国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

基于MSET重構模型整體優(yōu)化的軸承性能退化評估方法

2023-09-05 02:11:10劉楊遠吳榮真承志恒顏秋宏
振動與沖擊 2023年16期
關鍵詞:軸承向量觀測

張 龍, 劉楊遠, 吳榮真, 王 良, 承志恒, 顏秋宏

(華東交通大學 載運工具與裝備教育部重點實驗室,南昌 330013)

軸承的性能從健康到失效是一個漸變的過程,性能退化評估不僅是對該過程實現(xiàn)定量評估的有效手段,而且是實現(xiàn)軸承故障預診斷的前提與基礎,更是發(fā)揮狀態(tài)預測維修潛力的重要一環(huán)[1]。

軸承性能退化評估的一般流程為特征提取、特征選擇、建立劣化指標、比較實測樣本與無故障基準之間相似性[2]等幾個方面。其中比較度量相似性方法又可分為基于邊界的檢測方法、基于概率密度估計和基于模型重構的檢測方法3個方面。典型的邊界檢測方法有支持向量機[3]和支持向量數(shù)據(jù)描述[4],該類方法通過無故障訓練數(shù)據(jù)集來創(chuàng)建邊界,使用待評估數(shù)據(jù)與邊界的距離確定其相對于無故障狀態(tài)的類隸屬。但是基于邊界的異常檢測方法問題在于距離指標的上限難以界定,從而難于從退化指標中定量推斷性能退化程度?;诟怕拭芏裙烙嫷姆椒ㄒ话闶褂酶咚够旌夏P蚚5]和隱馬爾科夫模型[6],該類方法首先對訓練期間的無故障數(shù)據(jù)進行概率密度建模,之后將待測數(shù)據(jù)輸入到訓練好的模型中,樣本若落入低密度區(qū)域則不屬于無故障樣本。但是,高斯混合模型假設無故障數(shù)據(jù)的概率密度分布可由多個高斯分布組合得到,其獨立高斯函數(shù)數(shù)量難于精確估計,不能保證與實際情況完全相符;而對于復雜的系統(tǒng)而言,隱馬爾科夫模型利用指數(shù)表達形式模擬健康狀態(tài)區(qū)間,該策略與現(xiàn)實情況相違背,往往導致精度較低。

基于模型重構的方法通過映射目標數(shù)據(jù)集,將待測數(shù)據(jù)輸入到經過無故障數(shù)據(jù)訓練的模型進行映射,其重建誤差大小(例如歐幾里德距離)與退化性能程度密切相關。多元狀態(tài)估計(multivariate state estimation technique, MSET)就是一個典型的基于模型重構的性能退化評估方法,本質上是一種非線性的多元預測診斷技術,也可稱為一種非參數(shù)建模方法。MSET通過對健康狀態(tài)基準進行相似性建模,然后輸入待測的觀測向量進行模型重構,比較度量前后差異性從而判斷目標的性能退化程度。例如Wang等[7]將最大條件互信息(conditional mutual information, CMI)特征選擇算法應用于MSET的訓練數(shù)據(jù),用K近鄰算法(K-nearest neighbor,KNN)動態(tài)存儲歷史記憶矩陣,成功實現(xiàn)了風電機組性能狀態(tài)檢測。MSET重構模型相比于基于邊界和概率密度估計的性能退化方法優(yōu)勢明顯,其模型簡單且物理意義明確,能及時準確地反映設備性能退化趨勢。

在性能退化特征提取和選擇時,常用的方法有時域、頻域特征提取、小波特征提取和時序模型分析等等。崔凱等[8]將加速度有效值、峭度值兩個時域指標結合在一起聯(lián)合判斷風機軸承運行狀態(tài)。Zhou等[9]采用軸承信號小波包能量熵作為原始特征,然后將全壽命數(shù)據(jù)輸入到利用健康狀態(tài)特征建立好的RBF網絡模型中,從而得到性能退化指標。Cong等[10]利用基于時序模型中的自回歸模型(AR模型)和Kolmogorov-Smirnov檢驗相似概率值來反映滾動軸承性能劣化的趨勢。但上述傳統(tǒng)的單個域指標特征提取效果單一,對狀態(tài)變化感知不明顯,無法有效囊括軸承性能狀態(tài)且不利于早期故障的發(fā)現(xiàn)。

許多研究將多域特征指標融合進行性能退化評估,例如Liu等[11]從軸承振動信號中提取多域統(tǒng)計特征,然后利用核聯(lián)合特征矩陣近似對角化算法將其融合為敏感特征,最后計算健康數(shù)據(jù)和當前數(shù)據(jù)的類間和類內離散度作為性能退化指標。對于將多域特征組合的方法,雖然相較于單域指標能更細致地描繪軸承退化過程,但是高維特征存在信息冗余且計算量大的問題,從而降低性能退化評估模型的性能。Dong等[12]將時域、頻域、時頻域特征利用主成分分析(principal component analysis,PCA)降維后作為性能退化指標。叢華等[13]采用遺傳算法(genetic algorithm,GA)優(yōu)化提取特征,然后計算特征與支持向量數(shù)據(jù)描述超球體模型間的距離從而評估軸承的性能退化程度。然而,①PCA降維與其他優(yōu)化算法不同,并非直接從高維特征中挑選出具有代表性的低維特征,而是利用空間轉換將高維空間映射成低維空間,導致破壞了原有數(shù)據(jù)的結構,改變了原有數(shù)據(jù)的物理意義;②利用PCA或者GA單純對輸入特征進行降維或優(yōu)化雖然一定程度上減少了冗余信息,但傳統(tǒng)的時頻域特征降維后的指標不一定適配所需模型,匹配度有待進一步考量。而目前做聯(lián)合降維性能退化評估的長短期記憶網絡[14-15](long short-time memory, LSTM)等參數(shù)過于復雜,時間跨度大且網絡較深,導致計算量大且耗時費力。

綜上,本文提出一種基于MSET重構模型整體優(yōu)化的軸承性能退化評估方法。首先,基于軸承振動信號提取m組時域和頻域特征、n階AR模型系數(shù)和k維三層小波包Renyi 熵歸一化后組成m+n+k維多域特征向量指標,并將得到健康狀態(tài)的高維特征向量構建MSET模型的歷史觀測矩陣;然后,利用遺傳算法對軸承高維特征向量和多元狀態(tài)估計中的歷史記憶矩陣的觀測向量個數(shù)和維度進行同步聯(lián)合優(yōu)化,從而得到低維特征向量和歷史記憶矩陣觀測向量個數(shù)與該低維特征向量最匹配的MSET 模型,實現(xiàn)了特征優(yōu)選和滾動軸承性能評估模型的整體自適應優(yōu)化;最后,構建余弦相似度劣化指標實現(xiàn)軸承性能退化評估。

1 理論基礎

1.1 小波包Renyi熵

小波包相較于小波而言,在信號高頻部分分解得更加精細,能更好地刻畫信號的突變性和非平穩(wěn)性。其本質就是集合數(shù)個高低通濾波器從而將頻譜劃分多個層次,得到相應的高低頻成分,更好地表達信號。其分解所得的頻帶之間沒有疏漏和冗余,相互獨立。

小波包分解表達式[16]如下

(1)

小波包重構表達式如下

(2)

小波包變換實際上就是小波基函數(shù)與信號進行卷積的過程。卷積在時域中的表現(xiàn)形式為移動的內積,從而使基函數(shù)和信號之間相似部分放大,反之則被抑制,因此小波基函數(shù)的選擇將直接影響最后結果。信號進行j層小波包分解后將分成2j個子帶信號。Nikolaou等[17]提出選擇3層或4層小波包分解時,對所得到的信號分析結果影響不大。因此,為提高計算效率,本文采用db5小波基函數(shù),對信號進行3層小波包分解。

當設備發(fā)生故障后,信號的不確定信息及能量分布將較正常運轉時發(fā)生改變,不同的故障類型以及不同程度的故障其能量分布更是不同。信息熵具有表征信號復雜程度的能力,信號隨機性越高、越復雜時信息熵越大,反之信號越規(guī)則信息熵越小。

信息熵計算公式如下

(3)

Renyi熵作為信息熵概念的擴展,具有表征信號在時頻分布特征的能力[18]。Renyi 熵較信息熵而言對信號細微變化更加敏感,尤其是在端點處,能夠捕捉到隨機變量在概率分布中的差異并進行放大。Renyi熵計算公式如下

(4)

式中,α≠1且α≥0。當α=0時Hα(x)取最大值,Markel等[19]對Renyi熵的α進行了研究,表明α=0.5為結果最優(yōu)值,故本文α選為0.5。

1.2 AR模型

自回歸模型(autoregressive model, AR)是一種隨機信號參數(shù)化建模方法,常用于處理時間序列。AR模型利用有限的知識和自身的參數(shù)對前面多個觀測值進行學習,從而對下一時刻的輸出進行預測,其對系統(tǒng)狀態(tài)變化極其敏感,且能表征系統(tǒng)狀態(tài)特征。

取時間序列y(t),AR模型的分析階數(shù)為p,則關于時間序列的p階AR模型可以表示為

(5)

式中:L(t)為AR模型的殘差;αj為第j項的系數(shù)。

殘差L(t)為真實值和預測值兩者間的誤差,對于平穩(wěn)信號L(t)主要表征白噪聲。所以AR模型實際上就是調整模型參數(shù)使殘差更接近高斯白噪聲。本文選用最常用的最小二乘法來進行AR譜估計以及模型參數(shù)的選擇,根據(jù)貝葉斯信息準則(Bayesian information criterion,BIC)確定模型階數(shù)??纱笾路譃槿?

步驟1確定分析階數(shù)p的范圍繼而調整AR模型,本文p分別取1,2,…,300;

步驟2通過最小二乘法分別求得各階次下的自回歸參數(shù)αj(j=1,2,…,300),構造式(5)所示的AR模型,進而得到殘差L(t);

步驟3根據(jù)各階次殘差L(t)的BIC值最小原則,確定最優(yōu)階數(shù)。

1.3 多元狀態(tài)估計

多元狀態(tài)估計是一種非線性的非參數(shù)建模方法。MSET通過比較新輸入數(shù)據(jù)與無故障時的健康數(shù)據(jù),對各變量數(shù)據(jù)之間的內在關聯(lián)做出判斷,根據(jù)歷史數(shù)據(jù)所獲得的權值向量等知識對實際運行狀態(tài)做出估計,通過殘差比較估計向量與新輸入的觀測向量的相似性,從而對設備進行診斷。

假設在某一過程或系統(tǒng)中某個時刻tj有n個互相關聯(lián)的變量,將其記為觀測向量X(tj),如式(6)所示

X(tj)=[x1(tj)x2(tj) …xn(tj)]T

(6)

式中,X(tj)為tj時刻狀態(tài)變量xi的觀測值。

首先,通過一定的方法合理地挑選m列正常運行狀態(tài)下的觀測變量即可組成歷史記憶矩陣Dn×m,如式(7)所示,從而完整地表示某一過程或系統(tǒng)正常運行狀態(tài)下的整個動態(tài)過程,換言之D即是對設備正常運行數(shù)據(jù)的特征提取、選擇、學習和記憶的過程。

(7)

式中:n為在某一時刻互相關聯(lián)的狀態(tài)變量有n個;m為取m個觀測向量X(tj),即取m個時刻。

然后,假設在某一過程或系統(tǒng)中某個時刻模型的輸入為觀測向量Xobs,將其輸入歷史記憶矩陣D之后的輸出為估計向量Xest。Xest是對輸入Xobs的預測值,即對當前狀態(tài)的估計。對于任一輸入觀測向量Xobs,MSET均對應生成一個m維的權值向量W

(8)

根據(jù)權值向量W對D中m個歷史觀測向量進行線性組合即可得到估計向量Xest,如下所示

w1X(t1)+w2X(t2)+…+wmX(tm)

(9)

ε=Xest-Xobs

(10)

W=(DTD)-1DTXobs

(11)

在式(11)中由于Xobs的個數(shù)遠大于監(jiān)測系統(tǒng)參數(shù)個數(shù),導致DTD不可逆,因此可采用非線性運算符代替普通矩陣乘積運算,即可得權重向量式(12)

W=(DT?D)-1·(DT?Xobs)

(12)

式中,?為非線性運算符,避免因變量之間的相關性造成矩陣點乘之后的不可逆現(xiàn)象,從而擴大關系式(12)的通用性。本文MSET重構模型采用兩向量之間的歐式距離(Euclidean distance)作為非線性運算符

(13)

式中,xi和yi均為變量。

將式(12)代入式(9)可得估計向量的表達式

Xest=D·(DT?D)-1·(DT?Xobs)

(14)

式(10)、式(13)和式(14)的物理意義為:當新輸入的觀測向量Xobs仍然處于設備正常工作狀態(tài)區(qū)間范圍時,其與歷史記憶矩陣D中某些觀測向量的組合會很相似,歐氏距離會很小,導致輸出的估計向量Xest預測值精度高,重構精度高,殘差ε小;當新輸入的觀測向量Xobs為設備出現(xiàn)故障時,勢必導致其動態(tài)特性發(fā)生變化,使Xobs偏離原始正常工作范圍,從而無法利用D中某些觀測向量的組合進行重構,兩者相似度低,歐氏距離大,導致輸出的估計向量Xest預測值精度低,殘差ε大。由于Xobs和Xest兩向量間的異同性包含豐富的運行狀態(tài)信息,因此常利用二者間的殘差進行故障模式識別或性能退化評估。

2 整體優(yōu)化的性能退化評估模型

由上可知MSET重構模型能有效地獲取故障信息并對性能退化程度進行評估。但應進一步考慮以下情況:①定量分析模型重構前后的殘差從而對退化趨勢進行量化描述;②確保高維多域特征經降維后得到的低維特征與MSET模型歷史記憶矩陣中觀測向量個數(shù)是匹配的;③設置合理的預警閾值從而對設備故障進行及時預警。這三點都是本文方法的關鍵所在,后續(xù)將進一步進行研究和分析。

2.1 試驗數(shù)據(jù)分析

軸承在實際運行中,其故障的產生和發(fā)展是一個突發(fā)的、連續(xù)變化的過程,為了真實地反映故障連續(xù)變化的過程和驗證本文所提方法有效性和可靠性,利用西安交大-昇陽科技聯(lián)合實驗室(XJTU-SY)所提供的全壽命加速疲勞軸承試驗數(shù)據(jù)[20]進行分析。試驗臺如圖1所示,包括驅動部分、測試部分和液壓加載部分,具體器件如圖中所示。DT9837采集器通過兩個PCB 352C33單向加速度傳感器對型號為LDK UER204的試驗軸承進行信號采集,轉軸轉頻為40 Hz,采樣頻率為25.6 kHz。試驗設計了三種工況,每種工況有 5組測試軸承,工況類別見表1。

表1 加速疲勞試驗工況Tab.1 Accelerated fatigue test condition

圖1 XJTU-SY試驗臺Fig.1 The XJTU-SY test rig

本文以工況3第一個軸承Bearing 3_1為例進行分析,該軸承從開始運行到出現(xiàn)外圈故障直至失效累計時長42 h 18 min,試驗中每隔1 min采樣1.28 s數(shù)據(jù),共計2 538組數(shù)據(jù),每組數(shù)據(jù)32 768個點,圖2為該軸承全壽命時域波形圖。利用軸承故障特征頻率計算公式所得的軸承各元件故障頻率如表2所示。

表2 故障特征頻率Tab.2 The fault characteristic frequency 單位:Hz

圖2 軸承3_1的時域振動信號Fig.2 The temporal vibration signal of bearing 3_1

由前言可知,不同域的特征包含滾動軸承振動信號在不同狀態(tài)空間的信息,例如表3所示的11個時域特征中絕對平均值、標準差、均方根值和峰值4個指標反映時域信號的能量大小,其余7個指標反映信號在時域的分布特征。而為盡可能地反映軸承信號在頻域中所包涵的信息,取表4中13個常見的頻域統(tǒng)計特征,其中序號1的特征反映信號在頻域中振動能量大小,序號2~9的特征反映頻譜的集中程度,序號10~13的特征反映主頻帶在頻譜中的位置變化。

表3 11個時域特征指標Tab.3 11 time domain characteristic indexes

表4 13個頻域特征指標Tab.4 13 frequency domain characteristic indexes

對各樣本提取AR 系數(shù)特征時,AR 模型階數(shù)的確定至關重要,階數(shù)過低則無法準確對模型進行描述,反之則會導致過擬合,本文利用常見的BIC 準則對階數(shù)進行確定。Bearing 3_1軸承全壽命周期2 538 min,本文認為試驗剛開始時的前60 min為設備開機后的磨合階段,試驗數(shù)據(jù)不準確,于是取第61~第80共 20組測試軸承正常運行下的壽命信號分別計算其AR 最優(yōu)階數(shù),由圖3可知,最優(yōu)AR 模型階數(shù)為26階,所以后續(xù)使用該軸承數(shù)據(jù)做故障診斷提取AR 系數(shù)特征時,一律取26階AR 模型系數(shù)。

圖3 20個無故障信號的最優(yōu)階數(shù)Fig.3 Optimal orders of 20 bearing signals without faults

由1.1節(jié)可知,信號數(shù)據(jù)進行j層小波包分解后將分成2j個子帶信號,所以三層小波包分解將產生8個子帶信號,依次對每個子帶信號計算其Renyi 熵,即可組成一個8維三層小波包Renyi 熵特征向量。

綜上,本文采用上述24組時域和頻域特征、26階AR模型系數(shù)和8維三層小波包Renyi 熵歸一化處理后共同組成58維多域特征向量指標。

2.2 性能退化評估模型

本文基于MSET重構模型整體優(yōu)化的軸承性能退化評估模型如圖4所示,具體步驟如下:

圖4 性能退化評估模型Fig.4 Evaluation model of performance degradation

步驟1基于滾動軸承振動信號對原始時域數(shù)據(jù)提取24組時域和頻域特征、26階AR模型系數(shù)和8維三層小波包Renyi 熵歸一化后組成58維多域特征向量指標;

步驟2利用滾動軸承正常運行狀態(tài)下健康數(shù)據(jù)特征構建多元狀態(tài)估計模型的歷史記憶矩陣;

步驟3利用遺傳算法對訓練集高維特征向量和MSET中歷史記憶矩陣的觀測向量個數(shù)和維度進行同步聯(lián)合優(yōu)化,實現(xiàn)特征降維和個數(shù)優(yōu)選;

步驟4對測試集數(shù)據(jù)提取低維特征,維度與GA優(yōu)化后一致,將得到的測試樣本低維特征向量作為觀測向量輸入MSET模型中;

步驟5輸出估計向量,計算觀測向量與估計向量之間相似性。

經MSET模型重構后的Xest為單重構的低維向量,并不能直接反映劣化程度,本文選用重構前后兩向量之間的余弦相似度(cosine similarity, CS)作為性能退化指標,從兩向量空間距離的角度評估滾動軸承性能退化程度,CS表達式如下

(15)

GA相較于粒子群優(yōu)化[21]和模擬退火[22]等優(yōu)化算法而言,對初始條件的設置要求較低,只需設定相應的適應度函數(shù)即可,具有較強的魯棒性,能更快地搜索到全局最優(yōu)解。上述步驟3中利用GA對模型進行同步優(yōu)化的具體操作如下:

步驟1采用二進制編碼方式進行編碼,對測試軸承前n個樣本和58維特征向量組成染色體長度為n+58的基因組,其排列方式如圖5所示;

圖5 編碼排列方式Fig.5 Coding arrangement mode

步驟2初始化GA參數(shù),設置初始種群大小為50,遺傳代數(shù)為100,采用多點交叉方式,交叉率為0.7,變異率為0.05,代溝值為0.9;

步驟3設置訓練樣本集合,主要由無故障階段和失效階段兩部分信號構成;并采用所有正常樣本CS均值與所有故障樣本CS均值的比值設計適應度函數(shù),從而計算個體適應度,適應度越高,個體越優(yōu);

(16)

式中:m為正常樣本數(shù)量;n為故障樣本數(shù)量;CSN為正常樣本的余弦相似度;CSF為故障樣本的余弦相似度。

步驟4根據(jù)步驟2中所確定的交叉和變異遺傳算子對當前種群進行處理,并判別其種群個體適應度是否達到要求。若達到要求則進行解碼,得到最優(yōu)低維向量的維數(shù)及其索引以及最優(yōu)歷史記憶矩陣觀測向量個數(shù)和維度,執(zhí)行步驟6,否則繼續(xù)下一步;

步驟5進行選擇、交叉、變異過程,返回步驟3;

步驟6獲得最優(yōu)參數(shù)建立MSET單重構模型,利用模型進行性能退化評估。

2.3 自適應預警閾值

余弦相似度CS是一條連續(xù)變化的曲線,將其作為劣化指標能準確地量化表征軸承目前運行狀態(tài)與無故障運行時的偏離程度。進一步還需要對該曲線標定一個恰當?shù)念A警值從而及時對故障進行示警。

由統(tǒng)計學知識可知,數(shù)學期望為μ,方差為σ2的正態(tài)分布(μ,σ2)數(shù)據(jù),樣本數(shù)值落在(μ-3σ,μ+3σ)區(qū)間內的概率約為0.997 3,因此判定在樣本故障程度相近時,CS值也符合正態(tài)分布要求。進一步當連續(xù)多個樣本的CS值超過由歷史樣本CS值所確定的(μ-3σ,μ+3σ)區(qū)間范圍時,判定該時刻故障程度于前一刻已經發(fā)生較大變化。CS值是連續(xù)單調遞減的,故只計算下限μ-3σ即可,如式(17)所示。本文利用3σ準則對CS值進行預警值標定,未超過該值的視為正常運行狀態(tài),同時利用當前所有無故障樣本更新CS值的3σ區(qū)間,達到自適應示警的目的。

式中:{D(i),i=1,2,…,n}為t=[1,n]時刻的CS值;T(t)為t時刻預警值。當首次連續(xù)多個CS值小于te時刻的預警值T(te)時,定義該時刻為早期故障時刻或故障程度加深時刻。為防止外界偶然因素的影響,本文早期故障時刻要求連續(xù)5個測試數(shù)據(jù)的CS值小于或等于te時刻的預警閾值。

3 試驗結果分析

3.1 聯(lián)合優(yōu)化特征降維

對試驗數(shù)據(jù)按照步驟1~步驟5進行整體優(yōu)化性能退化評估操作,具體如下:首先從健康運行軸承的采集信號中選擇300個樣本提取其58維特征作為觀測向量用來構造歷史記憶矩陣D。然后額外選取100個正常運行狀態(tài)的樣本和100個故障樣本提取其高維特征作為訓練數(shù)據(jù),利用遺傳算法對訓練集高維特征向量和MSET 模型中歷史記憶矩陣的觀測向量個數(shù)和維度進行同步聯(lián)合優(yōu)化。最后將Bearing 3_1 軸承全壽命周期2 538個樣本作為測試數(shù)據(jù),提取其低維特征,維度與GA優(yōu)化后一致,將得到的測試樣本低維特征向量作為新輸入觀測向量輸入MSET模型中進行后續(xù)分析。

對試驗數(shù)據(jù)進行樣本劃分后按上述過程進行整體優(yōu)化性能退化評估,優(yōu)化結果如圖6所示。從圖6(a)中可以看出,經優(yōu)化后歷史記憶矩陣所包含的觀測向量個數(shù)由原始的300個變?yōu)?33個,且分布較為均勻,有效地剔除了部分冗余觀測向量,減少了后續(xù)性能退化評估的計算量;從圖6(b)中可以看出,在步驟3同步聯(lián)合優(yōu)化中,58維特征優(yōu)選成了9維特征,由小波Renyi 熵后三項和AR模型中6個系數(shù)組成,其中24組時域和頻域特征降維成了0維,表明時、頻域指標對西安交大軸承數(shù)據(jù)中的Bearing 3_1試驗數(shù)據(jù)分析結果較差。

圖6 優(yōu)化結果Fig.6 Optimization results

為進一步分析該試驗數(shù)據(jù)特征優(yōu)選后時域、頻域特征降維后變成了0維的原因,對3個時域指標和3個頻域指標進行作圖,如圖7所示。從圖7中可以看出,脈沖因子和峭度值與軸承故障發(fā)展趨勢基本一致,但后期均出現(xiàn)先減小后增大的情況,與故障實際發(fā)展情況不相符,并且脈沖因子指標前期波動過大,不利于早期故障的發(fā)現(xiàn);加速度有效值波形后期振蕩過于嚴重,與故障實際發(fā)展情況不相符;其余3個頻域特征均不能準確表征故障程度和性能退化趨勢。

圖7 軸承時域指標Fig.7 Time domain index of bearing

3.2 全壽命曲線

對Bearing 3_1軸承全壽命2 538個樣本進行分析,性能退化評估CS 值曲線經過5點平滑處理后如圖8所示。由于故障程度具有漸變性,平滑處理不僅不會影響故障預警,更能削弱噪聲干擾,更好地表達信號。圖中虛線為自適應預警值,實線為故障指標CS 值,曲線整體呈現(xiàn)下降趨勢,表明CS 值能準確、一致地表征軸承故障嚴重度趨勢,且相較于圖7的時域指標對軸承早期故障更加敏感。

圖8 軸承全壽命CS值Fig.8 CS value of bearing life

圖8中性能退化評估曲線大致可劃分成無故障時期、初始故障時期、中度故障時期和惡化失效時期4個階段。由于該軸承的CS 值在534時刻起連續(xù)5個值小于自適應預警值,故0~533時刻為無故障時期,534時刻為初始故障發(fā)生時刻。534~1 119時刻內的CS 值呈明顯下降趨勢,但在1 119時刻曲線出現(xiàn)階躍現(xiàn)象,CS 值急劇下降,這是因為該時刻軸承故障程度持續(xù)加重,導致新輸入觀測向量與歷史記憶矩陣的偏離程度持續(xù)加深,最終在1 119時刻達到中度故障時期。1 119~1 378時刻內的CS 值振蕩降低后垂直上升,這是因為故障的發(fā)展是一個漸變的過程,從微小故障逐漸擴大,然后磨平,隨著時間增加故障再度擴大,所以導致CS 值出現(xiàn)了大范圍地反復波動。1 378時刻,原始故障點已被磨平,因故障產生的突變沖擊減小,新輸入觀測向量與歷史記憶矩陣的偏離程度減小,CS 值突變增大。1 378~2 538時刻,軸承故障程度不斷加重,且CS 值波動程度比之前各階段更大,波動時間更短,表明故障點的“磨平- 惡化”情況更加明顯,且故障程度快速加深直至軸承失效。從圖中還可以看出,CS 值曲線整體毛刺較多,局部波動性大,這是由于軸承在整體運轉過程中微小的“故障磨平、再度劣化”現(xiàn)象一直存在。

為進一步分析CS 值與故障程度之間的關聯(lián)性,選取無故障階段(0~533)、 輕度故障階段(534~1 118)、 中度故障階段(1 119~1 377)、重度故障階段(1 378~2 538) 四種狀態(tài)中各3個樣本,計算其低維特征后輸入聯(lián)合優(yōu)化模型,可得到輸出估計向量與觀測向量之間的余弦相似度差異,不同故障程度下CS 值的變化如圖9所示。從圖中可以看出,無故障樣本的CS 值最大,3個樣本的均值約為0.985,接近于1,這是因為無故障樣本提取的特征與歷史記憶矩陣中各向量相似程度高,輸出估計向量與觀測向量的偏斜度小,兩空間向量之間的夾角小,余弦相似度大。而隨著外圈故障尺寸的變大,估計向量與觀測向量之間的CS值越來越小,這是由于隨著故障嚴重度加深,軸承當前狀態(tài)越來越偏離無故障運行狀態(tài),輸入特征越來越偏離依靠健康樣本所建立的歷史記憶矩陣的觀測向量,兩者之間的偏斜度越來越大,在CS 值上的表現(xiàn)則呈現(xiàn)出遞減趨勢,從而很好地區(qū)分軸承的故障程度。

圖9 不同程度外圈故障CS值Fig.9 CS value of outer ring faults in different degrees

4 試驗驗證及對比

4.1 試驗驗證

為驗證聯(lián)合優(yōu)化多域特征-MSET 重構模型方法的有效性,對No.534和No.533樣本信號進行以包絡譜譜峰因子為優(yōu)化指標自適應共振解調[23]處理,共振解調后對軸承信號進行傅里葉變換,如圖10所示。

圖10 故障樣本包絡解調Fig.10 Envelope demodulation of fault samples

圖10(a) No.534樣本共振解調結果中出現(xiàn)明顯脈沖現(xiàn)象,且在頻譜的包絡譜中出現(xiàn)了與外圈故障頻率BPFO(123.3 Hz)相近的一倍頻124 Hz、二倍頻246 Hz和三倍頻370 Hz,此外轉軸轉頻40 Hz也清晰可見。但由于該時刻為早期故障點,軸承外圈剛剛出現(xiàn)微小故障,導致二倍頻和三倍頻幾乎泯沒在噪聲當中。而在圖10(b)No.533樣本包絡解調中沖激現(xiàn)象和123.3 Hz的外圈故障頻率成分并不明顯,且在534時刻的最優(yōu)濾波頻帶相較于533時刻的最優(yōu)濾波頻帶發(fā)生了明顯改變。因此,證明534時刻為軸承早期故障點,驗證了方法的有效性和可靠性。

4.2 對比試驗分析

為驗證本文所提方法的優(yōu)越性,首先采用僅進行特征維度優(yōu)化的MSET軸承性能退化模型進行對比分析。利用GA對58維特征向量進行降維,如圖11所示,從圖中可以看出僅對特征進行優(yōu)化時,時域、頻域的特征向量仍有所保留,與圖6的分析不相符,導致輸入將含有許多冗余信息。進一步分析,將降維后的34維特征向量輸入未經優(yōu)化的MSET模型,其性能退化曲線和自適應預警值如圖12(a)所示,其早期故障點為No.306樣本,遠遠早于本文方法所判斷的早期故障點,原因是因為未經優(yōu)化的MSET模型歷史記憶中的觀測向量個數(shù)過多,而輸入的特征向量維度也過多,導致含有許多冗余信息從而提前誤判故障點。為驗證該時刻軸承并未發(fā)生故障,對No.306樣本信號進行包絡解調,如圖12(b)所示,其頻譜中并無外圈故障頻率成分,證明此刻軸承仍處于正常運行狀態(tài),并未發(fā)生故障,早期故障點判斷失誤。

圖11 多域特征向量優(yōu)化結果Fig.11 Multi-domain eigenvector optimization result

圖12 對比試驗一分析Fig.12 Analysis of the comparative experiment one

其次,采用僅優(yōu)化MSET中歷史記憶矩陣的軸承性能退化模型進行對比分析。利用GA對觀測向量的個數(shù)進行優(yōu)選后,如圖13所示。從圖13中可以看出,歷史記憶矩陣觀測向量個數(shù)由原來的300個變成了156個,分布較為均勻,有效剔除了冗余觀測向量。進一步分析,將提取的高維特征向量直接輸入優(yōu)化后的MSET模型,其性能退化曲線和自適應預警值如圖14所示。從圖14中可以看出,在No.320樣本處CS值曲線與自適應預警值曲線已有切點,預示軸承已經開始出現(xiàn)故障,但從圖14(b)的包絡解調結果可以看到該樣本僅包含轉頻40 Hz,因此該預測結果不準確。而由于未對輸入高維特征進行優(yōu)化,導致性能退化曲線并不能很好地區(qū)分軸承的故障程度,自適應預警值也不能準確有效地反映出早期故障發(fā)生時刻,致使長時間后在No.2296樣本處兩曲線再次出現(xiàn)交點,而該時刻雖已發(fā)生故障,但遠遠晚于本文方法所判斷的早期故障點,時效性不強,不具有使用意義。

圖13 觀測向量優(yōu)化結果Fig.13 Optimization result of observation vector

圖14 對比試驗二分析Fig.14 Analysis of the comparative experiment two

由以上兩個對比試驗綜合分析可知,相比于本文所提出的聯(lián)合優(yōu)化多域特征-MSET模型,單優(yōu)化輸入特征維度和單優(yōu)化歷史記憶矩陣的模型效果均一般,與軸承的實際發(fā)展趨勢不一致,不能及時地、準確地反映軸承早期故障,也無法很好地區(qū)分故障程度,由此說明本文所提的整體優(yōu)化MSET單重構模型方法的準確有效性和優(yōu)越性。

進一步為驗證所提模型的泛化性和優(yōu)越性,采用多個軸承全壽命數(shù)據(jù)進行性能退化評估,并與其他文獻中結果進行對比。從表5中可以看到,所用方法在不同軸承數(shù)據(jù)集下均能更準確地判別軸承性能退化趨勢,模型具有一定的泛化性。

表5 不同軸承數(shù)據(jù)間的試驗結果Tab.5 The results between different bearing data

5 結 論

針對傳統(tǒng)單域特征指標無法充分表征軸承狀態(tài)信息,而目前性能退化評估中基于多域高維特征向量的重構評估模型存在信息冗余且易受到不一致優(yōu)化目標的影響,不能在低維空間中保留必要的信息,而導致模型次優(yōu)性能。提出一種基于MSET重構模型整體優(yōu)化的軸承性能退化評估方法,通過同步聯(lián)合優(yōu)化多域特征和MSET 模型歷史記憶矩陣從而實現(xiàn)特征優(yōu)選和性能評估模型的整體自適應優(yōu)化。

(1)XJTU-SY 軸承全壽命數(shù)據(jù)分析表明經聯(lián)合優(yōu)化多域特征-MSET 重構模型后的所得CS 值能很好地表達軸承故障嚴重度變化,且隨著程度加深具有單調遞減趨勢;并通過對傳統(tǒng)時域指標進行比較,表明本文所提方法對軸承早期故障更加敏感,且與故障發(fā)展趨勢的一致性更好。

(2)通過對兩組單優(yōu)化對比試驗和不同方法進行比較分析,并利用復小波共振解調法對早期故障點進行驗證,表明本文基于MSET重構模型整體優(yōu)化的軸承性能退化評估方法更具有效性、可靠性和優(yōu)越性。

猜你喜歡
軸承向量觀測
觀測到恒星死亡瞬間
軍事文摘(2023年18期)2023-11-03 09:45:42
軸承知識
哈爾濱軸承(2022年2期)2022-07-22 06:39:32
軸承知識
哈爾濱軸承(2022年1期)2022-05-23 13:13:24
向量的分解
軸承知識
哈爾濱軸承(2021年2期)2021-08-12 06:11:46
軸承知識
哈爾濱軸承(2021年1期)2021-07-21 05:43:16
聚焦“向量與三角”創(chuàng)新題
天測與測地VLBI 測地站周圍地形觀測遮掩的討論
可觀測宇宙
太空探索(2016年7期)2016-07-10 12:10:15
向量垂直在解析幾何中的應用
恩施市| 容城县| 娱乐| 阜平县| 阜新| 永福县| 榆社县| 郑州市| 汉中市| 沅江市| 阜新市| 咸宁市| 德钦县| 贡嘎县| 板桥市| 辽阳市| 土默特左旗| 婺源县| 大冶市| 庆元县| 达拉特旗| 洛南县| 阳朔县| 桐乡市| 崇文区| 万源市| 博白县| 大宁县| 永仁县| 东至县| 太原市| 德阳市| 常熟市| 陆川县| 昌吉市| 淮北市| 松潘县| 黄陵县| 襄垣县| 黔南| 琼结县|