張茜,仇潤(rùn)鶴*
解碼轉(zhuǎn)發(fā)全雙工中繼網(wǎng)絡(luò)的能效譜效均衡
張茜1,2,仇潤(rùn)鶴1,2*
(1.東華大學(xué) 信息科學(xué)與技術(shù)學(xué)院,上海 201620; 2.數(shù)字化紡織服裝技術(shù)教育部工程研究中心(東華大學(xué)),上海 201620)( ? 通信作者電子郵箱1075225291@qq.com)
為優(yōu)化解碼轉(zhuǎn)發(fā)(DF)全雙工中繼網(wǎng)絡(luò)的能量效率(EE)與頻譜效率(SE),提出一種DF全雙工中繼網(wǎng)絡(luò)的EE和SE的均衡方法。在全雙工中繼網(wǎng)絡(luò)中,首先,以提高網(wǎng)絡(luò)的SE為目標(biāo)來(lái)優(yōu)化網(wǎng)絡(luò)的EE,并結(jié)合求導(dǎo)和牛頓?拉弗森方法得到中繼的最優(yōu)功率,進(jìn)而給出目標(biāo)函數(shù)的帕累托最優(yōu)集;然后,通過(guò)加權(quán)標(biāo)量法引入均衡因子,構(gòu)建一個(gè)EE和SE的折中優(yōu)化函數(shù),通過(guò)歸一化將EE最優(yōu)化和SE最優(yōu)化這一多目標(biāo)優(yōu)化問(wèn)題轉(zhuǎn)化為單目標(biāo)的能量?頻譜效率的優(yōu)化問(wèn)題,并分析不同均衡因子下的EE、SE和折中優(yōu)化的性能。仿真實(shí)驗(yàn)結(jié)果表明,相較于全雙工?最優(yōu)功率方法、半雙工?最佳中繼最優(yōu)功率分配方法,所提方法的SE和EE在相同數(shù)據(jù)傳輸速率下更高;通過(guò)調(diào)整不同均衡因子,可以實(shí)現(xiàn)EE和SE的最優(yōu)均衡與優(yōu)化。
全雙工;解碼轉(zhuǎn)發(fā);能量效率;頻譜效率;均衡因子
隨著無(wú)線(xiàn)通信技術(shù)的發(fā)展和通信規(guī)模的不斷擴(kuò)大,頻譜利用率低和能量消耗過(guò)大等問(wèn)題引起了學(xué)者的廣泛關(guān)注。為合理提高頻譜利用率和減少能量消耗,倡導(dǎo)綠色節(jié)能無(wú)線(xiàn)通信[1]。無(wú)線(xiàn)通信一般通過(guò)中繼實(shí)現(xiàn)信息傳輸,放大轉(zhuǎn)發(fā)和解碼轉(zhuǎn)發(fā)(Decode-and-Forward, DF)是兩種常用的中繼協(xié)議。一般情況下,當(dāng)源節(jié)點(diǎn)到中繼節(jié)點(diǎn)的鏈路信道質(zhì)量足夠好時(shí),解碼轉(zhuǎn)發(fā)協(xié)議的通信性能優(yōu)于放大轉(zhuǎn)發(fā)協(xié)議;同時(shí),全雙工模式相較于半雙工模式的頻譜利用率更高,但會(huì)引入自干擾,需要通過(guò)自干擾消除技術(shù)消除[2]。因此,本文針對(duì)全雙工解碼轉(zhuǎn)發(fā)(DF)的中繼網(wǎng)絡(luò)的能量效率(Energy Efficiency, EE)和頻譜效率(Spectrum Efficiency, SE)均衡進(jìn)行研究。
近年來(lái),國(guó)內(nèi)外的學(xué)者們研究了各種網(wǎng)絡(luò)下的EE和SE。文獻(xiàn)[3-4]中采用分式規(guī)劃技術(shù)研究全雙工和半雙工模式下的EE最大化問(wèn)題,但是僅考慮了上行鏈路,沒(méi)有考慮下行鏈路和SE的優(yōu)化問(wèn)題。文獻(xiàn)[5]中在無(wú)線(xiàn)協(xié)作網(wǎng)絡(luò)中,通過(guò)拉格朗日乘子法得到全功率約束下的最優(yōu)EE;文獻(xiàn)[6]中通過(guò)一個(gè)高效的非迭代方法求解凸問(wèn)題,使EE性能最優(yōu)。但是,文獻(xiàn)[5-6]僅研究了EE的優(yōu)化問(wèn)題,未分析SE性能。
文獻(xiàn)[7]中研究了最優(yōu)功率分配方案下,再生系統(tǒng)傳輸速率的最大化;文獻(xiàn)[8]中提出了解碼轉(zhuǎn)發(fā)雙向中繼網(wǎng)絡(luò)的最優(yōu)功率分配方法,在給定條件下,通過(guò)數(shù)值計(jì)算和仿真結(jié)果表明,所提的最優(yōu)功率分配方法的傳輸速率大于等功率分配的傳輸速率。文獻(xiàn)[7-8]中針對(duì)不同功率分配方案下系統(tǒng)的SE最大化問(wèn)題進(jìn)行研究,但未研究系統(tǒng)的EE。文獻(xiàn)[9]中分析了全雙工網(wǎng)絡(luò)在不同中繼方案下的頻譜效率;文獻(xiàn)[10]中研究了無(wú)人機(jī)系統(tǒng)下的頻譜效率,通過(guò)結(jié)合認(rèn)知無(wú)線(xiàn)電技術(shù)提高了無(wú)人機(jī)通信網(wǎng)絡(luò)的頻譜效率。但是文獻(xiàn)[9-10]中僅研究了無(wú)人機(jī)和中繼系統(tǒng)的EE,并沒(méi)有分析整個(gè)系統(tǒng)的EE。
上述文獻(xiàn)僅研究了EE或者SE,但在實(shí)際應(yīng)用中需要同時(shí)考慮EE和SE。文獻(xiàn)[11]中研究了無(wú)人機(jī)通信系統(tǒng)下的EE和SE的均衡,提出感知時(shí)間和發(fā)射功率的聯(lián)合優(yōu)化算法,實(shí)現(xiàn)EE-SE的折中優(yōu)化。文獻(xiàn)[12-13]中分別研究了在無(wú)線(xiàn)攜能通信系統(tǒng)和移動(dòng)通信系統(tǒng)下的EE和SE,分別調(diào)節(jié)系統(tǒng)的核心參數(shù)和博弈模型實(shí)現(xiàn)EE和SE的聯(lián)合優(yōu)化。文獻(xiàn)[14]中在解碼轉(zhuǎn)發(fā)多跳多載波中繼網(wǎng)絡(luò)中,通過(guò)迭代方法進(jìn)行子載波配對(duì)和功率分配,最大化EE,并通過(guò)數(shù)值計(jì)算驗(yàn)證了SE和EE性能之間的均衡。文獻(xiàn)[15-16]中研究了多用戶(hù)系統(tǒng)中EE和SE的均衡,引入折中因子,將多目標(biāo)優(yōu)化問(wèn)題轉(zhuǎn)化為單目標(biāo)優(yōu)化問(wèn)題,并通過(guò)改變權(quán)重得到EE和SE的最優(yōu)解。文獻(xiàn)[17-18]中研究了解碼轉(zhuǎn)發(fā)多中繼網(wǎng)絡(luò)的SE和EE的均衡方案,在給定約束條件下,通過(guò)迭代方案選擇最優(yōu)中繼節(jié)點(diǎn)并優(yōu)化各節(jié)點(diǎn)的發(fā)送功率,使EE達(dá)到最大,但該方案偏重研究最佳中繼節(jié)點(diǎn)的選擇和最優(yōu)功率分配,未能直觀(guān)反映EE和SE的均衡關(guān)系。文獻(xiàn)[19-20]中研究了解碼轉(zhuǎn)發(fā)半雙工下行鏈路的能量效率和頻譜效率,構(gòu)建SE和EE的均衡函數(shù)實(shí)現(xiàn)SE和EE的折中。目前關(guān)于無(wú)線(xiàn)通信EE和SE均衡問(wèn)題的研究集中于放大轉(zhuǎn)發(fā)和半雙工模式,解碼轉(zhuǎn)發(fā)和全雙工模式的研究較少。
針對(duì)上述問(wèn)題,本文考慮非理想功率放大和不可忽略的功率,提出一種解碼轉(zhuǎn)發(fā)全雙工中繼網(wǎng)絡(luò)EE與SE的均衡策略。首先,對(duì)中繼節(jié)點(diǎn)處的殘余自干擾建模,以?xún)?yōu)化系統(tǒng)SE為目標(biāo)優(yōu)化EE,將EE的導(dǎo)數(shù)和牛頓?拉弗森方法結(jié)合求得中繼的最優(yōu)功率,進(jìn)而給出目標(biāo)函數(shù)的帕累托最優(yōu)集;然后,通過(guò)加權(quán)標(biāo)量法引入均衡因子,將多目標(biāo)EE和SE轉(zhuǎn)化為單目標(biāo)EE-SE的最大化問(wèn)題;最后,分析不同均衡因子下EE-SE的性能,更直觀(guān)地反映EE和SE的均衡關(guān)系。通過(guò)仿真實(shí)驗(yàn)結(jié)果可知,與全雙工?最優(yōu)功率方法、半雙工?最佳中繼最優(yōu)功率分配方法相比,本文方法的譜效和能效更高;此外,可以通過(guò)調(diào)整不同均衡因子,實(shí)現(xiàn)EE和SE的最優(yōu)均衡與優(yōu)化。
全雙工解碼轉(zhuǎn)發(fā)中繼網(wǎng)絡(luò)由基站、中繼和用戶(hù)端組成,為方便表述,將基站記為源節(jié)點(diǎn)S,中繼記為中繼節(jié)點(diǎn)R,用戶(hù)端記為目的節(jié)點(diǎn)D,中繼網(wǎng)絡(luò)在一個(gè)時(shí)隙1內(nèi)就能完成信號(hào)的傳輸,網(wǎng)絡(luò)模型如圖1所示。
圖1 解碼轉(zhuǎn)發(fā)全雙工中繼網(wǎng)絡(luò)模型
在1時(shí)隙,源節(jié)點(diǎn)S、中繼節(jié)點(diǎn)R和目的節(jié)點(diǎn)D接收到的信號(hào)分別為:
對(duì)于EE和SE均衡的研究通常可分為兩類(lèi):第一類(lèi),在滿(mǎn)足給定最低SE的要求下最大化EE,或者在滿(mǎn)足給定最低EE要求下最大化SE,如文獻(xiàn)[18]中在滿(mǎn)足給定SE要求下,通過(guò)迭代優(yōu)化方案選擇最優(yōu)中繼節(jié)點(diǎn)并得到各節(jié)點(diǎn)最優(yōu)功率分配,進(jìn)而最大化EE;第二類(lèi),通過(guò)引入權(quán)重因子,構(gòu)建均衡函數(shù)最大化EE-SE。本文以?xún)?yōu)化SE為目標(biāo)優(yōu)化EE,進(jìn)而得到中繼最優(yōu)功率;再引入均衡因子,構(gòu)建EE-SE的均衡函數(shù),最大化EE-SE。
根據(jù)文獻(xiàn)[22]中高斯雙向中繼信道,可知全雙工雙向中繼網(wǎng)絡(luò)的上下行鏈路實(shí)際可達(dá)到的數(shù)據(jù)傳輸速率分別為:
解碼轉(zhuǎn)發(fā)全雙工中繼網(wǎng)絡(luò)的能量效率被定義為頻譜效率與總功率的比值,表示為:
為提高全雙工中繼傳輸系統(tǒng)的頻譜效率,需要使式(9)~(10)成立:
將式(11)代入式(9)中,可得:
此時(shí),系統(tǒng)的SE達(dá)到最優(yōu),即
在頻譜效率達(dá)到最優(yōu)時(shí),系統(tǒng)的EE可以表示為:
為實(shí)現(xiàn)系統(tǒng)EE最大化,建立以中繼發(fā)射功率為優(yōu)化變量的能量?jī)?yōu)化最大化模型,此時(shí)系統(tǒng)最大EE為:
根據(jù)牛頓?拉弗森方法的迭代公式,可得中繼的最優(yōu)功率為:
基于上述對(duì)SE和EE的分析,可以得到SE和EE的表達(dá)式,為使SE和EE達(dá)到最大化,建立了多目標(biāo)優(yōu)化問(wèn)題,記作P1,如下:
根據(jù)文獻(xiàn)[23],全雙工解碼轉(zhuǎn)發(fā)中繼網(wǎng)絡(luò)的SE和EE的歸一化表達(dá)式為:
SE和EE的最大值分別為:
為了計(jì)算方便,將式(23)轉(zhuǎn)化為:
將式(21)~(22)代入式(25),可得:
本文利用Matlab進(jìn)行仿真分析,在全雙工網(wǎng)絡(luò)中,將源和目的端的距離歸一化,通過(guò)設(shè)置不同的參數(shù),對(duì)比不同協(xié)議、中繼距離、不同均衡因子下EE、SE和TES的性能。其中:C表示電路功率,包含本振功率(即混頻器功率)、調(diào)制解調(diào)功率(即數(shù)模轉(zhuǎn)換器功率、頻率合成器功率和編碼器功率)等電路功率消耗。不同方案下的發(fā)射功率不同,根據(jù)不同仿真場(chǎng)景設(shè)置發(fā)射功率。對(duì)比分析發(fā)現(xiàn),文獻(xiàn)[4,17,19,21]中的仿真參數(shù)具有參考價(jià)值,且符合實(shí)際參數(shù)設(shè)定。本文設(shè)置的具體仿真參數(shù)如表1所示。
表1 仿真參數(shù)
圖2為單工、半雙工和全雙工模式下EE和SE的均衡關(guān)系,其中:DT表示單工,HD表示半雙工,F(xiàn)D表示全雙工。在DT、HD和FD的不同模式下,電路功率分別設(shè)置為0.4 W、0.8 W和1 W??梢钥闯觯?dāng)SE較小時(shí),HD模式下的EE優(yōu)于DT和FD;當(dāng)SE增大時(shí),F(xiàn)D模式最優(yōu)。同時(shí),無(wú)論處于哪種模式,EE都會(huì)隨著SE的增大呈現(xiàn)先增大后減小的趨勢(shì),即存在最大值。在呈現(xiàn)增大趨勢(shì)的范圍內(nèi),權(quán)重偏向于SE;呈現(xiàn)降低趨勢(shì)的范圍內(nèi),權(quán)重偏向于EE。
圖3為不同中繼距離下的EE和SE的均衡關(guān)系。從圖3可以看出,EE隨著SE的增大呈現(xiàn)先增大后降低的趨勢(shì),這是因?yàn)殡S著SE的增大,需要傳輸?shù)臄?shù)據(jù)越來(lái)越多,能量消耗也越多。當(dāng)中繼節(jié)點(diǎn)接近源節(jié)點(diǎn)時(shí),系統(tǒng)的能量效率最小,當(dāng)中繼節(jié)點(diǎn)靠近目的節(jié)點(diǎn)時(shí),系統(tǒng)能量效率較大。
圖4為等功率雙向傳輸[17-18]、中繼最優(yōu)功率單向傳輸、等功率單向傳輸[19-20]和本文方法在不同功率分配方案下的SE、EE與信噪比(Signal-to-Noise Ratio, SNR)的關(guān)系。
圖2 DT、HD和FD傳輸模型下的EE-SE均衡
圖3 不同中繼距離下的EE-SE均衡
由圖4(a)可知,隨著SNR的不斷增大,SE也不斷增大,這是因?yàn)镾E會(huì)隨著節(jié)點(diǎn)發(fā)射功率的增大而增大,這與理論分析結(jié)果一致。同時(shí),采用本文方法的方案(以下簡(jiǎn)稱(chēng)本文方案)優(yōu)于其他對(duì)比方案,這是因?yàn)殡p向中繼網(wǎng)絡(luò)的傳輸速率比單向中繼網(wǎng)絡(luò)的傳輸速率高,前者只需一個(gè)傳輸時(shí)隙,后者需要兩個(gè)傳輸時(shí)隙。
圖4(b)為不同方案下EE與SNR的關(guān)系??梢钥闯?,隨著SNR的增大,系統(tǒng)的EE呈現(xiàn)先增大后降低的趨勢(shì)。通過(guò)理論分析可知,存在一個(gè)最優(yōu)發(fā)射功率使得能量效率達(dá)到最大,與圖4(b)的仿真結(jié)果一致。此外,還可以看到,本文方案最優(yōu),中繼最優(yōu)功率單向傳輸和等功率雙向傳輸方法次之,等功率單向傳輸方法最差。
圖4 不同方案下SE、EE與SNR的關(guān)系
圖5 不同均衡因子下的最優(yōu)傳輸功率
圖6 不同均衡因子下的EE、SE和EE-SE
[1] 倪先淼. 綠色能源環(huán)境下蜂窩網(wǎng)絡(luò)能量效率和頻譜效率的聯(lián)合優(yōu)化[D]. 北京:北京郵電大學(xué), 2016:1-5.(NI X M. Optimization of jointing energy efficiency and spectral efficiency in cellular network with green energy supply[D]. Beijing: Beijing University of Posts and Telecommunications, 2016:1-5.)
[2] 施安妮,李陶深,王哲,等. 基于緩存輔助的全雙工無(wú)線(xiàn)攜能通信系統(tǒng)的中繼選擇策略[J]. 計(jì)算機(jī)應(yīng)用, 2021, 41(6):1539-1545.(SHI A N, LI T S, WANG Z, et al. Relay selection strategy for cache-aided full-duplex simultaneous wireless information and power transfer system[J]. Journal of Computer Applications, 2021, 41(6):1539-1545.)
[3] MA J, HUANG C, LI Q. Energy efficiency of full- and half-duplex decode-and-forward relay channels[J]. IEEE Internet of Things Journal, 2022, 9(12): 9730-9748.
[4] MA J, HUANG C. Energy efficiency of decode-and-forward full-duplex relay channels[C]// Proceedings of the 2018 IEEE Global Communications Conference. Piscataway: IEEE, 2018: 1-6.
[5] GURRALA K K, NAVYA K, SRAVYA M, et al. Maximized energy efficiency based power allocation strategy in wireless cooperative network[C]// Proceedings of the 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks. Piscataway: IEEE, 2019: 64-68.
[6] HE Z, SHEN H, XU W, et al. Energy efficient joint power optimization for full-duplex relaying[J]. IEEE Access, 2019, 7: 137040-137047.
[7] ZHANG Q, ZHANG J, SHAO C, et al. Power allocation for regenerative relay channel with Rayleigh fading[C]// Proceedings of the IEEE 59th Vehicular Technology Conference — Volume 2. Piscataway: IEEE, 2004:1167-1171.
[8] SHIM Y, PARK H, KWON H M. Optimal power allocation for two-way decode-and-forward relay networks with equal transmit power at source nodes[C]// Proceedings of the 2013 IEEE Wireless Communications and Networking Conference. Piscataway: IEEE, 2013: 3335-3340.
[9] CHEN Z, QUEK T Q S, LIANG Y C. Spectral efficiency and relay energy efficiency of full-duplex relay channel[J]. IEEE Transactions on Wireless Communications, 2017, 16(5): 3162-3175.
[10] 張宏偉,達(dá)新宇,胡航,等. 基于協(xié)作頻譜感知的多無(wú)人機(jī)通信網(wǎng)絡(luò)譜效優(yōu)化研究[J]. 北京理工大學(xué)學(xué)報(bào), 2021, 41(8):830-839.(ZHANG H W, DA X Y, HU H, et al. Spectrum efficiency optimization of multi-UAV communication network based on collaborative spectrum sensing[J]. Journal of Beijing Institute of Technology ,2021, 41(8):830-839.)
[11] 韓蕙竹,黃仰超,胡航,等. 無(wú)人機(jī)通信中基于短包傳輸?shù)哪?譜效折中優(yōu)化[J/OL]. 系統(tǒng)工程與電子技術(shù) (2022-06-11) [2022-09-08].http://kns.cnki.net/kcms/detail/11.2422.TN.20220609.1822.002.html.(HAN H Z, HUANG Y C, HU H, et al. Energy-spectral efficiency tradeoff optimization based on short packet transmission in UAV communication[J/OL]. Systems Engineering and Electronics (2022-06-11) [2022-09-08].http://kns.cnki.net/kcms/detail/11.2422.TN.20220609.1822.002.html.)
[12] 孫濟(jì)生. 無(wú)線(xiàn)攜能通信中的頻譜效率與能量效率[D]. 濟(jì)南:山東大學(xué), 2017:39-54.(SUN J S. Spectrum-energy efficiency in simultaneously wireless information and power transfer[D]. Jinan: Shandong University, 2017:39-54.)
[13] 李翔明. 移動(dòng)通信系統(tǒng)中頻譜效率和能量效率的折中優(yōu)化[D]. 成都:電子科技大學(xué), 2014:12-17.(LI X M. Research on spectral efficiency and energy efficiency tradeoff in mobile communication system[D]. Chengdu: University of Electronic Science and Technology of China, 2014:12-17.)
[14] SINGH K, KU M L, YU C M. Joint subcarrier pairing and power allocation for achieving energy-efficient decode-and-forward relay networks[C]// Proceedings of the IEEE 89th Vehicular Technology Conference. Piscataway: IEEE, 2019: 1-6.
[15] HUANG Y, HE S, WANG J, et al. Spectral and energy efficiency tradeoff for massive MIMO[J]. IEEE Transactions on Vehicular Technology, 2018, 67(8): 6991-7002.
[16] 李民政,丁健,劉寧,等. Massive-MIMO系統(tǒng)中能效和頻效的性能折中方法[J]. 北京郵電大學(xué)學(xué)報(bào), 2020, 43(4):61-67.(LI M Z, DING J, LIU N, et al. Performance trade-off method for energy efficiency and spectral efficiency in Massive-MIMO system[J]. Journal of Beijing University of Posts and Telecommunications, 2020, 43(4):61-67.)
[17] CHU M, QIU R, JIANG X Q. Spectrum-energy efficiency tradeoff in decode-and-forward two-way multi-relay networks[J]. IEEE Access, 2021, 9: 16825-16836.
[18] 儲(chǔ)夢(mèng)杰. 解碼轉(zhuǎn)發(fā)多中繼網(wǎng)絡(luò)的能效譜效均衡算法研究[D]. 上海:東華大學(xué), 2022:26-40.(CHU M J. Research on energy and spectrum efficiency equalization algorithm for decode-and-forward multi-relay networks[D]. Shanghai: Donghua University, 2022:26-40.)
[19] GAO Z, QIU R, CAI C. Spectral-energy efficiency tradeoff in decode-and-forward full-duplex relay system[J]. IET Communications, 2020, 14(20): 3560-3566.
[20] 高仲霞. 基于解碼轉(zhuǎn)發(fā)協(xié)議的無(wú)線(xiàn)中繼網(wǎng)絡(luò)能效與譜效的研究[D].上海:東華大學(xué), 2021:37-49.(GAO Z X. Research of energy efficiency and spectral efficiency in wireless relay networks with decode-and-forward protocol[D]. Shanghai: Donghua University, 2021:37-49.)
[21] CUI Q, ZHANG Y, NI W, et al. Energy efficiency maximization of full-duplex two-way relay with non-ideal power amplifiers and non-negligible circuit power[J]. IEEE Transactions on Wireless Communications, 2017, 16(9): 6264-6278.
[23] DENG L, RU YI, CHENG P, et al. A unified energy efficiency and spectral efficiency tradeoff metric in wireless networks[J]. IEEE Communications Letters, 2013, 17(1): 55-58.
Trade-off between energy efficiency and spectrum efficiency for decode-and-forward full-duplex relay network
ZHANG Qian1,2, QIU Runhe1,2*
(1,,201620,;2,(),201620,)
In order to optimize the Energy Efficiency (EE) and Spectrum Efficiency (SE) of Decode-and-Forward (DF) full-duplex relay network, a trade-off method of EE and SE for DF full-duplex relay network was proposed. In full-duplex relay network, firstly, the EE of the network was optimized with the goal of improving the SE of the network. And the optimal power of the relay was obtained by combining the derivation and the Newton-Raphson method, then the Pareto optimal set of the objective function was given. Secondly, a trade-off factor was introduced through the weighted scalar method, a trade-off optimization function of EE and SE was constructed, and the multi-objective optimization problem of EE optimization and SE optimization was transformed into a single-objective energy-spectrum efficiency optimization problem by using normalization. At the same time, the performance of EE, SE and trade-off optimization under different trade-off factor was analyzed. Simulation results show that the SE and EE of the proposed method are higher at the same data transmission rate compared with the those of the full-duplex-optimal power method and the half-duplex-optimal relay-optimal power allocation method. By adjusting different trade-off factors, the optimal trade-off and the optimization of EE and SE can be achieved.
full-duplex; Decode-and-Forward (DF); Energy Efficiency (EE); Spectrum Efficiency (SE); trade-off factor
This work is partially supported by Natural Science Foundation of Shanghai (20ZR1400700).
ZHANG Qian, born in 1998, M. S. candidate. Her research interests include cooperative relay network.
QIU Runhe, born in 1961, Ph. D., professor. His research interests include communication and information system, cognitive wireless network, cognitive cooperative relay network, wireless remote monitoring system.
1001-9081(2023)10-3188-07
10.11772/j.issn.1001-9081.2022091414
2022?09?22;
2022?12?26;
上海市自然科學(xué)基金資助項(xiàng)目(20ZR1400700)。
張茜(1998—),女,山東煙臺(tái)人,碩士研究生,主要研究方向:協(xié)作中繼網(wǎng)絡(luò); 仇潤(rùn)鶴(1961—),男,上海人,教授,博士,主要研究方向:通信與信息系統(tǒng)、認(rèn)知無(wú)線(xiàn)網(wǎng)絡(luò)、認(rèn)知協(xié)作中繼網(wǎng)絡(luò)、無(wú)線(xiàn)遠(yuǎn)程監(jiān)控系統(tǒng)。
TN925
A
2023?01?13。