孫玉霜,耿顯亞
(安徽理工大學 數(shù)學與大數(shù)據(jù)學院,安徽 淮南 232001)
本文所考慮的都是有限簡單圖,設G=(V(G),E(G))是一個圖,V(G)表示圖的頂點集,E(G)表示圖的邊集,對于一個頂點v∈V,圖G-u是由V-{u}給定的,對于一條邊e,圖G-e是由一個圖G刪去一條邊e給定的[1-8],另外N(v)={u|uv∈E}表示在G中與v有邊相連的點,NG[v]={v}∪N(v)表示與v有邊連接的點且點v包括在內(nèi)[3,11,15].
在后續(xù)計算中,我們會用到如下公式:
1) Gutman and Polansky[9],如果uv是G中的一條邊,則
m(G)=m(G-uv)+m(G-{u,v})
(1)
2) Gutman and Polansky[9],如果v是G中的一個頂點,則
i(G)=i(G-v)+i(G-NG[v])
(2)
3) Gutman and Polansky[9],如果G是由G1,G2,…,Gk組成,則
(3)
4)m(p2)=2,m(p3)=3,m(p4)=5,m(p5)=8,m(p6)=13,m(C7)=29.
5)i(p1)=2,i(p2)=3,i(p3)=5,i(p4)=8,i(p5)=13,i(P6)=21.
其中:Pn表示n個頂點的路,Cn表示n個頂點的圈.
Gn可以視為具有n個七邊形的鏈,也可以表示為末端有一個七邊形的,如圖1所示.
圖1 有個七邊形的鏈Figure 1 A chain with a hexagon
圖2 七邊形鏈的三種排列方式Figure 2 Three arrangements of heptagonal chain
一個有n個七邊形的隨機鏈Gn(p1,p2,p3)在之后的每一步k=(3,4,…,n)中都會有三種隨機排列:
其中:p1,p2,p3是常數(shù),與k無關.特別的,當p1=1,p2=1,p3=1時,圖Gn分別可記為鄰鏈Qn,元鏈Mn,對鏈Ln.
圖3 末端連接的三類連接方式Figure 3 Three types of end connection
m(Gn)=m(Gn-e)+m(Gn-{u,v})=m(C7)m(Gn-1)+m(P6)m(An-2)=29m(Gn-1)+13m(An-2)
m(An-2)=m(P6)m(Gn-2)+m(P5)m(An-3)=13m(Gn-2)+8m(An-3)
m(An-2)=m(P6)m(Gn-2)+m(P5)m(Bn-3)=13m(Gn-2)+8m(Bn-3)
m(An-2)=m(P6)m(Gn-2)+m(P5)m(Cn-3)=13m(Gn-2)+8m(Cn-3)
m(Gn)=m(C7)m(Gn-1)+m(P6)m(Bn-2)=
29m(Gn-1)+13m(Bn-2)
m(Bn-2)=m(p6)m(Gn-2)+m(p1)m(p4)m(An-3)=
13m(Gn-2)+5m(An-3)
m(Bn-2)=m(p6)m(Gn-2)+m(p1)m(p4)m(Bn-3)=
13m(Gn-2)+5m(Bn-3)
m(Bn-2)=m(p6)m(Gn-2)+m(p1)m(p4)m(Cn-3)=
13m(Gn-2)+5m(Cn-3)
m(Gn)=m(C7)m(Gn-1)+m(p6)m(Cn-2)=
29m(Gn-1)+13m(Cn-2)
m(Cn-2)=m(p6)m(Gn-2)+m(p2)m(p3)m(An-3)=
13m(Gn-2)+6m(An-3)
m(Cn-2)=m(p6)m(Gn-2)+m(p2)m(p3)m(Bn-3)=
13m(Gn-2)+6m(Bn-3)
m(Cn-2)=m(p6)m(Gn-2)+m(p2)m(p3)m(Cn-3)=
13m(Gn-2)+6m(Cn-3)
根據(jù)式(1)~(3)且p1+p2+p3=1可以得到期望:
E(m(Gn))=29E(m(Gn-1))+13p1E(m(An-2))+
13p2E(m(Bn-2))+13p3E(m(Cn-2))=
29E(m(Gn-1))+169E(m(Gn-2))+
顯然有
8p1E(m(An-4))+8p2E(m(Bn-4))+
8p3E(m(Cn-4))
5p1E(m(An-4))+5p2E(m(Bn-4))+
5p3E(m(Cn-4))
6p1E(m(An-4))+6p2E(m(Bn-4))+
6p3E(m(Cn-4))
根據(jù)上式,可分別得到
8p1[E(m(Gn-1))-29E(m(Gn-2))-
169E(m(Gn-3))]
5p2[E(m(Gn-1))-29E(m(Gn-2))-
169E(M(Gn-3))]
6p3[E(m(Gn-1))-29E(m(Gn-2))-
169E(m(Gn-3))]
綜上所述且根據(jù)p1+p2+p3=1即得關于Hosoya指數(shù)期望值的遞推公式:
E(m(Gn))=(29+8p1+5p2+6p3)E(m(Gn-1))+
(169-232p1-145p2-174p3)E(m(Gn-2))=
(2p1-p2+35)E(m(Gn-1))-
(58p1-29p2-5)E(m(Gn-2))
另外,期望值存在兩個極限:
E(m(G1)) =m(C7)=29E(m(G2))=1 010
利用上述遞推關系和邊界條件,我們可以得到:
定理2.1 在隨機七邊形鏈中Hosoya指數(shù)的期望值
E(m(Gn))=
分別令p1=1,p2=1,p3=1我們可以從定理2.1中得到On,Mn,Ln的Hosoya指數(shù)的推論.
推論2.2
i(Gn)=i(Gn-v)+i(Gn-NG[v])=
i(P6)i(Gn-1)+i(P4)i(An-2)=
21i(Gn-1)+8i(An-2)
i(An-2)=i(P5)i(Gn-2)+i(P4)i(An-3)=
13i(Gn-2)+8i(An-3)
i(An-2)=i(P5)i(Gn-2)+i(P4)i(Bn-3)=
13i(Gn-2)+8i(Bn-3)
i(An-2)=i(P5)i(Gn-2)+i(P4)i(Cn-3)=
13i(Gn-2)+8i(Cn-3)
i(Gn)=i(P6)i(Gn-1)+i(P4)i(Bn-2)=
21i(Gn-1)+8i(Bn-2)
i(Bn-2)=i(p1)i(p4)i(Gn-2)+i(p3)i(An-3)=
16i(Gn-2)+5i(An-3)
i(Bn-2)=i(p1)i(p4)i(Gn-2)+i(p3)i(Bn-3)=
16i(Gn-2)+5i(Bn-3)
i(Bn-2)=i(p1)i(p4)i(Gn-2)+i(p3)i(Cn-3)=
16i(Gn-2)+5i(Cn-3)
i(Gn)=i(P6)i(Gn-1)+i(P4)i(Cn-2)=
21i(Gn-1)+8i(Cn-2)
i(Cn-2)=i(P2)i(P3)i(Gn-2)+
i(P1)i(P2)i(An-3)=15i(Gn-2)+6i(An-3)
i(Cn-2)=i(P2)i(P3)i(Gn-2)+
i(P1)i(P2)i(Bn-3)=15i(Gn-2)+6i(Bn-3)
i(Cn-2)=i(P2)i(P3)i(Gn-2)+
i(P1)i(P2)i(Cn-3)=15i(Gn-2)+6i(Vn-3)
根據(jù)式(1)~(3)且p1+p2+p3=1可以得到期望:
顯然有
E(i(Gn))=21E(i(Gn-1))+(104p1+128p2+
48p2p3)E(i(Bn-3))+(64p1p3+40p2p3+
8p2E(i(Bn-4))+8p3E(i(Cn-4))
5p2E(i(Bn-4))+5p3E(i(Cn-4))
6p2E(i(Bn-4))+6p3E(i(Cn-4))
根據(jù)上式,可分別得到
8p1[E(i(Gn-1))-21E(i(Gn-2))-
(104p1+128p2+120p3)E(i(Gn-3))]
5p2[E(i(Gn-1))-21E(i(Gn-2))-
(104p1+128p2+120p3)E(i(Gn-3))]
6p3[E(i(Gn-1))-21E(i(Gn-2))-
(104p1+128p2+120p3)E(i(Gn-3))]
綜上所述且根據(jù)p3=1-p1-p2可以得到關于Merrifield-Simmons指數(shù)期望值的遞推公式:
E(i(Gn))=(21+8p1+5p2+6p3)E(i(Gn-1))+
(-64p1+23p2-6p3)E(i(Gn-2))=
(2p1-p2+27)E(i(Gn-1))-
(58p1-29p2+6)E(i(Gn-2))
E(i(G1))=i(C4)=7E(i(G2))=777
利用上述遞推關系和邊界條件,可以得到:
定理3.1 在隨機七邊形鏈中Merrifield-Simmons指數(shù)的期望值
E(i(Gn))=
分別令p1=1,p2=1,p3=1,我們可以從定理3.1中得到On,Mn,Ln的Merrifield-Simmons指數(shù)的推論:
推論3.2
本文得到了含有n個七邊形的隨機鏈的Hosoya指數(shù)Merrifield-Simmons指數(shù)的期望值的具體推導解析公式,并分別討論了m(Gn)和i(Gn)的期望值,它們的組成和結構也正在向圖論的相關研究方向發(fā)展.