国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

未置氫及置氫TC21鈦合金六角頭螺栓冷鐓成形及其成形后的顯微組織與顯微維氏硬度

2023-10-18 02:43張小雪宗勝杰馬志遠(yuǎn)袁寶國
精密成形工程 2023年10期
關(guān)鍵詞:冷鐓緊固件氏硬度

張小雪,宗勝杰,馬志遠(yuǎn),袁寶國*

未置氫及置氫TC21鈦合金六角頭螺栓冷鐓成形及其成形后的顯微組織與顯微維氏硬度

張小雪1,宗勝杰2,馬志遠(yuǎn)2,袁寶國2*

(1.安徽三聯(lián)學(xué)院 機(jī)械工程學(xué)院,合肥 230601; 2.合肥工業(yè)大學(xué) 材料科學(xué)與工程學(xué)院,合肥 230009)

解決TC21鈦合金六角頭螺栓冷鐓成形困難的難題。利用置氫處理改善TC21鈦合金的冷鐓成形性能,利用電子萬能材料試驗(yàn)機(jī)對未置氫和置氫TC21鈦合金六角頭螺栓進(jìn)行冷鐓成形,利用金相顯微鏡、X射線衍射儀、透射電子顯微鏡和顯微維氏硬度計(jì)等設(shè)備對未置氫和置氫TC21鈦合金冷鐓六角頭螺栓的顯微組織和顯微維氏硬度進(jìn)行分析。在冷鐓成形過程中,置氫TC21鈦合金六角頭螺栓未出現(xiàn)缺陷,而未置氫TC21鈦合金六角頭螺栓則出現(xiàn)了裂紋。未置氫和置氫TC21鈦合金冷鐓六角頭螺栓的頭部均呈現(xiàn)出“一字雙岔狀變形帶”,在未置氫TC21鈦合金冷鐓六角頭螺栓頭部變形帶的分岔處出現(xiàn)了裂紋。與未置氫TC21鈦合金冷鐓六角頭螺栓相比,置氫TC21鈦合金冷鐓六角頭螺栓的顯微組織發(fā)生了顯著變化。在置氫TC21鈦合金冷鐓六角頭螺栓中,α相和β相的光學(xué)對比度與未置氫合金的相反,α相含量減少,β相含量增加,β相成為合金的主要相,并發(fā)現(xiàn)了較多的位錯。置氫TC21鈦合金冷鐓六角頭螺栓各區(qū)的顯微維氏硬度均低于未置氫TC21鈦合金冷鐓六角頭螺栓各區(qū)的顯微維氏硬度。置氫處理有利于TC21鈦合金六角頭螺栓的冷鐓成形。

鈦合金;六角頭螺栓;冷鐓;顯微組織;顯微維氏硬度

隨著我國航空、航天、船舶等領(lǐng)域的迅速發(fā)展,對鈦合金緊固件的需求日益增加。20世紀(jì)50年代,美國首次將鈦合金緊固件應(yīng)用于B-52型轟炸機(jī)上,并取得了顯著的減重效果,自此以后世界各國紛紛開始開展鈦合金緊固件的研究[1]。國內(nèi)外飛機(jī)上都需要大量的鈦合金緊固件[2]。因此,亟須開展鈦合金緊固件成形研究。

冷鐓工藝具有生產(chǎn)率高、材料利用率高、表面質(zhì)量和內(nèi)在綜合性能好等優(yōu)點(diǎn),是緊固件成形的首選工藝[3-4],但大多數(shù)難變形鈦合金的室溫塑性較差[5-6],這使得難變形鈦合金緊固件不得不采用熱鐓工藝進(jìn)行成形,從而限制了其應(yīng)用。相關(guān)研究表明[7-9],氫處理技術(shù)可以提高鈦合金的室溫塑性。Mal'kov等[10]研究了氫處理對VT30等β型鈦合金室溫塑性的影響,發(fā)現(xiàn)當(dāng)氫的質(zhì)量分?jǐn)?shù)為0.1%時(shí),在室溫下將試樣鐓粗壓扁至薄餅,其側(cè)面也未出現(xiàn)任何裂紋。Yuan等[11-12]研究了氫處理對TC4和TC21鈦合金室溫塑性的影響,發(fā)現(xiàn)經(jīng)氫處理后,TC4和TC21鈦合金的室溫塑性較原始合金的分別提高了83.83%和244.33%。因此,利用氫處理技術(shù)有望克服難變形鈦合金緊固件冷鐓成形困難的難題,對促進(jìn)鈦合金緊固件在我國航空、航天、船舶等領(lǐng)域的應(yīng)用具有重要意義。然而,目前關(guān)于置氫鈦合金緊固件的研究報(bào)道較少。

本文利用置氫處理技術(shù)向TC21鈦合金中置入適量的氫,以提高TC21鈦合金的冷鐓成形性能,利用電子萬能材料試驗(yàn)機(jī)對置氫TC21鈦合金六角頭螺栓進(jìn)行冷鐓成形,并對其顯微組織和顯微維氏硬度進(jìn)行分析研究。

1 實(shí)驗(yàn)

使用的材料是TC21鈦合金,其顯微組織如圖1所示,圓柱形試樣尺寸為6 mm×9 mm,按照文獻(xiàn)[13]對試樣進(jìn)行處理。采用高溫氣相充氫法在自制的氫處理裝置中對TC21鈦合金試樣進(jìn)行置氫處理,置氫溫度為850 ℃,保溫時(shí)間為2 h。為了消除置氫處理過程中熱處理對TC21鈦合金試樣組織與性能的影響,對TC21鈦合金試樣進(jìn)行了與置氫處理相同的熱處理,即在850 ℃下保溫2 h。利用METTLER TOLEDO ME55精密電子天平稱取置氫前后TC21鈦合金試樣的質(zhì)量。經(jīng)過置氫處理后,獲得了氫含量為0.69%(質(zhì)量分?jǐn)?shù))的置氫TC21鈦合金試樣。

圖1 原始TC21鈦合金的金相顯微組織

利用MTS Landmark電子萬能材料試驗(yàn)機(jī)對TC21鈦合金六角頭螺栓進(jìn)行冷鐓成形,成形速度為200 mm/min,采用凡士林潤滑。利用YUESHI YM710R光學(xué)顯微鏡對六角頭螺栓的顯微組織進(jìn)行觀察。利用Rigaku D/MAX2500VL/PC X射線衍射儀對冷鐓六角頭螺栓中的相組成進(jìn)行檢測,工作電流為40 mA,加速電壓為40 kV,掃描速度為6 (°)/min,射線源為Cu kα。利用FEI Tecnai G2 F20透射電子顯微鏡對冷鐓六角頭螺栓中的微觀組織及相結(jié)構(gòu)進(jìn)行研究,加速電壓為200 kV。利用HVS1000A-XYT顯微維氏硬度計(jì)對冷鐓六角頭螺栓的顯微維氏硬度進(jìn)行測量,每個(gè)區(qū)域各測5次,取平均值作為該區(qū)的顯微維氏硬度值,加載載荷為4.9 N,保壓時(shí)間為30 s。

2 結(jié)果與分析

2.1 六角頭螺栓冷鐓成形

未置氫和置氫TC21鈦合金冷鐓成形的六角頭螺栓如圖2所示。由圖2a可知,未置氫TC21鈦合金六角頭螺栓在冷鐓成形過程中在45°方向上出現(xiàn)了裂紋。這是因?yàn)樵诶溏叧尚芜^程中,TC21鈦合金六角頭螺栓的剪應(yīng)力沿45°方向上的值最大,導(dǎo)致TC21鈦合金六角頭螺栓易于沿著45°方向斷裂。由圖2b可知,置氫TC21鈦合金六角頭螺栓在冷鐓成形過程中未出現(xiàn)缺陷,表明置氫處理有利于改善TC21鈦合金六角頭螺栓的冷鐓成形性能。

圖2 未置氫(a)和置氫(b)TC21鈦合金冷鐓成形的六角頭螺栓實(shí)物圖及成形前試樣的實(shí)物圖(c)

2.2 六角頭螺栓冷鐓成形后的微觀組織

2.2.1 金相顯微組織分析

根據(jù)螺栓冷鐓成形過程中的受力及變形情況,可將冷鐓六角頭螺栓剖面的變形區(qū)域分成4個(gè)區(qū),其示意圖如圖3所示。其中,Ⅰ區(qū)為難變形區(qū),變形量較??;Ⅱ區(qū)為大變形區(qū),變形量較大;Ⅲ區(qū)為小變形區(qū),其變形量介于大變形區(qū)的與難變形區(qū)的之間;Ⅳ區(qū)為不變形區(qū)。

圖3 冷鐓六角頭螺栓剖面的變形區(qū)域示意圖

將冷鐓六角頭螺栓沿軸線切開,對六角頭螺栓剖面整體及Ⅰ區(qū)、Ⅱ區(qū)、Ⅲ區(qū)、Ⅳ區(qū)等變形區(qū)域的顯微組織進(jìn)行觀察和分析。未置氫和置氫TC21鈦合金冷鐓六角頭螺栓剖面的金相顯微組織分別如圖4和圖5所示??梢钥闯?,未置氫和置氫TC21鈦合金冷鐓六角頭螺栓的頭部均呈現(xiàn)出“一字雙岔狀變形帶”,文獻(xiàn)[14-15]中也報(bào)道了類似現(xiàn)象。在變形帶的“一”字部位,TC21鈦合金的組織被壓扁,表明在冷鐓成形過程中,在TC21鈦合金六角頭螺栓頭部的中心區(qū)域發(fā)生了較大的變形。在未置氫TC21鈦合金冷鐓六角頭螺栓頭部變形帶的分岔處出現(xiàn)了裂紋,這是由于在冷鐓成形過程中,六角頭螺栓頭部中心區(qū)域的“一”字處僅受到壓縮應(yīng)力的作用,而在分岔處不僅受到壓縮應(yīng)力的作用,還受到剪切應(yīng)力的作用[16-17]。因此,在分岔處易產(chǎn)生裂紋。而在置氫TC21鈦合金冷鐓六角頭螺栓頭部變形帶的分岔處沒有發(fā)現(xiàn)裂紋,表明置氫TC21鈦合金的冷鐓成形性能高于未置氫TC21鈦合金的冷鐓成形性能。

由圖4和圖5可以看出,Ⅱ區(qū)的顯微組織被壓扁,發(fā)生的變形最大,Ⅲ區(qū)發(fā)生的變形次之,Ⅰ區(qū)發(fā)生的變形最小,Ⅳ區(qū)沒有發(fā)生變形。由圖4可以看出,未置氫TC21鈦合金冷鐓六角頭螺栓的組織具有典型的兩相結(jié)構(gòu),包括α相和β相,其中較亮的是α相,含量較多,較暗的是β相,分布在α相周圍,含量較少。與未置氫TC21鈦合金冷鐓六角頭螺栓相比,置氫TC21鈦合金冷鐓六角頭螺栓的顯微組織發(fā)生了顯著變化。由圖5可以看出,在置氫TC21鈦合金冷鐓六角頭螺栓中,α相和β相的光學(xué)對比度與未置氫合金的相反,這是由于氫的加入改變了α相和β相的電化學(xué)電位[18-19]。與未置氫TC21鈦合金冷鐓六角頭螺栓相比,置氫TC21鈦合金冷鐓六角頭螺栓中α相的含量減少,β相的含量增加,β相成為合金的主要相,這是由于氫是一種β相穩(wěn)定元素,氫的加入會增強(qiáng)TC21鈦合金中β相的穩(wěn)定性,降低β相的轉(zhuǎn)變溫度,從而使更多的β相保留至室溫[20-22]。另外,在置氫TC21鈦合金冷鐓六角頭螺栓中發(fā)現(xiàn)α相發(fā)生了球化現(xiàn)象,這是因?yàn)樵跉錆B入TC21鈦合金的過程中,氫原子會腐蝕α相的相界,進(jìn)而導(dǎo)致α相發(fā)生球化現(xiàn)象[23]。

由圖4和圖5可以看出,在置氫TC21鈦合金冷鐓六角頭螺栓的顯微組織中發(fā)現(xiàn)了較多的位錯,表明在冷鐓成形過程中,置氫TC21鈦合金六角頭螺栓主要是以位錯滑移的方式發(fā)生塑性變形。而在未置氫TC21鈦合金冷鐓六角頭螺栓的顯微組織中未發(fā)現(xiàn)明顯的位錯,這是由于未置氫TC21鈦合金的室溫塑性較差,導(dǎo)致六角頭螺栓在發(fā)生較大的變形前已斷裂,表明置氫處理有利于促進(jìn)鈦合金中位錯的運(yùn)動。

圖5 置氫TC21鈦合金冷鐓六角頭螺栓剖面的金相顯微組織

2.2.2 X射線衍射結(jié)果分析

未置氫和置氫TC21鈦合金冷鐓六角頭螺栓的XRD圖譜如圖6所示。由圖6a可以看出,未置氫TC21鈦合金冷鐓六角頭螺栓由α相和β相組成,α相的衍射峰強(qiáng)度高于β相的衍射峰強(qiáng)度,表明α相的含量高于β相的含量。與未置氫TC21鈦合金冷鐓六角頭螺栓的XRD圖譜相比,置氫TC21鈦合金冷鐓六角頭螺栓的XRD圖譜發(fā)生了明顯的變化,如圖6b所示。在置氫TC21鈦合金冷鐓六角頭螺栓的XRD圖譜中,β相的衍射峰強(qiáng)度明顯增強(qiáng),表明β相的含量增加,這與金相顯微組織分析結(jié)果一致。由圖6b可以看出,在置氫TC21鈦合金冷鐓六角頭螺栓的XRD圖譜中發(fā)現(xiàn)了面心立方晶格結(jié)構(gòu)δ氫化物的衍射峰(其成分為TiH,1.5≤≤2),其點(diǎn)陣常數(shù)為=== 0.444 nm[24-25],在隨后的TEM分析中確定了合金中存在δ氫化物。

2.2.3 透射電鏡組織分析

2.3 六角頭螺栓冷鐓成形后的顯微維氏硬度

未置氫和置氫TC21鈦合金冷鐓六角頭螺栓的顯微維氏硬度如圖8所示??梢钥闯觯脷銽C21鈦合金冷鐓六角頭螺栓各區(qū)的顯微維氏硬度均低于未置氫TC21鈦合金冷鐓六角頭螺栓各區(qū)的顯微維氏硬度,這是由置氫合金中β相的含量增加導(dǎo)致的,與未置氫TC21鈦合金冷鐓六角頭螺栓相比,置氫TC21鈦合金冷鐓六角頭螺栓的Ⅰ區(qū)、Ⅱ區(qū)、Ⅲ區(qū)和Ⅳ區(qū)的顯微維氏硬度分別降低了20.89%、17.52%、19.82%和24.96%,表明置氫處理可以軟化TC21鈦合金,有利于TC21鈦合金六角頭螺栓的冷鐓成形。

未置氫和置氫TC21鈦合金冷鐓六角頭螺栓4個(gè)區(qū)的顯微維氏硬度變化規(guī)律相似,均為:Ⅱ區(qū)硬度>Ⅲ區(qū)硬度>Ⅰ區(qū)硬度>Ⅳ區(qū)硬度,這是因?yàn)槲粗脷浜椭脷銽C21鈦合金六角頭螺栓在冷鐓成形過程中均發(fā)生了不均勻變形,變形量越大的區(qū)域,加工硬化程度越大,顯微維氏硬度值也越大。

圖6 未置氫(a)和置氫(b)TC21鈦合金冷鐓六角頭螺栓的XRD圖譜

圖7 置氫TC21鈦合金冷鐓六角頭螺栓頭部的TEM圖像

圖8 未置氫和置氫TC21鈦合金冷鐓六角頭螺栓的顯微維氏硬度

3 結(jié)論

置氫處理有利于TC21鈦合金六角頭螺栓的冷鐓成形。置氫處理后TC21鈦合金六角頭螺栓在冷鐓成形過程中未出現(xiàn)缺陷,而未置氫TC21鈦合金六角頭螺栓在冷鐓成形過程中出現(xiàn)了裂紋。與未置氫TC21鈦合金冷鐓六角頭螺栓相比,置氫TC21鈦合金冷鐓六角頭螺栓的顯微組織發(fā)生了顯著變化。在置氫TC21鈦合金冷鐓六角頭螺栓的顯微組織中,α相的含量減少,β相的含量增加,且發(fā)現(xiàn)了較多的位錯。置氫處理可以軟化TC21鈦合金,有利于TC21鈦合金六角頭螺栓的冷鐓成形。

[1] 董瑞峰, 李金山, 唐斌, 等. 航空緊固件用鈦合金材料發(fā)展現(xiàn)狀[J]. 航空制造技術(shù), 2018, 61(4): 86-91. DONG Rui-feng, LI Jin-shan, TANG Bin, et al. Research Development of Titanium for Fastener Application in Aerospace[J]. Aeronautical Manufacturing Technology, 2018, 61(4): 86-91.

[2] 劉全明, 張朝暉, 劉世鋒, 等. 航空緊固件用鈦合金TC16研究與發(fā)展[J]. 熱加工工藝, 2014, 43(4): 17-19. LIU Quan-ming, ZHANG Zhao-hui, LIU Shi-feng, et al. Research and Development of Aerospace Fasteners Made with TC16 Alloy[J]. Hot Working Technology, 2014, 43(4): 17-19.

[3] 劉幫平, 諶曲平, 嚴(yán)國榮, 等. 航空螺栓冷鐓的Deform 3D模擬與生產(chǎn)實(shí)踐[J]. 精密成形工程, 2012, 4(3): 22-26. LIU Bang-ping, CHEN Qu-ping, YAN Guo-rong, et al. Simulation Using Deform 3D and Production Practice on Cold Heading Process of Aviation Bolts[J]. Journal of Netshape Forming Engineering, 2012, 4(3): 22-26.

[4] 王曉偉. 基于有限元分析的汽車十二角半軸螺母冷鐓工藝開發(fā)與應(yīng)用[J]. 塑性工程學(xué)報(bào), 2023, 30(7): 62-70. WANG Xiao-wei. Development and Application of Cold Upsetting Process for Automobile Twelve Corner Half Axle Nut Based on Finite Element Analysis[J]. Journal of Plasticity Engineering, 2023, 30(7): 62-70.

[5] 武小茜, 趙洪川, 岳婷婷, 等. Ti-6Mo-5V-3Al-2Fe-2Zr合金熱變形行為及熱加工圖[J]. 精密成形工程, 2023, 15(1): 34-40. WU Xiao-xi, ZHAO Hong-chuan, YUE Ting-ting, et al. Thermal Deformation Behavior and Processing Map of Ti-6Mo-5V-3Al-2Fe-2Zr Alloy[J]. Journal of Netshape Forming Engineering, 2023, 15(1): 34-40.

[6] 劉斌, 武川, 周宇杰. Ti6554鈦合金脈沖電流輔助壓縮本構(gòu)模型的建立及應(yīng)用[J]. 精密成形工程, 2022, 14(5): 27-35. LIU Bin, WU Chuan, ZHOU Yu-jie. Establishment and Application of Ti6554 Titanium Alloy Pulse Current Assisted Compression Constitutive Model[J]. Journal of Netshape Forming Engineering, 2022, 14(5): 27-35.

[7] YUAN B G, ZHANG X X, WANG Y J, et al. Effects of Cyclic Thermo-hydrogen Processing on Microstructural and Mechanical Properties of Ti6Al4V Alloy at Room Temperature[J]. Vacuum, 2020, 171: 109015.

[8] MA T F, CHEN R R, ZHENG D S, et al. Hydrogen Enhanced the Room-temperature Compressive Properties of Ti44Al6Nb Alloy[J]. Materials Letters, 2018, 213: 170-173.

[9] SUN Z G, CHEN G Q, WANG Y Q, et al. Investigations on Cold Deformation Mechanisms of the Hydrogenated Ti-6Al-4V Alloys[J]. Materials Science and Engineering A, 2010, 527: 1003-1007.

[10] MAL'KOV A V, KOLACHEV B A. Favorable Effect of Hydrogen on the Plasticity of β Titanium Alloys[J]. Soviet Materials Science, 1977, 13(1): 1-4.

[11] YUAN B G, TANG A C, QIAN D G, et al. Room-te-m-perature Compressive Properties of TC21 Alloy Processed by Thermohydrogen Treatment at 1123 K[J]. International Journal of Hydrogen Energy, 2022, 47(59): 25066-25079.

[12] YUAN B G, DU J F, ZHANG X X, et al. Microstructures and Room-temperature Compressive Properties of Ti6Al4V Alloy Processed by Continuous Multistep Hydrogenation Treatment[J]. International Journal of Hydrogen Energy, 2020, 45(46): 25567-25579.

[13] 張小雪, 項(xiàng)運(yùn)良, 陳文杰, 等. 氫對TC21鈦合金熱物理性能的影響[J]. 精密成形工程, 2022, 14(1): 109-113. ZHANG Xiao-xue, XIANG Yun-liang, CHEN Wen-jie, et al. Effects of Hydrogen on Thermophysical Properties of TC21 Titanium Alloy[J]. Journal of Netshape Forming Engineering, 2022, 14(1): 109-113.

[14] 王富強(qiáng), 沙春鵬, 孫小嵐. TC16鈦合金的冷鐓組織與性能[J]. 材料與冶金學(xué)報(bào), 2013, 12(3): 218-221. WANG Fu-qiang, SHA Chun-peng, SUN Xiao-lan. The Cold Upset Microstructure and Properties of TC16 Titanium Alloy[J]. Journal of Materials and Metallurgy, 2013, 12(3): 218-221.

[15] 楊萬博, 霍元明, 何濤, 等. TC16鈦合金航空緊固件冷鐓成形實(shí)驗(yàn)研究[J]. 塑性工程學(xué)報(bào), 2020, 27(10): 7-12. YANG Wan-bo, HUO Yuan-ming, HE Tao, et al. Experimental Study on Cold Heading Forming of TC16 Titanium Alloy Aerospace Fastener[J]. Journal of Plasticity Engineering, 2020, 27(10): 7-12.

[16] 吳崇周, 李興無. TC16鈦合金室溫變形特性研究[J]. 鈦工業(yè)進(jìn)展, 2006, 23(6): 17-19. WU Chong-zhou, LI Xing-wu. Study of Deformation Characters of TC16 Titanium Alloys under Room Temperature[J]. Titanium Industry Progress, 2006, 23(6): 17-19.

[17] 李康, 付雪松, 胡建軍, 等. TC16鈦合金冷鐓變形的特征[J]. 稀有金屬材料與工程, 2017, 46(6): 1608- 1611. LI Kang, FU Xue-song, HU Jian-jun, et al. Deformation Features of TC16 Alloy Treated by Cold Upset Process[J]. Rare Metal Materials and Engineering, 2017, 46(6): 1608-1611.

[18] YUAN B G, CHEN W J, TANG A C, et al. Non- Isothermal Phase Transformation Behavior and Thermal Expansion Characteristics of TC21 Alloy[J]. Journal of Materials Engineering and Performance, 2021, 30(11): 7926-7934.

[19] ZHANG X X, DU J F, PENG F F, et al. Phase Transformations and Thermodynamics Analysis of Hydrogen Absorption of Ti6Al4V Alloy[J]. Rare Metal Materials and Engineering, 2021, 50(9): 3043-3049.

[20] YUAN B G, LIU X, DU J F, et al. Effects of Hydrogenation Temperature on Room-temperature Compressive Properties of CMHT-treated Ti6Al4V Alloy[J]. Journal of Materials Science & Technology, 2021, 72: 132-143.

[21] ZONG Y Y, HUANG S H, GUO B, et al. In Situ Study of Phase Transformations in Ti-6Al-4V-H Alloys[J]. Transactions of Nonferrous Metals Society of China, 2015, 25: 2901-2911.

[22] CHEN X L, LIANG Z L, GUO Y H, et al. A Study on the Grain Refinement Mechanism of Ti-6Al-4V Alloy Produced by Wire Arc Additive Manufacturing Using Hydrogenation Treatment Processes[J]. Journal of Alloys and Compounds, 2021, 890: 161634.

[23] YUAN B G, ZHENG Y B, GONG L Q, et al. Effect of Hydrogen Content on Microstructures and Room-tem-perature Compressive Properties of TC21 Alloy[J]. Materials & Design, 2016, 94: 330-337.

[24] ZHANG Z H, LIU Q M, LIU S F, et al. Effect of 0.12wt% Hydrogen Addition on Microstructural Evolution of Ti-0.3Mo-0.8Ni Alloy Argon-arc Welded Joints[J]. Rare Metal Materials and Engineering, 2019, 48(1): 104-110.

[25] YUAN B G, QIAN D G, TANG A C, et al. Characteristic and Kinetics of Hydrogen Absorption during the Heat Preservation Stage and the Cooling Stage of TC21 Alloy[J]. International Journal of Hydrogen Energy, 2022, 47(18): 10315-10330.

Cold Heading of Nonhydrogenated and Hydrogenated TC21 Titanium Alloy Hexagonal Bolt and Its Microstructure and Microhardness after Forming

ZHANG Xiao-xue1, ZONG Sheng-jie2, MA Zhi-yuan2, YUAN Bao-guo2*

(1. School of Mechanical Engineering, Anhui Sanlian University, Hefei 230601, China; 2. School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China)

The work aims to address the challenge of TC21 titanium alloy hexagonal bolts formed by cold heading. The cold heading performance of TC21 titanium alloy was enhanced by hydrogenation treatment. The nonhydrogenated and hydrogenated TC21 titanium alloy hexagonal bolts were subject to cold heading with an electronic universal material testing machine. The microstructure and microhardness of nonhydrogenated and hydrogenated TC21 titanium alloy hexagonal bolts were studied with a metallographic microscope, an X-ray diffractometer, a transmission electron microscope, and a microhardness tester. Hydrogenated TC21 titanium alloy hexagonal bolts exhibited no defects during the cold heading, whereas the nonhydrogenated TC21 titanium alloy hexagonal bolt experienced cracking during the cold heading. Both the nonhydrogenated and hydrogenated TC21 titanium alloy cold-headed hexagonal bolts exhibited a "bilateral forked deformation band" in their heads. Cracks appeared at the fork areas of the deformation band in the head of the nonhydrogenated TC21 titanium alloy cold-headed hexagonal bolt. Compared with the nonhydrogenated TC21 titanium alloy cold-headed hexagonal bolt, significant changes were observed in the microstructure of the hydrogenated TC21 titanium alloy cold-headed hexagonal bolt. In the hydrogenated TC21 titanium alloy cold-headed hexagonal bolt, the optical contrast between α phase and β phase was opposite to each other. The amount of α phase decreased while the amount of β phase increased, β phase became the dominant phase in the alloy, and many dislocations were observed. The microhardness in each region of the hydrogenated TC21 titanium alloy cold-headed hexagonal bolt was lower than that of the nonhydrogenated TC21 titanium alloy cold-headed hexagonal bolt in its respective regions. Hydrogenation treatment benefits the cold heading of TC21 titanium alloy hexagonal bolts.

titanium alloy; hexagonal bolt; cold heading; microstructure; microhardness

10.3969/j.issn.1674-6457.2023.10.016

TG146.2+3

A

1674-6457(2023)10-0136-07

2023-08-22

2023-08-22

國家自然科學(xué)基金(52275328,51875157);安徽高校優(yōu)秀拔尖人才培育資助項(xiàng)目(gxyq2021238);安徽高校自然科學(xué)重點(diǎn)科研項(xiàng)目(2023AH051703)

The National Natural Science Foundation of China (52275328,51875157); Cultivating Program for Excellent Talent in University of Anhui Province (gxyq2021238); Natural Science Research Key Project of Anhui University (2023AH051703)

張小雪,宗勝杰,馬志遠(yuǎn), 等. 未置氫及置氫TC21鈦合金六角頭螺栓冷鐓成形及其成形后的顯微組織與顯微維氏硬度[J]. 精密成形工程, 2023, 15(10): 136-142.

ZHANG Xiao-xue, ZONG Sheng-jie, MA Zhi-yuan, et al. Cold Heading of Nonhydrogenated and Hydrogenated TC21 Titanium Alloy Hexagonal Bolt and Its Microstructure and Microhardness after Forming[J]. Journal of Netshape Forming Engineering, 2023, 15(10): 136-142.

責(zé)任編輯:蔣紅晨

猜你喜歡
冷鐓緊固件氏硬度
緊固件防松類別及試驗(yàn)標(biāo)準(zhǔn)淺析
高硬度區(qū)間P91鋼的里氏-布氏硬度關(guān)系研究
無人值守智能化洛氏硬度測試平臺
油密鉚釘冷鐓過程優(yōu)化改進(jìn)
開啟窗五金件連接處緊固件的選用及松動原因探究
基于五軸機(jī)器人的平板顯示器緊固件自動鎖緊解決方案
拉鉚銷冷鐓成型工藝研究
拉鉚銷冷鐓成型工藝研究
飛機(jī)裝配預(yù)連接緊固件自動化安裝末端執(zhí)行器設(shè)計(jì)
鉆頭冷鐓參數(shù)建模及成形工藝優(yōu)化