù)分析表明,在抗病種質(zhì)枸櫞C-05中上調(diào)表達,且顯著高于感病種質(zhì)冰糖橙。但是如何參與柑橘抵御潰瘍病菌的機制仍未有研究?!緮M解決的關(guān)鍵問題】本研究以啟動子為誘餌,通過酵母單雜交篩選其上游轉(zhuǎn)錄因子,進一步解析參與枸櫞C-05抵御潰瘍病菌侵染的分子機制。
試驗于2020年10月至2023年2月在國家柑橘改良中心長沙分中心進行。
植物材料為抗?jié)儾》N質(zhì)枸櫞C-05、美國枸櫞AV、矮果香櫞和感潰瘍病種質(zhì)冰糖橙、沙田柚、檸檬、南川香櫞和丹娜香櫞,均為2年生枳砧嫁接苗。于湖南農(nóng)業(yè)大學(xué)國家柑橘改良中心長沙分中心植物病理溫室培育,培養(yǎng)條件為溫度28 ℃,相對濕度80%,16 h光照/ 8 h黑暗。本氏煙()播種至營養(yǎng)土中,4 ℃冰箱放置2 d后,于植物人工氣候室培養(yǎng),培養(yǎng)條件為溫度22 ℃、相對濕度70%、8 h光照/16 h黑暗。
柑橘潰瘍病菌(subsp,)為湖南農(nóng)業(yè)大學(xué)國家柑橘改良中心長沙分中心分離純化的DL509菌株(亞洲A系),保存于-80 ℃冰箱。挑取活化的單菌落在液體LB培養(yǎng)基中28 ℃培養(yǎng)至OD600=0.6,用無菌水稀釋10 000倍至濃度為105cfu/mL備用。
選擇上述8個柑橘種質(zhì)均完全展開但尚未轉(zhuǎn)為深綠色的葉片,從葉背注射接種105cfu/mL的,在溫室正常生長條件下培養(yǎng),取0、2、4、6和8 d時接種口周圍葉片,用液氮速凍儲存于-80 ℃冰箱用于后續(xù)RNA提取。
根據(jù)甜橙基因組數(shù)據(jù)庫(http://citrus.hzau.edu.cn/)查找和啟動子序列,并使用Plant CARE(https://bioinformatics.psb.ugent.be/webtools/ plantcare/html/)預(yù)測和的順式作用元件,根據(jù)W-box差異位點對啟動子進行短截,設(shè)計引物進行擴增(表1)。同時,使用I/I酶切載體pAbAi,按ClonExepress II-C112(Vazyme)說明書進行同源重組連接,采用化學(xué)轉(zhuǎn)化法將連接產(chǎn)物轉(zhuǎn)入大腸桿菌DH10B感受態(tài),并涂布于含羧芐青霉素的LB平板篩選。經(jīng)PCR陽性克隆鑒定單菌落后搖菌,提取質(zhì)粒并送至北京擎科生物科技有限公司(長沙)進行測序,正確質(zhì)粒命名為-pAbAi和-pAbAi。
采用PEG/LiAc法將誘餌載體- pAbAi和-pAbAi轉(zhuǎn)化至Y1H Gold感受態(tài)細胞中,陽性鑒定后保存誘餌酵母菌株。同時,使用金擔子素(AbA)進行誘餌載體酵母菌株的自激活檢測,根據(jù)菌落生長情況確定能抑制誘餌載體自激活最低AbA濃度。陽性對照為-AbAi和pGADT7-53的共轉(zhuǎn)酵母菌株Y1H Gold,陰性對照為-AbAi與pGADT7-T的共轉(zhuǎn)酵母菌株Y1H Gold。
供試酵母cDNA文庫為筆者實驗室構(gòu)建的抗病種質(zhì)枸櫞C-05受誘導(dǎo)的cDNA文庫。將已轉(zhuǎn)化至Y1H Gold感受態(tài)細胞的-pAbAi酵母菌株在YPDA平板上于30 ℃劃線活化培養(yǎng)3 d后,加入文庫質(zhì)粒,使用PEG/LiAc法進行轉(zhuǎn)化,最后用6 mL 0.9% NaCl重懸菌液,涂布于SD/-leu+AbA200平板上。30 ℃倒置培養(yǎng)3—5 d后,挑取篩選培養(yǎng)基上單菌落進行陽性克隆鑒定,將>500 bp的PCR產(chǎn)物送測序。
將已轉(zhuǎn)化的酵母菌株-pAbAi劃線搖菌,制備感受態(tài)細胞,采用PEG/LiAc法將構(gòu)建好的候選轉(zhuǎn)錄因子pGADT7載體質(zhì)粒轉(zhuǎn)化進制備好的感受態(tài)細胞中,依次點板于SD/-leu、SD/-leu+AbA200的平板上,根據(jù)菌落生長情況確定-pAbAi與候選轉(zhuǎn)錄因子是否互作。
將構(gòu)建至植物表達載體pCambia1300- YFP,構(gòu)建至pGreenII0800-LUC,將構(gòu)建好的載體陽性克隆提取質(zhì)粒轉(zhuǎn)化入GV3101(引物序列見表1)。通過農(nóng)桿菌介導(dǎo)在煙草葉片中按照轉(zhuǎn)錄因子﹕啟動子=10﹕1的比例進行注射,3 d后取注射孔附近的葉片進行測定。雙熒光素酶活性的測定采用Dual-Luciferase Reporter Assay System試劑盒。
通過PlantTFDB(http://planttfdb.gao-lab.org/index. php)對WRKY家族轉(zhuǎn)錄因子進行檢索查詢,并結(jié)合甜橙網(wǎng)(http://citrus.hzau.edu.cn/)進行序列比對,將得到的WRKY轉(zhuǎn)錄因子在冰糖橙和枸櫞C-05對響應(yīng)的轉(zhuǎn)錄組數(shù)據(jù)中查找,使用TBtools軟件進行基因表達矩陣熱圖分析,得到在冰糖橙和枸櫞C-05中存在明顯差異表達的基因進行后續(xù)驗證。
將含有質(zhì)粒和pCambia 1300原始質(zhì)粒(空載體對照)的農(nóng)桿菌EHA105菌液用MgCl2緩沖液(10 mmol·L-1MgCl2+10 mmol·L-1MES+100 μmol·L-1AS)重懸至OD600=0.6,靜置2 h后注射至枸櫞C-05和冰糖橙完全展開但尚未完全轉(zhuǎn)為綠色的功能葉上。采集處理2、4 d后的葉片,用液氮速凍儲存于-80 ℃冰箱用于后續(xù)RNA提取,用于瞬時表達WRKY75后的表達分析。注射瞬時過表達菌液24 h后在相同位置注射105cfu/mL,收集接種3 d后的葉片用于單位葉面積含量測定,保留3個重復(fù)葉片進行后續(xù)的癥狀觀察,用于瞬時過表達WRKY75后葉片對的抗性分析。
使用直徑為0.5 cm的打孔器,取接種葉片非注射孔的部位3個葉圓片,將葉圓片置于含有500 μL無菌水和3顆滅菌鋼珠的2 mL離心管中研磨至勻漿狀,研磨液作為100,梯度稀釋10-1、10-2、10-3后,取10 μL菌液滴于LB平板上,每個梯度重復(fù)3次。在28 ℃條件下培養(yǎng)2 d,直至能夠觀察到黃綠色單菌落。統(tǒng)計單菌落數(shù)量,并計算單位面積(cm2)葉片上菌落數(shù)量。
利用艾科瑞公司的總RNA提取試劑盒SteadyPure Plant RNA Extraction Kit(Code No. AG21019)進行總RNA提取,然后使用艾科瑞公司的5×Evo M-MLV RT Master Mix試劑盒(A4A1436)反轉(zhuǎn)錄合成cDNA。利用NCBI在線分析工具Primer-BLAST(https://www. ncbi.nlm.nih.gov/tools/primer-blast/)設(shè)計檢測引物(表1),以為內(nèi)參基因。使用2×ChamQ Universal SYBR?qPCR Master Mix(Q711-02)(Vazyme,中國)作為熒光染料,反應(yīng)總體積10 μL(其中cDNA(100 ng·μL-1)1 μL、上/下游引物(10 μmol·L-1)各0.2 μL、2×qPCR Master Mix 5 μL、ddH2O補充至10 μL)。反應(yīng)條件為:95 ℃ 2 min;95 ℃ 5 s,60 ℃ 30 s,40個循環(huán)。計算基因相對表達量用2-??CT法,通過IBM SPSS Statistics 26軟件的單因素方差分析法進行差異顯著性分析。
表1 本研究所用引物
枸櫞C-05和冰糖橙響應(yīng)接種的轉(zhuǎn)錄組數(shù)據(jù)對比分析發(fā)現(xiàn),在接種后第4、6和8天,枸櫞C-05中的表達量顯著高于冰糖橙(圖1-A)。此外,qPCR驗證表明,在接種后第4、6和8天的枸櫞C-05中,表達量受潰瘍病菌誘導(dǎo)上調(diào)表達,且顯著高于對照(圖1-B)。表明很可能參與了枸櫞C-05抗?jié)儾∵^程。
通過比對分析抗病種質(zhì)枸櫞C-05和感病種質(zhì)冰糖橙的啟動子序列,發(fā)現(xiàn)與WRKY轉(zhuǎn)錄因子結(jié)合的順式作用元件W-box在-236 bp處存在差異,以此為依據(jù)對啟動子進行短截(圖2-A)。以枸櫞C-05 DNA為模板,擴增得到(0—-516 bp)片段(圖2-B)。AbA濃度篩選結(jié)果顯示1 000 ng·mL-1AbA無法抑制-pAbAi的生長(圖2-C)。因此,繼續(xù)短截啟動子至-317 bp處,AbA篩選結(jié)果顯示200 ng·mL-1AbA可以抑制-pAbAi的生長,可用于后續(xù)文庫篩選(圖2-D)。
在200 ng·mL-1AbA下,以-pAbAi為誘餌,在枸櫞C-05受柑橘潰瘍病菌誘導(dǎo)的酵母文庫中進行單雜交篩選,共得到8個轉(zhuǎn)錄因子(表2)。為了驗證-pAbAi與其潛在上游轉(zhuǎn)錄因子的互作關(guān)系,將8個轉(zhuǎn)錄因子構(gòu)建至pGADT7載體上獲得重組質(zhì)粒,進行酵母單雜交回轉(zhuǎn)驗證。結(jié)果顯示,只有-pGADT7和-pAbAi共轉(zhuǎn)化的酵母可以在含有200 ng·mL-1AbA的缺陷型培養(yǎng)基上生長(圖3),表明CmWRKY75可以與-pAbAi互作。
A:枸櫞C-05和冰糖橙轉(zhuǎn)錄組中PR4A的表達量;B:枸櫞C-05和冰糖橙接種Xcc后PR4A的qRT-PCR檢測。*表示差異顯著(P<0.05)。下同
A:枸櫞C-05 CmPR4A啟動子短截示意圖;B:CmPR4A短截啟動子克?。籑:DNA Marker;C:proCmPR4A-1-pAbAi(0— -516 bp)誘餌載體自激活驗證;D:proCmPR4A-2-pAbAi(0—-317 bp)誘餌載體自激活驗證
表2 CmPR4A上游轉(zhuǎn)錄因子在Xcc誘導(dǎo)的枸櫞C-05酵母文庫中的篩庫結(jié)果
陽性對照為p53-AbAi和pGADT7-53互作;陰性對照為p53-AbAi與pGADT7-T互作
為了進一步驗證CmWRKY75和互作關(guān)系,在300 ng·mL-1AbA下,以- pAbAi+pGADT7和pAbAi+CmWRKY75-pGADT7為陰性對照,進行回轉(zhuǎn)驗證。結(jié)果表明,CmWRKY75與在酵母中存在互作(圖4-A)。進一步用煙草瞬時表達體系進行雙熒光素酶試驗驗證二者在植物體內(nèi)的互作,結(jié)果顯示,瞬時過表達CmWRKY75可以提高報告基因的活性(圖4-B),表明CmWRKY75與啟動子存在互作并能夠增強啟動子轉(zhuǎn)錄激活活性。
為了探究是否存在其他受誘導(dǎo)的WRKY轉(zhuǎn)錄因子能直接調(diào)控的表達,通過分析枸櫞C-05和冰糖橙受誘導(dǎo)的轉(zhuǎn)錄組,篩選在枸櫞C-05和冰糖橙中存在表達變化差異的WRKY轉(zhuǎn)錄因子。熱圖分析發(fā)現(xiàn),有9個WRKY轉(zhuǎn)錄因子的表達量在冰糖橙和枸櫞C-05中差異明顯,分別為、、、、、、、和(圖5-A)。在枸櫞C-05中將這9個轉(zhuǎn)錄因子構(gòu)建至pGADT7載體上獲得重組質(zhì)粒,進行酵母單雜交回轉(zhuǎn)驗證。結(jié)果顯示,只有()可以與-pAbAi結(jié)合,在酵母中互作(圖5-B)。
為了進一步驗證是否參與柑橘種質(zhì)對潰瘍病的抗性反應(yīng),在抗病種質(zhì)枸櫞C-05、美國枸櫞AV、矮果香櫞和感病種質(zhì)南川香櫞、丹娜香櫞及冰糖橙、沙田柚和檸檬葉片接種后進行的表達模式分析。結(jié)果顯示,在所有種質(zhì)中,的表達量自接種4 d后開始有不同程度的上升,但在抗病種質(zhì)枸櫞C-05、美國枸櫞AV、矮果香櫞中顯著上調(diào),在感病種質(zhì)中只出現(xiàn)微量上調(diào)(圖6)。表明的表達受誘導(dǎo)在抗病種質(zhì)中呈現(xiàn)顯著上調(diào)表達,其很可能參與了枸櫞C-05抗?jié)儾∵^程。
為了進一步驗證在柑橘中的表達量是否受WRKY75的影響,在枸櫞C-05和冰糖橙葉片中瞬時過表達CmWRKY75,以p1300農(nóng)桿菌(EV)為對照,定量PCR檢測和的表達量變化。結(jié)果顯示,瞬時過表達CmWRKY75和CsWRKY75后,接種2和4 d的材料中表達量均上調(diào),且顯著高于對照(圖7-A、圖7-C)。而且在接種2和4 d時也出現(xiàn)上調(diào)表達,但是只在接種4 d時顯著高于對照(圖7-B、圖7-D)。表明在枸櫞C-05和冰糖橙中瞬時過表達WRKY75能夠增強的表達。
為了進一步探究瞬時過表達WRKY75對抗性的影響,在枸櫞C-05和冰糖橙葉片中瞬時過表達WRKY75農(nóng)桿菌24 h后,在相同位置注射。接種3 d時,單位葉面積菌定量結(jié)果顯示,在枸櫞C-05葉片上過表達WRKY75后,含量顯著低于空載體對照(EV);而在冰糖橙葉片上過表達WRKY75后,含量與EV相比略微減少,但差異不顯著(圖8-A、圖8-C)。癥狀觀察結(jié)果顯示,接種15 d時枸櫞C-05瞬時過表達WRKY75后的葉片部位比EV有更少的細小水漬狀病斑(圖8-B)。接種15 d時冰糖橙瞬時過表達WRKY75后的葉片部位比EV葉片上單位面積形成水漬狀和灰白色愈傷狀病斑的數(shù)量更少,病斑也更?。▓D8-D)。菌定量和癥狀觀察表明,在枸櫞C-05和冰糖橙葉片中瞬時表達WRKY75能增強葉片對的抗性。
A:WRKY家族基因在冰糖橙和枸櫞C-05中受Xcc誘導(dǎo)的表達熱圖;B:9個差異表達的WRKY家族基因與proCmPR4A-2-pAbAi酵母互作驗證。紅色箭頭表示枸櫞C-05和冰糖橙受Xcc誘導(dǎo)表達變化差異的WRKY轉(zhuǎn)錄因子
作為植物響應(yīng)生物脅迫的重要環(huán)節(jié),在模式植物上對PR蛋白的研究比較深入,但關(guān)于PR4蛋白在柑橘抗?jié)儾≈械淖饔孟鄬ρ芯枯^少。本研究通過對感病種質(zhì)冰糖橙和抗病種質(zhì)枸櫞C-05注射接種柑橘潰瘍病菌的轉(zhuǎn)錄組和定量結(jié)果進行分析,發(fā)現(xiàn)在枸櫞C-05中的表達量出現(xiàn)明顯上調(diào),且顯著高于冰糖橙,說明很可能參與了枸櫞C-05抗?jié)儾∵^程。有研究表明,辣椒與LRR1相互作用,抑制引發(fā)的辣椒細胞死亡和防御反應(yīng)[16];在葡萄上已有研究表明,與中國野生葡萄‘留壩-8’抵抗霜霉病相關(guān)[32],與中國野生葡萄抵御白粉病相關(guān)[22];與蘋果對再植病害病原的識別和抗性反應(yīng)相關(guān)[23]。綜上,可以增強植物抗病性,與本研究得出的增強柑橘潰瘍病抗性結(jié)果相一致。而植物表面的受體可以感知到生物或非生物脅迫等環(huán)境信號,通過一系列復(fù)雜的信號傳導(dǎo)途徑激活轉(zhuǎn)錄因子;同時,相關(guān)基因啟動子上的順式作用元件為這些轉(zhuǎn)錄因子的結(jié)合提供附著位點,從而調(diào)控下游基因如的表達[33]。因此,要了解轉(zhuǎn)錄調(diào)控表達模式需要對該基因的啟動子序列特征進行分析,并以此為依據(jù)篩選上游調(diào)控因子,從而揭示該基因的調(diào)控機制。
Citron C-05:枸櫞C-05;MGJY:美國枸櫞American citron;AGXY:矮果香櫞Aiguo citron;Bingtang Sweet orange:冰糖橙;STY:沙田柚 Shatian Yu pummelo;NM:檸檬Lemon;NCXY:南川香櫞Nanchuan citron;DNXY:丹娜香櫞Danna citron。紅色系為抗病種質(zhì);藍色系為感病種質(zhì)The red series represents resistant genotypes, while the blue series represents susceptible genotypes
圖7 在枸櫞C-05和冰糖橙葉片中瞬時表達WRKY75后WRKY75和PR4A的表達量
A、B:枸櫞C-05;C、D:冰糖橙 A, B:Citron C-05; C, D: Bingtang Sweet orange
分析啟動子在抗病和感病種質(zhì)上的W-box差異后,以啟動子為誘餌,通過酵母單雜交篩選其上游轉(zhuǎn)錄因子WRKY75。WRKY轉(zhuǎn)錄因子作為植物轉(zhuǎn)錄因子中重要的家族之一,廣泛參與植物對多種抗病信號的調(diào)節(jié)。在蘋果中過表達增強植株抗病性[34];擬南芥中過表達,也顯著提高其對輪紋病的抗性[35]。在柑橘中,Qin等[36]研究表明甜橙WRKY22通過調(diào)控的表達來調(diào)節(jié)對潰瘍病的易感性;響應(yīng)外源SA誘導(dǎo),在抑制柑橘采后綠霉病發(fā)生的過程中具有顯著效果[37]。轉(zhuǎn)錄因子WRKY75在模式植物擬南芥以及園藝植物柑橘、葡萄和草莓等中研究廣泛,在調(diào)節(jié)植株生長發(fā)育以及抗逆反應(yīng)中均起到重要作用。Guo等[38]研究發(fā)現(xiàn)在擬南芥葉片衰老過程中,WRKY75、SA和ROS的表達水平在正反饋循環(huán)的驅(qū)動下逐漸升高。盧婷等[39]對檸檬、甜橙、金橘等進行脅迫處理發(fā)現(xiàn),受低溫、干旱和高鹽等非生物脅迫誘導(dǎo)表達。本研究篩選到的WRKY75轉(zhuǎn)錄因子是否也在柑橘葉片衰老,以及逆境脅迫下發(fā)生表達變化,后續(xù)還要進一步探究。在WRKY75調(diào)控抗病反應(yīng)方面,擬南芥WRKY75可能與ET信號或其他防御相關(guān)蛋白的成分復(fù)合,最后調(diào)節(jié)對壞死性病原體的防御反應(yīng)[26]。近期,張娜[40]利用擬南芥突變體和轉(zhuǎn)基因葡萄愈傷組織驗證了WRKY75參與抗葡萄霜霉病的功能。本研究結(jié)果表明WRKY75轉(zhuǎn)錄因子在抗病種質(zhì)中顯著上調(diào),在感病種質(zhì)中只出現(xiàn)微量上調(diào),且在瞬時過表達后能增強冰糖橙和枸櫞C-05對的抗性,表明其很可能參與了枸櫞C-05抗?jié)儾∵^程。但是由于瞬時表達的不穩(wěn)定性,后續(xù)還將通過轉(zhuǎn)基因過表達和敲除來進行詳細的功能驗證。
W-box是WRKY轉(zhuǎn)錄因子特異的結(jié)合元件[41]。通過對擬南芥的啟動子分析,發(fā)現(xiàn)在同一個啟動子中平均會出現(xiàn)4.3個W-box,說明WRKY轉(zhuǎn)錄因子在響應(yīng)抗病反應(yīng)中起重要作用[42]。在煙草中,VvWRKY2通過與上的W-box結(jié)合從而激活其表達,進而調(diào)節(jié)轉(zhuǎn)基因煙草對灰葡萄孢菌的抗性[43]。蘋果MdWRKY75能夠與MdRF114啟動子中的W-box結(jié)合,導(dǎo)致根系木質(zhì)素積累從而增強蘋果對腐皮鐮孢菌的抗性[30]。中國野生葡萄中VpWRKY75調(diào)控下游靶基因的表達[40];WRKY40和WRKY75可以結(jié)合到啟動子上,從而增強對霜霉病的抗性[44]。為了探明WRKY轉(zhuǎn)錄因子在參與枸櫞C-05抗?jié)儾〉姆肿訖C制,本研究以WRKY轉(zhuǎn)錄因子能夠特異性地識別并結(jié)合DNA順式作用元件W-box為依據(jù),對抗/感種質(zhì)的啟動子序列進行分析,發(fā)現(xiàn)抗病種質(zhì)枸櫞C-05和感病種質(zhì)冰糖橙的啟動子上的W-box在-236 bp處存在差異,因此,以含有差異位點的枸櫞C-05啟動子區(qū)域為誘餌,篩選發(fā)現(xiàn)CmWRKY75可以通過W-box結(jié)合到的啟動子上,且CmWRKY75正調(diào)控的表達,這與張娜[40]和劉兵等[44]在葡萄中得到的結(jié)果一致,說明WRKY轉(zhuǎn)錄因子可以與結(jié)合,調(diào)控植物的抗病反應(yīng)。同時定量結(jié)果發(fā)現(xiàn),的表達受誘導(dǎo)在抗病種質(zhì)中呈現(xiàn)顯著上調(diào)表達,這與在抗病感種質(zhì)中的變化趨勢一致,表明在抗病種質(zhì)出現(xiàn)上調(diào)表達可能是上游調(diào)控因子在不同抗病和感病種質(zhì)中表達量的差異所導(dǎo)致。但枸櫞C-05受到侵染后,是通過何種通路引起的表達上調(diào),后續(xù)還需繼續(xù)探究的上游調(diào)控因子,進行關(guān)鍵基因的挖掘及穩(wěn)定遺傳轉(zhuǎn)化,進一步揭示枸櫞C-05抗柑橘潰瘍病的分子機制,為柑橘產(chǎn)業(yè)發(fā)展提供理論支持。
枸櫞C-05轉(zhuǎn)錄因子CmWRKY75與啟動子互作,正調(diào)控的表達。瞬時過表達WRKY75后能增強冰糖橙和枸櫞C-05對的抗性,而且在抗病種質(zhì)中受到誘導(dǎo)后顯著上調(diào)表達,這與在抗病和感病種質(zhì)中的變化趨勢一致。枸櫞C-05 CmWRKY75與互作調(diào)控參與抗病反應(yīng),進一步揭示了枸櫞C-05抗?jié)儾〉姆肿訖C制。
[1] SUDYOUNG N, TOKUYAMA S, KRAJANGSANG S, PRINGSULAKA O, SARAWANEEYARUK S. Bacterial antagonists and their cell-free cultures efficiently suppress canker disease in citrus lime. Journal of Plant Diseases and Protection, 2020, 127(2): 173-181.
[2] BEHLAU F, GOCHEZ A M, JONES J B. Diversity and copper resistance ofaffecting citrus. Tropical Plant Pathology, 2020, 45(3): 200-212.
[3] GOCHEZ A M, BEHLAU F, SINGH R, ONG K, WHILBY L, JONES J B. Panorama of citrus canker in the United States. Tropical Plant Pathology, 2020, 45(3): 192-199.
[4] FERENCE CHRISTOPHER M, GOCHEZ ALBERTO M, FRANKLIN B, NIAN W, GRAHAM JAMES H, JONES JEFFREY B. Recent advances in the understanding ofssp.pathogenesis and citrus canker disease management. Molecular Plant Pathology, 2018, 19(6): 1302-1318.
[5] DENG Z N, XU L, LI D Z, LONG G Y, LIU L P, FANG F, SHU G P. Screening citrus genotypes for resistance to canker disease (pv.). Plant Breeding, 2009, 129(3): 341-345.
[6] 郝晨星. 響應(yīng)柑橘潰瘍病菌侵染的枸櫞C-05抗性基因PR4A的鑒定[D]. 長沙: 湖南農(nóng)業(yè)大學(xué), 2019.
HAO C X. Identification ofC-05 resistance genein response toulcer infection [D]. Changsha: Hunan Agricultural University, 2019. (in Chinese)
[7] DANGL J L, JONES J D G. Plant pathogens and integrated defence responses to infection. Nature, 2001, 411(6839): 826-833.
[8] YUAN M H, NGOU B P M, DING P T, XIN X F. PTI-ETI crosstalk: An integrative view of plant immunity. Current Opinion in Plant Biology, 2021, 62: 102030.
[9] SELS J, MATHYS J, DE CONINCK B M A, CAMMUE B P A, DE BOLLE M F C. Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiology and Biochemistry, 2008, 46(11): 941-950.
[10] 劉紅霞, 趙晨輝, 劉洋, 李增海, 梁英海, 張冰冰. 植物系統(tǒng)獲得抗病性及其信號調(diào)控. 吉林農(nóng)業(yè)科學(xué), 2012, 37(2): 38-41, 51.
LIU H X, ZHAO C H, LIU Y, LI Z H, LIANG Y H, ZHANG B B. Systematic acquired resistance (SAR) of plant and its signal regulation. Journal of Jilin Agricultural Sciences, 2012, 37(2): 38-41, 51. (in Chinese)
[11] 張玉, 楊愛國, 馮全福, 蔣彩虹, 耿銳梅, 羅成剛. 植物病程相關(guān)蛋白及其在煙草中的研究進展. 生物技術(shù)通報, 2012(5): 20-24.
ZHANG Y, YANG A G, FENG Q F, JIANG C H, GENG R M, LUO C G. Plant pathogenesis-related proteins and research progress in tobacco. Biotechnology Bulletin, 2012(5): 20-24. (in Chinese)
[12] ALEXANDER D, GOODMAN R M, GUT-RELLA M, GLASCOCK C, WEYMANN K, FRIEDRICH L, MADDOX D, AHL-GOY P, LUNTZ T, WARD E. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proceedings of the National Academy of Sciences of the United States of America 1993, 90(15): 7327-7331.
[13] MUTHUKRISHNAN S, LIANG G H, TRICK H N, GILL B S. Pathogenesis-related proteins and their genes in cereals. Plant Cell, Tissue and Organ Culture, 2001, 64(2): 93-114.
[14] AWADE A, DE TAPIA M, DIDIERJEAN L, BURKARD G. Biological function of bean pathogenesis-related (PR 3 and PR 4) proteins. Plant Science, 1989, 63(2): 121-130.
[15] KIM Y J, LEE H J, JANG M G, KWON W S, KIM S Y, YANG D C. Cloning and characterization of pathogenesis-related protein 4 gene from. Russian Journal of Plant Physiology, 2014, 61(5): 664-671.
[16] HWANG I S, CHOI D S, KIM N H, KIM D S, HWANG B K. Pathogenesis-related protein 4b interacts with leucine-rich repeat protein1 to suppress PR4b-triggered cell death and defense response in pepper. The Plant Journal, 2014, 77(4): 521-533.
[17] REGLINSKI T, VANNESTE J L, SCHIPPER M M, CORNISH D A, YU J, OLDHAM J M, FEHLMANN C, PARRY F, HEDDERLEY D. Postharvest application of acibenzolar-S-methyl activates salicylic acid pathway genes in kiwifruit vines. Plants, 2023, 12(4): 833.
[18] ZHAO J Y, CHEN J, SHI Y, FU H Y, HUANG M T, ROTT P C, GAO S J. Sugarcane responses to two strains ofdiffering in pathogenicity through a differential modulation of salicylic acid and reactive oxygen species. Frontiers in Plant Science, 2022, 13: 1087525.
[19] SEO P J, LEE A K, XIANG F N, PARK C M. Molecular and functional profiling ofpathogenesis-related genes: Insights into their roles in salt response of seed germination. Plant and Cell Physiology, 2008, 49(3): 334-344.
[20] PONSTEIN A S, BRES-VLOEMANS S A, SELA-BUURLAGE M B, VAN DEN ELZEN P J, MELCHERS L S, CORNELISSEN B J. A novel pathogen- and wound-inducible tobacco () protein with antifungal activity. Plant Physiology, 1994, 104(1): 109-118.
[21] GUEVARA-MORATO M á, GARCíA DE LACOBA M, GARCíA- LUQUE I, SERRA M T. Characterization of a pathogenesis-related protein 4 (PR-4) induced inL3 plants with dual RNase and DNase activities. Journal of Experimental Botany, 2010, 61(12): 3259-3271.
[22] DAI L M, WANG D, XIE X Q, ZHANG C H, WANG X P, XU Y, WANG Y J, ZHANG J X. The novel gene VpPR4-1 fromincreases powdery mildew resistance in transgenicL. Frontiers in Plant Science, 2016, 7: 695.
[23] ZHOU Z, ZHU Y M, TIAN Y, YAO J L, BIAN S X, ZHANG H T, ZHANG R P, GAO Q M, YAN Z L. MdPR4, a pathogenesis-related protein in apple, is involved in chitin recognition and resistance response to apple replant disease pathogens. Journal of Plant Physiology, 2021, 260: 153390.
[24] RUSHTON P J, SOMSSICH I E, RINGLER P, SHEN Q J. WRKY transcription factors. Trends in Plant Science, 2010, 15(5): 247-258.
[25] ZHANG L P, CHEN L G, YU D Q. Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiology, 2018, 176(1): 790-803.
[26] CHEN L G, ZHANG L P, XIANG S Y, CHEN Y L, ZHANG H Y, YU D Q. The transcription factor WRKY75 positively regulates jasmonate-mediated plant defense to necrotrophic fungal pathogens. Journal of Experimental Botany, 2021, 72(4): 1473-1489.
[27] ZHANG H Y, ZHANG L P, JI Y R, JING Y F, LI L X, CHEN Y L, WANG R L, ZHANG H M, YU D Q, CHEN L G.factor binding protein1(sib1) and sib2 inhibit wrky75 function in abscisic acid-mediated leaf senescence and seed germination. Journal of Experimental Botany, 2022, 73(1): 182-196.
[28] LIU J Q, CHEN X J, LIANG X X, ZHOU X G, YANG F, LIU J, HE S Y, GUO Z J. Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense. Plant Physiology, 2016, 171(2): 1427-1442.
[29] WANG X H, GUO R R, TU M X, WANG D J, GUO C L, WAN R, LI Z, WANG X P. Ectopic expression of the wild grape WRKY transcription factor VqWRKY52 inenhances resistance to the biotrophic pathogen powdery mildew but not to the necrotrophic pathogen. Frontiers in Plant Science, 2017, 8: 97-110.
[30] LIU Y S, LIU Q W, LI X W, ZHANG Z J, AI S K, LIU C, MA F W, LI C. MdERF114 enhances the resistance of apple roots toby regulating the transcription of MdPRX63. Plant Physiology, 2023, 192(3): 2015-2029.
[31] QIU D Y, XIAO J, XIE W B, CHENG H T, LI X H, WANG S P. Exploring transcriptional signalling mediated by OsWRKY13, a potential regulator of multiple physiological processes in rice. BMC Plant Biology, 2009, 9: 74.
[32] LI M Y, JIAO Y T, WANG Y T, ZHANG N, WANG B B, LIU R Q, YIN X, XU Y, LIU G T. CRISPR/Cas9-mediated VvPR4b editing decreases downy mildew resistance in grapevine (L.). Horticulture Research, 2020, 7(1): 149-160.
[33] YANG T, WANG Y. Research progress of plant pathogenesis related protein PR-10. Plant Physiology Journal, 2017, 53: 2057-2068.
[34] 張遠嬿. 蘋果MdWRKY33基因的克隆與功能分析[D]. 沈陽: 沈陽農(nóng)業(yè)大學(xué), 2018.
ZHANG Y Y. Cloning and functional analysis of apple MdWRKY33 gene [D]. Shenyang: Shenyang Agricultural University, 2018. (in Chinese)
[35] 周茜茜, 邱化榮, 何曉文, 王憲璞, 劉秀霞, 李保華, 吳樹敬, 陳學(xué)森.介導(dǎo)提高蘋果與擬南芥對輪紋病菌的免疫抗性. 中國農(nóng)業(yè)科學(xué), 2018, 51(21): 4052-4064. doi: 10.3864/j.issn.0578- 1752.2018.21.005.
ZHOU Q Q, QIU H R, HE X W, WANG X P, LIU X X, LI B H, WU S J, CHEN X S.mediated improvement of the immune resistance of apple andto. Scientia Agricultura Sinica, 2018, 51(21): 4052-4064. doi: 10.3864/j.issn.0578-1752.2018.21.005. (in Chinese)
[36] LONG Q, DU M X, LONG J H, XIE Y, ZHANG J Y, XU L Z, HE Y R, LI Q, CHEN S C, ZOU X P. Transcription factor WRKY22 regulates canker susceptibility in sweet orange (Osbeck) by enhancing cell enlargement andexpression. Horticulture Research, 2021, 8(1): 50-65.
[37] DENG B, WANG W J, RUAN C Q, DENG L L, YAO S X, ZENG K F. Involvement of. Horticulture Research, 2020, 7: 157.
[38] GUO P R, LI Z H, HUANG P X, LI B S, FANG S, CHU J F, GUO H W. A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. The Plant Cell, 2017, 29(11): 2854-2870.
[39] 盧婷, 楊莉, 胡威, 匡柳青, 郭文芳, 沈丹, 劉德春, 劉勇. 柑橘抗逆基因的克隆與表達分析. 江西農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版), 2021, 43(1): 82-93.
LU T, YANG L, HU W, KUANG L Q, GUO W F, SHEN D, LIU D C, LIU Y. Cloning and expression analysis ofgenes in response to abiotic stresses. Acta Agriculturae Universitatis Jiangxiensis (Natural Sciences Edition), 2021, 43(1): 82-93. (in Chinese)
[40] 張娜. 中國野生葡萄VpWRKY75調(diào)控下游靶基因抗霜霉病的功能研究[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2021.
ZHANG N. Study on the function of China wild grape VpWRKY75 in regulating downstream target genes to resist downy mildew [D]. Yangling: Northwest A & F University, 2021. (in Chinese)
[41] TAN X L, FAN Z Q, LI L L, WU Y, KUANG J F, LU W J, CHEN J Y. Molecular characterization of a leaf senescence-related transcription factor BrWRKY75 of Chinese flowering cabbage. Horticultural Plant Journal, 2016, 2(5): 272-278.
[42] MALECK K, LEVINE A, EULGEM T, MORGAN A, SCHMID J, LAWTON K A, DANGL J L, DIETRICH R A. The transcriptome ofduring systemic acquired resistance. Nature Genetics, 2000, 26(4): 403-410.
[43] MZID R, MARCHIVE C, BLANCARD D, DELUC L, BARRIEU F, CORIO-COSTET M, DRIRA N, HAMDI S, LAUVERGEAT V. Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiologia Plantarum, 2007, 131(3): 434-447.
[44] 劉兵, 李夢媛, 張娜, 尚博興, 劉國甜, 徐炎. 中國野生葡萄抗霜霉病相關(guān)基因及其啟動子的克隆和功能分析. 園藝學(xué)報, 2021, 48(2): 265-275.
LIU B, LI M Y, ZHANG N, SHANG B X, LIU G T, XU Y. Cloning and functional analysis of the CDS and promoter ofgene response to downy mildew in Chinese wild grape. Acta Horticulturae Sinica, 2021, 48(2): 265-275. (in Chinese)
Identification of the Transcription Factor WRKY75 ofin Citron C-05 and Its Function Analysis in Resistance to Citrus Canker Disease
YAN PeiHan, LUO JianMing, HAO ChenXing, SUN ZiQing, YE RongChun, LI Yi, LIU Lian, SHENG Ling, MA XianFeng, DENG ZiNiu
College of Horticulture, Hunan Agricultural University/Engineering Research Center for Horticultural Crop Germplasm Creation and New Variety Breeding, Ministry of Education/National Center for Citrus Improvement (Changsha), Changsha 410128
【Background】Citrus canker is one of the serious citrus diseases caused bysubsp.(). There is currently no radical cure method for it, and few of the existing cultivars have sufficient resistance to citrus canker. Therefore, the breeding for resistant varieties is crucial for the radical cure of the disease, and the identification of resistant genes is beneficial to disease-resistant cultivar breeding.【Objective】The aim of this study was to use the resistance related geneto screen its upstream transcription factors, and to explore the role of transcription factors in resistance to, which could provide genetic information for the breeding of citrus disease resistant varieties.【Method】Based on the transcriptome results of Citron C-05 (resistant) and Bingtang Sweet orange (susceptible) after inoculated with, and combined with the results of qRT-PCR,was differentially expressed in resistant and susceptible genotypes. Differential analysis onpromoter sequence of Citron C-05 and Bingtang Sweet orange was performed using PlantCARE. Yeast one hybrid was used to screen the upstream transcription factors ofFurtherinteraction betweenand candidate transcription factors was verified by yeast gyration test and dual-Luciferase. The expression of candidate transcription factors was detected among 8 resistant and susceptible citrus genotypes after inoculation withat 0, 2, 4, 6, and 8 days to verify their relationship with disease resistance. By transient overexpression of candidate transcription factors in Citron C-05 and Bingtang sweet orange leaves, the expression of transcription factors andwere analyzed using qRT-PCR.bacterial quantification and symptom observation were executed in transgenic leaves after 24 h inoculated with.【Result】The expression ofwas significantly higher in resistant Citron C-05 than that in the susceptible Bingtang sweet orange at 4, 6, and 8 dpi after inoculated with. There was a difference in the cis acting element W-box inpromoter between Citron C-05 and Bingtang sweet orange at -236 bp location. Therefore, thepromoter was truncated and the bait vector was constructed. Yeast one hybrid screening was conducted using Citron C-05 yeast library induced by, resulting in CmWRKY75 could interact with proCmPR4A-2. Further dual Luciferase reporting system also confirmed that the interaction between CmWRKY75 and, and CmWRKY75 was positive regulating the expression of. Additionally, the expression ofwas significantly upregulated in resistant genotypes Citron C-05, American citron and Aiguo citron after inoculation with, while it was only slight upregulation in susceptible genotypes Bingtang Sweet orange, Shatian Yu pummelo, lemon, Nanchuan and Danna citron. Transient overexpressionCitron C-05 and Bingtang Sweet orange leaves revealed a significant upregulation expression ofat 4 dpi ofand enhanced leaf resistance to.【Conclusion】CmWRKY75 could bind to the W-box inpromoter and positively regulate the expression of, resulting in enhancing leaf resistance to. Moreover, the expression ofwas induced byand showed significant upregulation in disease-resistant genotypes, which was consistent with the expression pattern of. These results indicated that the differential expression ofgenotypes influenced the expression of, which made it play a role in the resistance of Citron C-05 to canker disease.
citrus canker disease; Citron C-05;; transcription factor; WRKY75
2023-04-06;
2023-06-09
國家重點研發(fā)計劃(2022YFD1200503)、湖南省研究生科研創(chuàng)新項目(CX20210671)
顏培涵,E-mail:yanpeihan7279@163.com。通信作者鄧子牛,E-mail:deng7009@163.com
(責(zé)任編輯 趙伶俐)