王可 劉歡 張一敏 孫京新
摘 要:隨著雞肉分割產(chǎn)品的需求量日益增多,快速生長(zhǎng)和胸肌增生成為現(xiàn)代肉雞產(chǎn)業(yè)的首要選育標(biāo)準(zhǔn),但同時(shí)也帶來(lái)了許多肉質(zhì)異常問(wèn)題,為全世界雞肉養(yǎng)殖加工產(chǎn)業(yè)帶來(lái)極大的經(jīng)濟(jì)損失。目前所發(fā)現(xiàn)的異常雞肉問(wèn)題主要有深度胸肌病變、類PSE(pale, soft, and exudative)肉、木質(zhì)肉、白紋肉及意大利面狀胸肉等?,F(xiàn)有文獻(xiàn)資料對(duì)于這幾類雞異常肉問(wèn)題研究參差不齊,缺乏系統(tǒng)性的梳理,對(duì)異常肉的利用也少有涉及。本文綜述肉雞異常肉問(wèn)題的研究進(jìn)展,并分析其發(fā)生機(jī)制、品質(zhì)影響及利用前景,以期為雞肉研究者與加工產(chǎn)業(yè)提供理論依據(jù)和技術(shù)幫助。
關(guān)鍵詞:雞肉異常;深度胸肌病變;類PES肉;木質(zhì)肉;白紋肉;意大利面狀胸肉
Research Progress on Abnormal Broiler Meat
WANG Ke1,2, LIU Huan1, ZHANG Yimin2, SUN Jingxin1,*
(1.College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China;
2.College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China)
Abstract: With the increasing demand for chicken cut-up products, rapid growth and breast muscle growth have become the primary selection criteria for the modern broiler industry. On the other hand, this has also brought about many abnormal meat quality problems, causing huge economic losses in the broiler industry worldwide. The abnormal broiler meat problems found so far mainly include deep pectoral myopathy, pale, soft, and exudative (PSE)-like meat, woody meat, white-striped meat and spaghetti shaped breast meat. Although progress has been made in the research on these problems, it has been uneven. Moreover, a systematic literature review on it is lacking, and there is little information about the utilization of abnormal broiler meat. This article summarizes recent progress in research on the abnormal broiler meat problems, and discusses the occurrence mechanism of these problems and their impact on meat quality. We hope that this article will provide a theoretical basis and technical help for relevant researchers and the broiler processing industry.
Keywords: chicken meat abnormality; deep pectoral myopathy; pale, soft, and exudative-like meat; woody meat; white-striped meat; spaghetti shaped breast meat
DOI:10.7506/rlyj1001-8123-20230505-035
中圖分類號(hào):TS251.5? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-8123(2023)07-0035-10
引文格式:
王可, 劉歡, 張一敏, 等. 肉雞異常肉的研究進(jìn)展[J]. 肉類研究, 2023, 37(7): 35-44. DOI:10.7506/rlyj1001-8123-20230505-035.
http://www.rlyj.net.cnWANG Ke, LIU Huan, ZHANG Yimin, et al. Research progress on abnormal broiler meat[J]. Meat Research, 2023, 37(7): 35-44. (in Chinese with English abstract) DOI:10.7506/rlyj1001-8123-20230505-035.? ? http://www.rlyj.net.cn
雞肉占據(jù)禽肉90%以上的消費(fèi)市場(chǎng),是人類主要的肉類來(lái)源[1]。全球雞肉產(chǎn)量及消費(fèi)量不斷升高,已成為發(fā)達(dá)國(guó)家的第一大肉類消費(fèi)品,約占全球肉類消費(fèi)總量的28.15%[2]。雞肉的蛋白質(zhì)含量高、脂肪含量低、營(yíng)養(yǎng)豐富、加工方便,是人們膳食中主要的蛋白質(zhì)來(lái)源之一[3],尤其對(duì)于發(fā)展中國(guó)家來(lái)說(shuō),低廉的價(jià)格讓更多人選擇雞肉。隨著生活水平的提高,人們的飲食消費(fèi)觀念也逐步從對(duì)量的要求轉(zhuǎn)變?yōu)閷?duì)質(zhì)的追求,對(duì)雞肉品質(zhì)的要求也越來(lái)越高。因此,禽肉分割產(chǎn)品的需求量日益增多,產(chǎn)肉量成為現(xiàn)代肉雞產(chǎn)業(yè)的首要選育標(biāo)準(zhǔn)。目前,現(xiàn)代肉雞的增長(zhǎng)率已超過(guò)300%,體質(zhì)量每年增長(zhǎng)約3.30%,并且飼料轉(zhuǎn)化率每年下降約2.55%[4]。雖然快速生長(zhǎng)使雞肉的產(chǎn)量大大增加,但是也因此帶來(lái)了許多肉質(zhì)問(wèn)題。如表1所示,隨著人類對(duì)于雞肉的加工與選擇性的增加,肉雞的選育拘泥于生長(zhǎng)速度與胸肉的產(chǎn)量標(biāo)準(zhǔn)中,21世紀(jì)以來(lái)各類由此所導(dǎo)致的肌肉異常問(wèn)題層出不窮。其中較為嚴(yán)重的問(wèn)題如圖1所示,有深度胸肌病變、類PSE(pale, soft, and exudative)肉、木質(zhì)肉、白紋肉和意大利面狀胸肉,目前主流的肌肉疾病主要有類PSE肉、木質(zhì)肉與白紋肉,這些肌病大部分發(fā)生在胸部,雖然在腿部等其他部位也偶有少量發(fā)生但對(duì)經(jīng)濟(jì)損失影響不大,可以忽略不計(jì)[5]。另外,在雞肉的加工中會(huì)發(fā)現(xiàn)未腌熟制雞肉制品發(fā)生的粉紅色變現(xiàn)象,由于其并非是肌病因素所導(dǎo)致的肉色異常,因此在本文并不進(jìn)行討論。伴隨著消費(fèi)習(xí)慣的改變,異常肉所表現(xiàn)出的劣變性狀無(wú)法滿足消費(fèi)者的需求,通常要將較為嚴(yán)重的異常肉修剪丟棄而再難利用[6],所以不管對(duì)于生產(chǎn)者還是消費(fèi)者這些問(wèn)題都是無(wú)法忽略的,也讓越來(lái)越多的學(xué)者關(guān)注這些問(wèn)題。幾類異常肉質(zhì)問(wèn)題并非同時(shí)出現(xiàn),而是在近幾十年間逐漸出現(xiàn)在肉雞養(yǎng)殖與雞肉加工者視野中,其中一個(gè)共通之處就是均與肉雞的生長(zhǎng)速度與胸肉增加量有關(guān)。雖然這些問(wèn)題已得到學(xué)界的足夠重視,對(duì)形成機(jī)制與相應(yīng)的改善策略也做出了一些分析判斷,但這些研究相對(duì)駁雜參差,對(duì)于形成原因與解決措施各執(zhí)一詞,多是對(duì)問(wèn)題原因的一些猜測(cè)和推論,所涉及的異常肉問(wèn)題也較為片面,無(wú)法梳理出一條系統(tǒng)性的論斷,難以為問(wèn)題的解決提供足夠的幫助。另外,與國(guó)外相關(guān)研究相比,國(guó)內(nèi)對(duì)肉雞異常肉問(wèn)題的研究并不多,對(duì)國(guó)內(nèi)外目前異常肉問(wèn)題的相關(guān)研究急需進(jìn)行總結(jié)與前瞻,以便為之后的研究提供方向。圖2為不同異常肉的形成機(jī)制示意圖。
因此,為了給研究者提供關(guān)于異常雞肉形成機(jī)制、檢測(cè)分級(jí)、改善利用等方面相關(guān)研究的參考,并為異常肉的加工利用提出新的發(fā)展思路,本文綜述雞肉中的異常肉問(wèn)題研究進(jìn)展,闡明雞異常肉問(wèn)題形成原因,找到其中的相通點(diǎn)并提出相應(yīng)的解決措施和利用手段,對(duì)新技術(shù)的運(yùn)用與肉品品質(zhì)改善結(jié)合做出展望,以期為國(guó)內(nèi)外禽類工業(yè)中異常肉問(wèn)題的研究與調(diào)控加工提供理論依據(jù)和技術(shù)支持。
1 深度胸肌病變
1.1 深度胸肌病變?nèi)獾男纬?/p>
深度胸肌病變是一種缺血性壞死肌肉病癥,是禽肉中最早被報(bào)道的一類肌病,主要在胸小肌中被觀察到,而此類異常肉一般都要修剪掉[7]。深度胸肌病變表征為肌肉顏色由出血色逐漸變?yōu)榫G色,且在分割前很少能被觀察到[8],主要誘因是肉雞受外界刺激引起的快速、連續(xù)的翅膀扇動(dòng),在胸肌收縮期間血液循環(huán)顯著增加,而血液中肌紅蛋白的供給不足導(dǎo)致缺血[9],最終形成肌體病變。
1.2 深度胸肌病變的研究進(jìn)展
1.2.1 深度胸肌病變的發(fā)生機(jī)制
肉雞體質(zhì)量的快速增加導(dǎo)致了諸如深度胸肌病變的肌肉退化慢性病,可以觀察到深度胸肌病變嚴(yán)重的肉雞的肌肉纖維腫脹,并在壞死區(qū)域有炎癥反應(yīng)[10]。目前的研究結(jié)果已證實(shí)深度胸肌病變并非細(xì)菌性感染而是血液運(yùn)輸不足以提供肌肉收縮所需的能量、氧氣和營(yíng)養(yǎng)所導(dǎo)致[11]。深度胸肌病變?nèi)獾?階段為肌肉急性發(fā)炎;第2階段肌肉呈粉紅色,并呈現(xiàn)纖維質(zhì)地;第3階段肌肉逐漸退化并出現(xiàn)綠色壞死區(qū)域[12]。深度胸肌病變誘導(dǎo)ATP2A1基因的下調(diào),該基因參與了鈣離子從細(xì)胞質(zhì)轉(zhuǎn)運(yùn)到細(xì)胞內(nèi),肌球蛋白跨橋時(shí)肌漿網(wǎng)通過(guò)下調(diào)MYLK2基因獲得相應(yīng)的特性。衛(wèi)星細(xì)胞促進(jìn)血管生長(zhǎng)的能力,這對(duì)于肌肉再生至關(guān)重要,由衛(wèi)星細(xì)胞表達(dá)的VEGFA基因不僅可以保持毛細(xì)血管而且還可以增加數(shù)量,以促進(jìn)更多的氧代謝,但深度胸肌病變誘導(dǎo)遏制VEGFA基因表達(dá),毛細(xì)血管保持與生成受阻[13]。而在慢速生長(zhǎng)的肉雞中VEGFA、MYLK2和ATP2A1基因的表達(dá)量較高[14]。以上種種因素影響,最終導(dǎo)致了肉雞出現(xiàn)深度胸肌病變。
1.2.2 深度胸肌病變對(duì)雞肉品質(zhì)的影響
通過(guò)對(duì)深度胸肌病變肌肉進(jìn)行顯微觀察,發(fā)現(xiàn)肌病雞的胸肌在細(xì)胞水平上導(dǎo)致其結(jié)構(gòu)受損,肌膜核微弱染色體缺失,肌肉纖維變性,血管充滿溶解的紅細(xì)胞。肌肉的組織病理學(xué)變化導(dǎo)致Z線解體、肌動(dòng)蛋白絲分解、核和其他細(xì)胞器的破壞[15],外觀上則表現(xiàn)為肉色逐漸變綠,嚴(yán)重影響消費(fèi)者的選擇。為了滿足消費(fèi)者對(duì)健康雞肉的需求,發(fā)生深度胸肌病變的肉與受影響的胸肉需經(jīng)過(guò)更嚴(yán)格的處理程序,使其不影響整體質(zhì)量[16]。
1.2.3 深度胸肌病變的改善與展望
深度胸肌病變是由多種因素共同引起的肉雞肌肉病變,既成的病變部位已無(wú)法再加工利用。而此類肌肉病變現(xiàn)象是由于肉雞受刺激而活動(dòng)增加所導(dǎo)致,因此要考慮減少噪音和外界刺激,以及避免過(guò)度的體質(zhì)量增加,減緩肉雞生長(zhǎng)速度。隨著飼養(yǎng)環(huán)境的改變,深度胸肌病變發(fā)生率逐年降低,近些年鮮有報(bào)道,主要異常肉問(wèn)題是在更為嚴(yán)重的類PSE肉、木質(zhì)肉與白紋肉方面。但此幾類問(wèn)題均有肉雞生長(zhǎng)速度過(guò)快的誘因在其中,因此要從源頭控制因生長(zhǎng)速度所帶來(lái)的一系列肉質(zhì)問(wèn)題。
2 類PSE肉
2.1 類PSE肉的形成
類PSE肉是發(fā)生在肉雞身上的一類異常肉質(zhì)問(wèn)題,表現(xiàn)為雞胸肉表面顏色蒼白、柔軟、汁液易流失,影響冷鮮肉的感官品質(zhì),降低消費(fèi)者的購(gòu)買欲望,作為深加工原料時(shí)產(chǎn)品出品率降低,在世界各個(gè)國(guó)家禽肉產(chǎn)業(yè)中普遍發(fā)生[17]。美國(guó)類PSE肉的發(fā)生率可達(dá)30%~50%[18],在巴西發(fā)生率接近22%[19],在中國(guó)類PSE肉的發(fā)生率約為23%[20],各國(guó)幾乎都有類PSE肉的現(xiàn)象發(fā)生,發(fā)生率多在20%以上,已上升為國(guó)際性的禽肉異常肉質(zhì)問(wèn)題,也進(jìn)一步表明其不可忽視性。研究人員普遍認(rèn)為宰后初期較高的胴體溫度,伴隨著pH值的快速下降是誘發(fā)PSE肉的直接原因[21]。主要由于宰前高溫運(yùn)輸應(yīng)激會(huì)引發(fā)肉雞一系列生理生化反應(yīng),Ca2+過(guò)度釋放、分子伴侶HSP70表達(dá)缺乏、宰后初期代謝增進(jìn)、糖酵解速率加快等變化會(huì)引起pH值快速下降、蛋白變性,導(dǎo)致肉色發(fā)白、保水性變差,最終造成類PSE肉的產(chǎn)生。
2.2 類PSE肉的研究進(jìn)展
2.2.1 類PSE肉的發(fā)生機(jī)制
近幾十年來(lái),類PSE肉已成為一個(gè)令禽肉加工者所困擾的重要問(wèn)題[22]。隨著禽肉產(chǎn)業(yè)的發(fā)展,對(duì)于此問(wèn)題的研究也趨于成熟。類PSE肉所伴隨而來(lái)的是肌肉保水性、pH值和顏色的變化,類PSE雞肉的微觀結(jié)構(gòu)相比正常肉肌細(xì)胞之間空間增大,微觀結(jié)構(gòu)的特點(diǎn)降低了保水性,較低的pH值也引起肌肉保水性降低,這是由于更多的水分從肌肉內(nèi)遷移到胞外空間[23]。與保水性相似,雞肉顏色也受肌細(xì)胞空間變化的影響,隨著肌細(xì)胞空間的增大,光的反射增加,肉體表面表現(xiàn)為蒼白的淺灰色[24]。因此,在對(duì)正常肉與類PSE肉的分類方面,多是應(yīng)用顏色測(cè)定對(duì)類PSE肉進(jìn)行快速、無(wú)損檢測(cè)與分類。雞肉需求量的日益增長(zhǎng)迫使肉雞品種的選育朝著快速增長(zhǎng)和肌肉增生型方向發(fā)展,這誘發(fā)了一些自發(fā)性或特發(fā)性異常雞胸肉的出現(xiàn),同時(shí)應(yīng)激性肌病的敏感性也相應(yīng)增加[25]。研究表明,應(yīng)激是類PSE肉產(chǎn)生的主要原因,應(yīng)激會(huì)刺激動(dòng)物機(jī)體的神經(jīng)-內(nèi)分泌系統(tǒng),影響其免疫力和生理代謝功能,造成宰后初期肌肉生理生化的變化,進(jìn)而對(duì)肉品質(zhì)產(chǎn)生重要影響。應(yīng)激所帶來(lái)的肌體損傷在多種動(dòng)物身上都有不同程度的呈現(xiàn),并且家禽更易受到熱應(yīng)激的影響,肌肉內(nèi)脂肪受熱,肉雞表現(xiàn)出較高的飽和脂肪酸和較低的多不飽和脂肪酸含量,表明其較高的脂質(zhì)氧化水平和較低的肉類營(yíng)養(yǎng)價(jià)值[26]。在對(duì)雞肉的影響中,應(yīng)激造成機(jī)體能量狀態(tài)的失衡,加快宰后初期糖酵解速率,導(dǎo)致糖原快速分解和乳酸的大量堆積,影響肉品質(zhì);
應(yīng)激造成鈣激活酶和組織蛋白酶活性變化,影響關(guān)鍵骨架蛋白的降解,導(dǎo)致嫩度和保水性的變化;應(yīng)激引起某些關(guān)鍵蛋白發(fā)生翻譯后修飾,如磷酸化、氧化、亞硝化和乙?;?,影響其在調(diào)控宰后肉品質(zhì)形成過(guò)程中所發(fā)揮的作用;應(yīng)激引發(fā)鈣離子和氧化還原平衡的紊亂,導(dǎo)致細(xì)胞凋亡,造成細(xì)胞收縮和蛋白降解,進(jìn)而影響肉品質(zhì)等[27]。結(jié)合以上誘因?qū)е铝祟怭SE肉的產(chǎn)生。
2.2.2 類PSE肉的品質(zhì)特性變化
與正常肉相比,類PSE肉蛋白溶解性下降,肌球蛋白與肌漿蛋白變性、熱穩(wěn)定性降低,鹽水吸收與出品率顯著低于正常肉,低pH值是影響類PSE肉出品率的重要因素,升高pH值(至正常肉水平)能改善類PSE肉的保水性,但不能完全恢復(fù),這可能與類PSE肉肌球蛋白與肌漿蛋白的變性密切相關(guān)。類PSE肉蛋白的低溶解性限制了蛋白的提取,并且肌球蛋白的變性會(huì)對(duì)類PSE肉的深加工帶來(lái)不利影響[28]。在肉制品加工中,類PSE禽肉形成凝膠能力弱,相比正常禽肉顯得更加柔軟,通過(guò)對(duì)類PSE肉所形成的肉糜凝膠的特性研究可以得知,其凝膠質(zhì)構(gòu)等與凝膠性能相關(guān)的指標(biāo)均顯著低于正常肉所形成的肉糜
凝膠[29]。從蛋白質(zhì)功能特性角度來(lái)看,類PSE雞胸肉蛋白質(zhì)凝膠特性劣變與內(nèi)在蛋白質(zhì)發(fā)生過(guò)度變性相關(guān),主要原因是類PSE肉糜加熱形成聚集狀凝膠基質(zhì),而正常肉糜形成帶有許多蛋白質(zhì)纖絲的良好凝膠網(wǎng)絡(luò)結(jié)構(gòu),表明類PSE肉鹽溶性蛋白溶出量降低和質(zhì)構(gòu)特性變差;類PSE肉糜凝膠的自由水比例增加,蛋白質(zhì)與水結(jié)合能力減弱,表明其凝膠保水性變差;類PSE肉糜蛋白質(zhì)的β-折疊含量降低,其疏水基團(tuán)和酪氨酸殘基的暴露表明脂肪族氨基酸和色氨酸殘基的微環(huán)境發(fā)生改變,結(jié)構(gòu)的改變進(jìn)而影響了其溶解性、凝膠質(zhì)構(gòu)特性和保水性[30]??芍?,類PSE肉對(duì)雞肉與肉糜品質(zhì)均產(chǎn)生了惡劣的影響。
2.3 類PSE肉的改善
目前對(duì)類PSE肉的源頭改善措施是通過(guò)對(duì)基因、宰前因素、擊暈方式和冷卻機(jī)制等因素的控制來(lái)解決此類問(wèn)題帶來(lái)的肉質(zhì)劣變現(xiàn)象[31]。但根據(jù)雞肉深加工企業(yè)所給出的反饋可知,并不可完全將此問(wèn)題排除,主要原因還是由于類PSE禽肉蛋白質(zhì)性質(zhì)的復(fù)雜性較高,因此對(duì)于此類問(wèn)題的研究仍需深入,并從蛋白組學(xué)的角度進(jìn)行問(wèn)題攻關(guān)。而對(duì)類PSE肉糜的改善,則主要分為添加輔助成分和新技術(shù)處理2 種不同的途徑?,F(xiàn)已知通過(guò)使用特殊的加工工藝,如注射、滾揉與腌制并添加某些不同種類的淀粉、卡拉膠、膠原蛋白、大豆分離蛋白等非肉成分來(lái)改善類PSE禽肉深加工制品的質(zhì)構(gòu)和保水性有較好的效果[32]。另外,通過(guò)添加磷酸鹽、碳酸氫鈉增加類PSE禽肉的pH值和離子強(qiáng)度來(lái)改善類PSE禽肉的加工特性,但調(diào)節(jié)pH值的方式也難以完全解決類PSE肉糜的加工
特性[33],并會(huì)影響消費(fèi)者的口味需求。腌制手段會(huì)增加食鹽含量,與當(dāng)代低鹽健康飲食需求相悖,非肉成分的過(guò)度添加也違反了國(guó)家的要求和生產(chǎn)高品質(zhì)肉制品的要求,雖有效果但并非最好的辦法[34]。所以按照目前的趨勢(shì),需要采用新技術(shù)對(duì)類PSE肉糜進(jìn)行處理改善,Chan[35]、Li Ke[36]等發(fā)現(xiàn),采用高壓處理和高強(qiáng)度超聲,可以改善類PSE肉糜凝膠功能特性。超高壓處理可以提高類PSE雞肉肉糜凝膠的保水性,并能較好地降低食鹽添加量[35],推斷這可能主要由于超高壓處理可以增加類PSE雞肉的蛋白質(zhì)溶解性。另外,也有研究報(bào)道,應(yīng)用高能超聲波技術(shù)可以改性蛋白質(zhì),從而改善類PSE雞肉的凝膠特性[36]。根據(jù)最新的研究動(dòng)態(tài)可知,解決類PSE肉問(wèn)題的前沿措施是設(shè)法恢復(fù)類PSE肉的功能,譬如Zhao Xue等[37]
的研究已證實(shí),等電點(diǎn)增溶/沉淀可增強(qiáng)類PSE肉的功能,以及通過(guò)酶促修飾(如酶促糖基化)也可促使類PSE肉糜獲得較低的α-螺旋含量和較高的β-折疊及β-轉(zhuǎn)角含量,提高肌原纖維蛋白的溶解度,達(dá)到改善功能性的效果[38]。Dong Ming等[39]利用脈沖電場(chǎng)(pulsed electric field,PEF)技術(shù)對(duì)所提取的類PSE肉肌原纖維蛋白進(jìn)行處理,發(fā)現(xiàn)PEF處理的樣品α-螺旋含量增加,但β-轉(zhuǎn)角和無(wú)規(guī)卷曲含量減少,總體上會(huì)明顯改善MP的溶解度、表面疏水性和巰基含量,改變其流變性,誘導(dǎo)低彈性肌原纖維蛋白形成,但當(dāng)電場(chǎng)強(qiáng)度超過(guò)18 kV/cm時(shí),這些性能會(huì)有所下降。綜上,利用物理、化學(xué)和酶促技術(shù)可用于通過(guò)改變蛋白質(zhì)分子的理化特性來(lái)進(jìn)行蛋白質(zhì)修飾,具有很好的應(yīng)用前景和對(duì)未來(lái)肉類開(kāi)發(fā)的潛力。探索新穎和安全的加工技術(shù)以改善這類有缺陷的肉具有重要意義,然而,這些方法也存在一些缺點(diǎn),例如,需要專門的設(shè)備維護(hù),設(shè)備的價(jià)格通常非常昂貴,難以進(jìn)行大規(guī)模處理;又或者一些化學(xué)成分并不可以充分被添加入食品中,而酶類的價(jià)格較高,極大增加了生產(chǎn)者的投入。
3 木質(zhì)肉與白紋肉
3.1 木質(zhì)肉與白紋肉的形成
木質(zhì)肉與白紋肉也是伴隨著肉雞快速生長(zhǎng)和高產(chǎn)肉量需求同時(shí)出現(xiàn)的一類異常肉問(wèn)題[40]。木質(zhì)肉的質(zhì)感堅(jiān)硬,胸大肌上部有明顯堅(jiān)硬部分,尾部有脊?fàn)钔黄?,常伴有白色條紋和出血斑;白紋肉是肌肉表面出現(xiàn)平行于肌纖維的白色脂肪沉積條紋,這2 種肌肉缺陷問(wèn)題表現(xiàn)出類似的組織學(xué)特征,并且常常共同出現(xiàn)[41]。白紋肉最早于2009年被報(bào)道[42],定義為胸肌肉和腿肌肉上出現(xiàn)平行于肌纖維的白色條紋狀的脂肪沉積。而木質(zhì)肉在2014年被正式提出[43],這種缺陷造成胸肉的硬度明顯增加,嚴(yán)重的個(gè)體表面呈木質(zhì)紋理狀,甚至出現(xiàn)滲血和黏性分泌物。有研究認(rèn)為,白紋肉與木質(zhì)化雞胸肉屬于同一種
異質(zhì)肉,白紋肉發(fā)生在早期階段,后期逐漸惡化并發(fā)展成為木質(zhì)化雞胸肉[44],因此也多放于一起進(jìn)行研究。數(shù)據(jù)顯示,目前快大型白羽肉雞品種中嚴(yán)重程度的白紋肉和木質(zhì)肉的發(fā)生率分別在10%和15%左右,并有逐年上升的趨勢(shì)[45],而在中國(guó)木質(zhì)肉的發(fā)生率也已經(jīng)達(dá)到18.33%,所造成的經(jīng)濟(jì)損失難以估量[46]。飼喂高能、高蛋白日糧的肉雞體質(zhì)量和胸肌質(zhì)量顯著提高,同時(shí)木質(zhì)肉發(fā)生率及嚴(yán)重程度也顯著升高,表明生長(zhǎng)速度越快的肉雞,其雞胸肉出現(xiàn)木質(zhì)化的比例越高,說(shuō)明生長(zhǎng)速度和胸肉產(chǎn)量是關(guān)鍵影響因素[47]。生長(zhǎng)速度快、雞胸肉產(chǎn)量高的肉雞常伴隨著肌纖維直徑增大、巨型纖維發(fā)生率升高、酵解型肌纖維含量升高等肌纖維結(jié)構(gòu)變化,更容易受到環(huán)境影響而產(chǎn)生應(yīng)激[48]。此外,其肌纖維增粗、毛細(xì)血管密度下降,造成氧氣和營(yíng)養(yǎng)物質(zhì)的供應(yīng)不足并且影響代謝廢物排出,造成氧化應(yīng)激,并引發(fā)炎癥和纖維化,進(jìn)而造成肌肉損傷[49],這些因素共同作用導(dǎo)致了白紋肉與木質(zhì)肉的產(chǎn)生。
3.2 木質(zhì)肉與白紋肉的研究進(jìn)展
3.2.1 木質(zhì)肉與白紋肉的發(fā)生機(jī)制
對(duì)于木質(zhì)肉與白紋肉的發(fā)生機(jī)制著重體現(xiàn)于3 個(gè)方面,如圖3所示,首先是由于氧化應(yīng)激會(huì)降低SOD和GST的基因表達(dá)量和抗氧化酶活性,增加MDA與ROS的產(chǎn)量,導(dǎo)致細(xì)胞氧化損傷[50]。肌肉中的血液循環(huán)機(jī)能不全和氧化應(yīng)激會(huì)破壞蛋白質(zhì)結(jié)構(gòu)完整性,誘發(fā)木質(zhì)肉的產(chǎn)生,生長(zhǎng)速度越快、胸肌產(chǎn)量越高的肉雞其血管密度越低,單位肌纖維的毛細(xì)血管數(shù)量和運(yùn)載能力下降,說(shuō)明肌肉生長(zhǎng)超過(guò)機(jī)體承受水平,導(dǎo)致血氧供應(yīng)不足,血管密度降低還會(huì)造成代謝廢棄物難以及時(shí)清除。由于抗氧化酶活性降低,不能及時(shí)清除ROS,氧化應(yīng)激持續(xù)損傷細(xì)胞蛋白和質(zhì)膜,導(dǎo)致肌纖維的形態(tài)結(jié)構(gòu)發(fā)生變化[51],這可能是白紋肉與木質(zhì)化雞胸肉產(chǎn)生的重要原因。
其次,糖代謝途徑的改變誘導(dǎo)膠原蛋白和蛋白聚糖積累,從而導(dǎo)致木質(zhì)化雞胸肉中結(jié)締組織增多。木質(zhì)化雞胸肉中糖代謝和葡萄糖利用率發(fā)生改變,同時(shí)木質(zhì)化雞胸肉中的糖原含量降低,糖酵解中間產(chǎn)物果糖-6-磷酸、葡萄糖-6-磷酸以及終產(chǎn)物乳酸和丙酮酸的水平下降,表明糖酵解途徑受到抑制[52]。另一方面,研究[53-54]表明,白紋肉與木質(zhì)化雞胸肉中鈉離子和鈣離子含量均顯著升高,肌纖維中鈣離子的積累可能是引起白紋肉與木質(zhì)化雞胸肉發(fā)生的原因之一,有學(xué)者猜測(cè)細(xì)胞內(nèi)自由基的產(chǎn)生和鈣離子的積累可能激活蛋白酶和脂肪酶,導(dǎo)致細(xì)胞膜完整性的破壞和蛋白質(zhì)變性[55]。這種損傷可能會(huì)超過(guò)肌肉的再生能力,導(dǎo)致纖維壞死,從而造成纖維化和脂沉積癥,與白紋肉與木質(zhì)化雞胸肉的組織學(xué)變化相符。
3.2.2 木質(zhì)肉與白紋肉的檢測(cè)與分級(jí)
根據(jù)雞胸肉的外觀可以對(duì)白紋肉評(píng)分和分類:正常(0 分),無(wú)明顯白紋;中等(1 分),出現(xiàn)與肌纖維方向平行的白紋,厚度<1 mm;嚴(yán)重(2 分),出現(xiàn)較多與肌纖維方向平行的白紋,厚度>1 mm;極嚴(yán)重(3 分),出現(xiàn)大量與肌纖維方向平行的白紋,且厚度>3 mm[56]。通過(guò)雞胸肉外觀和堅(jiān)硬程度對(duì)木質(zhì)化雞胸肉進(jìn)行評(píng)分和分類:正常(0 分),整塊雞胸肉柔軟有彈性,無(wú)任何堅(jiān)硬特征;輕度(1 分),雞胸肉頭端和近尾部出現(xiàn)輕微的變化,頭端較堅(jiān)硬;中等(2 分),整塊雞胸肉表現(xiàn)出堅(jiān)硬特征,但中部至尾部有彈性;嚴(yán)重(3 分),除整體表現(xiàn)出堅(jiān)硬特征外,雞胸肉表面伴隨著出血和滲透物的出現(xiàn)[57]??偟膩?lái)說(shuō),白紋肉與木質(zhì)化雞胸肉的組織學(xué)特征相似,都表現(xiàn)出肌纖維變性、萎縮,肌纖維大小不一,出現(xiàn)絮狀或空泡,伴隨著纖維溶解現(xiàn)象,出現(xiàn)纖維化、脂沉積癥和間質(zhì)性炎癥。目前,白紋肉與木質(zhì)化雞胸肉主要依靠人工評(píng)級(jí),即通過(guò)外觀進(jìn)行判斷,主觀性太大,無(wú)法作為一種準(zhǔn)確的方法?,F(xiàn)階段對(duì)木質(zhì)化雞胸肉的分級(jí)主要采用硬度指壓法,該方法穩(wěn)定性差、重復(fù)性低、評(píng)價(jià)體系不統(tǒng)一[58]。Traffano-Schiffo等[59]應(yīng)用配備分光光度計(jì)的傳感器對(duì)雞胸肉進(jìn)行檢測(cè),證明了通過(guò)頻射光譜分光光度法測(cè)定白紋肉的可行性。Caroline等[60]使用計(jì)算機(jī)視覺(jué)系統(tǒng)(computer vision systems,CVS)并通過(guò)線性和非線性算法從近紅外(near infrared,NIR)區(qū)域獲得光譜信息,通過(guò)木質(zhì)肉對(duì)雞進(jìn)行識(shí)別和分類,CVS和NIR光譜可以用作快速、無(wú)損的方法,用于對(duì)屠宰場(chǎng)中的木質(zhì)肉識(shí)別和分類,并表征了理化和技術(shù)參數(shù),支持了決策樹(shù)建模。Wold等[61]運(yùn)用NIR光譜法建立了蛋白質(zhì)回歸模型,通過(guò)分析雞胸肉中蛋白含量進(jìn)而對(duì)木質(zhì)化雞胸肉進(jìn)行快速在線檢測(cè)分級(jí)。Garner等[62]應(yīng)用生物電阻抗分析(bioelectrical impedance analysis,BIA)檢測(cè)現(xiàn)代肉雞中患有木質(zhì)化肌病的肉雞胸肉,正常肉與木質(zhì)肉在電抗方面有顯著差異,而輕度、中度和重度木質(zhì)肉類樣品之間無(wú)顯著差異?;谀举|(zhì)肉肌病的存在,BIA可以用于分離木質(zhì)肉的外、內(nèi)側(cè)和尾部區(qū)域。在近段時(shí)間,NIR檢測(cè)異常肉技術(shù)取得了新的進(jìn)展,Carvalho等[63]使用便攜式NIR光譜儀獲取光譜信息,并使用連續(xù)投影算法-線性判別分析和類比法軟獨(dú)立建模法進(jìn)行分類模型的構(gòu)建,以區(qū)分正常肌肉和受影響的肌肉。這些研究提供了相對(duì)可靠的白紋肉與木質(zhì)化雞胸肉的檢測(cè)分級(jí)方法,有助于對(duì)這2 種異質(zhì)肉的進(jìn)一步研究。
3.2.3 木質(zhì)肉與白紋肉的品質(zhì)特性變化
木質(zhì)肉與白紋肉所呈現(xiàn)出的狀態(tài)為pH值升高、蛋白質(zhì)含量下降、水分含量與粗脂肪含量增加、保水性降低、硬度也會(huì)增加。pH值與肉色和系水力有較強(qiáng)的相關(guān)性,是衡量肉品質(zhì)的一個(gè)重要指標(biāo),研究表明,白紋肉與木質(zhì)化雞胸肉的pH值顯著高于正常肉[64]。一般來(lái)說(shuō),宰后肌肉的pH值都會(huì)有所降低,主要是由于糖原在無(wú)氧酵解過(guò)程中轉(zhuǎn)變成乳酸,白紋肉與木質(zhì)化雞胸肉pH值的升高并不是雞胸肉宰后代謝異常引起的,而是由于肌肉中糖原含量低和糖酵解潛力不足造成[65]。在肉色方面,白紋肉亮度值(L*)和黃度值(b*)無(wú)顯著差異,紅度值(a*)顯著升高,同時(shí)有研究發(fā)現(xiàn)白紋肉L*、a*、b*均無(wú)顯著變化[66]。白紋肉與木質(zhì)化雞胸肉L*無(wú)顯著差異,a*、b*顯著升高[67],但是不同的測(cè)量點(diǎn)其肉色數(shù)值差異較大,因此目前無(wú)法依靠肉色判斷木質(zhì)化肉。雞胸肉的硬度可通過(guò)擠壓力和剪切力來(lái)反映,白紋肉與木質(zhì)化雞胸肉的生肉實(shí)驗(yàn)表明,木質(zhì)化雞胸肉的剪切力顯著高于正常雞胸肉,白紋肉與木質(zhì)化雞胸肉的擠壓力顯著高于正常雞胸肉,且擠壓力隨木質(zhì)化等級(jí)升高顯著增大[68]。
Soglia等[69]通過(guò)對(duì)木質(zhì)肉的肌節(jié)長(zhǎng)度觀察已驗(yàn)證木質(zhì)肉的硬度增加與肌纖維的過(guò)度收縮無(wú)關(guān),這可能與雞胸肉厚度增加及組織中結(jié)締組織積累有關(guān)。Zhang Xue等[70]通過(guò)觀察宰后一段時(shí)間內(nèi)的蛋白質(zhì)降解,得出HSP27蛋白的降解與肉的嫩度有密切關(guān)系。HSP27蛋白與肉質(zhì)密切相關(guān)[71],在木質(zhì)肉中發(fā)現(xiàn)HSP27蛋白含量很高,因此木質(zhì)肉的硬度大與其有關(guān)。同時(shí)Decorin蛋白作為一種膠原交聯(lián)過(guò)程的調(diào)節(jié)劑,多項(xiàng)研究指出該蛋白的異常高表達(dá)引起膠原交聯(lián)程度升高,導(dǎo)致膠原纖維緊密堆積,最終造成肌肉硬度增加[72]。與正常雞胸肉相比,白紋肉與木質(zhì)化雞胸肉中自由水比例顯著升高,木質(zhì)化雞胸肉中結(jié)合水和不易流動(dòng)水比例顯著下降,因此系水力下降[73]。
肌肉中流動(dòng)水是水分損失的主要來(lái)源,流動(dòng)水比例升高導(dǎo)致系水力下降,木質(zhì)化雞胸肉保水性的降低可能與組織中部分肌纖維萎縮變性有關(guān)[74]。從營(yíng)養(yǎng)成分的角度來(lái)看,白紋肉與木質(zhì)化雞胸肉中水分、粗脂肪和膠原蛋白含量顯著增加,粗蛋白、粗灰分含量顯著下降。脂肪與結(jié)締組織的增加主要原因是由于肌原纖維的壞死而由其代替,水分含量也由于組織液的增加而升高[75],由此造成的營(yíng)養(yǎng)價(jià)值降低會(huì)直接影響消費(fèi)者的選擇。也有學(xué)者對(duì)木質(zhì)化雞胸肉的凝膠品質(zhì)進(jìn)行了研究,發(fā)現(xiàn)與正常雞胸肉凝膠相比,木質(zhì)化雞胸肉加工得到的凝膠微觀結(jié)構(gòu)松散,空隙較大,并且具有較高的α-螺旋含量和較低的β-折疊、β-轉(zhuǎn)角含量[76]。已有報(bào)道表明,較高含量的β-折疊有利于形成高品質(zhì)凝膠[77],木質(zhì)化肉所加工的凝膠表現(xiàn)出的品質(zhì)受到嚴(yán)重影響。以上品質(zhì)變化直接導(dǎo)致了白紋肉與木質(zhì)化肉的加工性能直線下降,無(wú)法得到正常的產(chǎn)品品質(zhì)與出品率,這也給下游的雞肉加工者帶來(lái)了較大的困擾。
3.3 木質(zhì)肉與白紋肉的改善
近些年來(lái),木質(zhì)肉與白紋肉的檢測(cè)與發(fā)生機(jī)制多有學(xué)者深入研究,但是對(duì)于這類異常肉的改善仍未有一個(gè)良好的解決措施。研究表明,木質(zhì)肉和白紋肉的產(chǎn)生與肉雞生長(zhǎng)速度過(guò)快和氧化應(yīng)激有關(guān),雖然可以通過(guò)降低肉雞的生長(zhǎng)速度一定程度降低白紋肉與木質(zhì)肉的發(fā)生率,但是同時(shí)也影響生產(chǎn)性能和生產(chǎn)效率。在飼養(yǎng)方面,Bodle等[78]發(fā)現(xiàn),提高肉雞日糧中精氨酸和VC水平,或降低日糧氨基酸水平能減少白紋肉和木質(zhì)肉的發(fā)生,提高雞肉品質(zhì)和價(jià)值。Zampiga等[79]研究表明,提高日糧精氨酸和賴氨酸的比值不會(huì)影響肉雞生長(zhǎng)性能,但能減少木質(zhì)肉和白紋肉的發(fā)生率。可能由于精氨酸合成瓜氨酸產(chǎn)生NO,增加血液量,緩解缺血缺氧導(dǎo)致的應(yīng)激損傷,減少木質(zhì)肉和白紋肉的發(fā)生率。Córdova-Noboa等[80]在肉雞日糧中添加600 mg/L胍基乙酸,提高了肉雞生長(zhǎng)性能和胸肉產(chǎn)量,減少了木質(zhì)肉的發(fā)生率。以上通過(guò)改變飼喂條件的措施確實(shí)可以對(duì)木質(zhì)肉與白紋肉發(fā)生率的降低有較好的成效,然而均限制了肌肉發(fā)育與生長(zhǎng)性能,且無(wú)法妥善解決這一異常肉問(wèn)題,因此需要從蛋白組學(xué)、代謝組學(xué)、基因組學(xué)深入研究,通過(guò)對(duì)基因與代謝的調(diào)控來(lái)根除此問(wèn)題。對(duì)木質(zhì)肉與白紋肉的利用也是研究甚少,因此對(duì)于既成的木質(zhì)化肉可以通過(guò)改變形態(tài)加以利用,以減少損失。相關(guān)研究發(fā)現(xiàn),肉糜狀態(tài)下雞胸肉的凝膠特性會(huì)發(fā)生相應(yīng)改變,對(duì)促進(jìn)木質(zhì)肉產(chǎn)品的感官提升以及改善產(chǎn)品品質(zhì)具有一定的作用[81]。孫嘯等[82]
將木質(zhì)肉添加到香腸中,達(dá)到改善產(chǎn)品質(zhì)構(gòu)的效果,并且對(duì)于產(chǎn)品的品質(zhì)并未產(chǎn)生不良影響。Tasoniero等[83]通過(guò)刀片嫩化處理木質(zhì)肉,并將其與正常的雞胸肉進(jìn)行比較。結(jié)果表明:被處理的木質(zhì)肉顯示出質(zhì)構(gòu)改善的品質(zhì)特征,并且與熟肉相比,生肉擁有更高的硬度和韌性,而熟肉僅在嚴(yán)重級(jí)時(shí)才顯示出更高的硬度;在生肉狀態(tài)下,刀片嫩化顯著降低了生肉的壓縮力和剪切力,但木質(zhì)肉仍比正常胸肉硬;在熟肉狀態(tài)下,刀片嫩化改善了木質(zhì)肉的質(zhì)地,剪切力與正常未處理的胸肉相似;盡管刀片嫩化可能無(wú)法完全解決木質(zhì)肉質(zhì)地特征異常的問(wèn)題,但顯示出改善木質(zhì)肉熟肉質(zhì)構(gòu)的潛力,并且可以考慮對(duì)木質(zhì)肉進(jìn)行熟制利用。綜上,對(duì)于木質(zhì)肉與白紋肉的研究要從上游源頭控制與下游的既成異常肉的改善利用入手,在極大限度降低經(jīng)濟(jì)損失的同時(shí)盡快解決此問(wèn)題。
4 意大利面狀胸肉
意大利面狀胸肉是近年來(lái)新出現(xiàn)的一類雞肉肌病,2015年,由Bilgili[84]進(jìn)行了正式報(bào)道,有時(shí)也會(huì)伴隨木質(zhì)肉與白紋肉共同發(fā)生,由于是新生肌病且目前發(fā)生率不高,因此對(duì)其研究尚少。該肌病對(duì)蛋白質(zhì)的影響較小,而對(duì)肌肉層的影響更顯著,主要表現(xiàn)為肌肉完整性受損,內(nèi)膜肌的結(jié)締組織稀疏,損害纖維束凝聚力并有組織沉積。部分特征與所描述的白紋肉和木質(zhì)肉重疊;肌肉變性伴有再生、正常組織結(jié)構(gòu)的喪失、纖維壞死和溶解、脂肪組織浸潤(rùn)、炎性細(xì)胞浸潤(rùn)和水腫。然而,意大利面狀胸肉的一個(gè)特殊特征在其他出現(xiàn)的肌病中未被檢測(cè)到,即肌內(nèi)膜和肌周結(jié)締組織的逐漸稀少,這會(huì)損害纖維束的凝聚力,并伴有疏松結(jié)締組織沉積。肌肉結(jié)構(gòu)完整性受損可歸因于這種不成熟新沉積的膠原蛋白,在視覺(jué)上影響消費(fèi)者的選擇。Baldi等[85]報(bào)道了意大利面狀胸肉的質(zhì)量特征,并將該肌病與白紋肉進(jìn)行比較。核磁共振弛豫分析顯示,意大利面狀胸肉樣品的表面切片中肌原纖維外水的比例較高,表現(xiàn)為持水性的降低;這些樣本中氧化蛋白的濃度也高于正常胸部肌肉,這可能是肉類蛋白的化學(xué)狀態(tài)對(duì)其功能的影響。陽(yáng)離子調(diào)節(jié)改變?cè)谌怆u骨骼肌損傷發(fā)病機(jī)制中有重要作用,肌肉中較高的鈉水平是導(dǎo)致肌肉纖維中Ca2+攝入不平衡的觸發(fā)因素,進(jìn)而通過(guò)激活Ca2+依賴性蛋白酶和脂肪酶導(dǎo)致細(xì)胞膜完整性的改變[86]。到目前為止,意大利面狀胸肉的病因尚不清楚,可能參與缺陷型陽(yáng)離子調(diào)控的病理機(jī)制有待進(jìn)一步研究,主要是陽(yáng)離子穩(wěn)態(tài)紊亂和細(xì)胞損傷之間的聯(lián)系。在肉的品質(zhì)方面,意大利面狀胸肉會(huì)使得肌肉pH值降低、保水性、蛋白溶解性及乳液穩(wěn)定性也變差,總的來(lái)說(shuō),意大利面狀胸肉功能性質(zhì)的改變可能是由于蛋白質(zhì)含量的下降所引起。雖然此類新興的雞肉肌病發(fā)生率尚不高,但是若不加以控制可能會(huì)如木質(zhì)肉等異常肉一般蔓延開(kāi)來(lái),帶來(lái)更大的經(jīng)濟(jì)損失。這無(wú)疑是對(duì)雞肉加工者的一個(gè)挑戰(zhàn),因此需要盡快對(duì)此問(wèn)題開(kāi)展研究,及時(shí)控制此類肌病問(wèn)題。
表2列舉了異常雞肉的表征。
5 結(jié) 語(yǔ)
雞肉肌病所帶來(lái)的影響不僅體現(xiàn)在表面的顏色與質(zhì)地方面,對(duì)肌肉蛋白的功能特性也有極為惡劣的影響。不同的肌病問(wèn)題所帶來(lái)的品質(zhì)影響可能不盡相同,但都對(duì)肌肉的整體功能產(chǎn)生了一定程度的破壞??焖偕L(zhǎng)和肉質(zhì)量增加是近幾十年來(lái)肉雞異常肉問(wèn)題出現(xiàn)的根本原因,基因改造與養(yǎng)殖技術(shù)的發(fā)展,使得禽肉的生長(zhǎng)速度與體質(zhì)量增速不斷提升,相應(yīng)的一些肌病層出不窮,這是在傳統(tǒng)禽類養(yǎng)殖中所未有的,但日漸增長(zhǎng)的雞肉消費(fèi)量迫使這個(gè)問(wèn)題一再擴(kuò)大,雞肉產(chǎn)量基數(shù)的不斷增長(zhǎng)又使得此類問(wèn)題所造成的損失愈加無(wú)法忽視,因此探究異常雞肉的形成根本原因與進(jìn)一步的改善利用需要同時(shí)進(jìn)行。其一,源頭控制,可從基因組學(xué)方向入手,深入研究異常肉的形成機(jī)制,通過(guò)調(diào)控關(guān)鍵基因?qū)w維型的轉(zhuǎn)化進(jìn)行選擇,由于雞胸肉中的肌纖維多為Ⅱb型快速酵解型纖維,相比于主要由Ⅰ型慢速氧化型纖維構(gòu)成的腿肉來(lái)說(shuō),胸肉的代謝受到纖維類型的阻礙,如可進(jìn)行調(diào)控轉(zhuǎn)化將大大提升胸肉的呼吸代謝作用,促進(jìn)毛細(xì)血管的生長(zhǎng)保持,可能會(huì)較好地控制由生長(zhǎng)速度與體質(zhì)量增加所帶來(lái)的各類肌病;再就是遺傳學(xué)和育種計(jì)劃對(duì)于禽肉的養(yǎng)殖、運(yùn)輸、屠宰環(huán)境和條件進(jìn)行控制,盡可能地減少外界的應(yīng)激刺激;對(duì)于肉雞亦可通過(guò)定向調(diào)配飼喂配方來(lái)調(diào)節(jié)生長(zhǎng)速度與肌肉形成速率,使得肉雞可以均勻生長(zhǎng),避免代謝異常所引起的異常肉問(wèn)題。其二,在既成的異常肉利用方面,不必全部修剪丟棄,可以進(jìn)行合理分級(jí),這些因肌病引起的異常肉并非細(xì)菌感染,對(duì)于人類的健康并沒(méi)有危害,只是影響肉品的感官性質(zhì),從而左右消費(fèi)者的選擇。對(duì)癥狀較輕的雞肉可以通過(guò)其他加工技術(shù)充分利用,隨著新技術(shù)的發(fā)展,對(duì)異常肉的改善會(huì)逐漸從部分化強(qiáng)化為全面化,多重技術(shù)協(xié)調(diào)運(yùn)用達(dá)到對(duì)雞肉品質(zhì)的提升效果,避免原料的浪費(fèi),從而挽回經(jīng)濟(jì)損失。類似于木質(zhì)肉類的異常肉可以利用其營(yíng)養(yǎng)特性與質(zhì)構(gòu)的變化作為輔料添加于其他產(chǎn)品中,提高產(chǎn)品的品質(zhì)與質(zhì)構(gòu),或可利用超微粉碎技術(shù)改變異常肉的結(jié)構(gòu)功能等性質(zhì),亦或是通過(guò)醬鹵發(fā)酵等工藝手段使之?dāng)[脫異常肌病所帶來(lái)的不利影響??偠灾瑢?duì)于肉雞養(yǎng)殖不能僅著眼于生長(zhǎng)速度與肌肉產(chǎn)量,需要運(yùn)用新技術(shù)對(duì)肉的品質(zhì)進(jìn)行調(diào)控,減少異常肉問(wèn)題的發(fā)生,從而降低經(jīng)濟(jì)損失,在產(chǎn)量足夠的同時(shí)為消費(fèi)者提供更優(yōu)質(zhì)的肉品,為禽肉養(yǎng)殖與加工者提供幫助。
參考文獻(xiàn):
[1] ZHAO Xue, XING Tong, HAN Minyi, et al. Application of isoelectric solubilization/precipitation processing to improve gelation properties of protein isolated from pale, soft, exudative (PSE)-like chicken breast meat[J]. LWT-Food Science and Technology, 2016, 72: 141-148. DOI:10.1016/j.lwt.2016.04.045.
[2] 《新飼料》編輯. 國(guó)際貿(mào)易爭(zhēng)端下的中國(guó)肉雞產(chǎn)業(yè)[J]. 飼料與畜牧, 2017(19): 5-14.
[3] 計(jì)紅芳, 李莎莎, 張令文, 等. 豌豆蛋白對(duì)雞肉糜熱誘導(dǎo)凝膠品質(zhì)特性與微觀結(jié)構(gòu)的影響[J]. 食品科學(xué), 2020, 41(4): 74-79. DOI:10.7506/spkx1002-6630-20181229-359.
[4] BAILEY R A, SOUZA E, AVENDANO S. Character rising the influence of genetics on breast muscle myopathies in broiler chickens[J]. Frontiers in Physiology, 2020, 11: 1041. DOI:10.3389/fphys.2020.01041.
[5] BARBUT S. Recent myopathies in broilers breast meat fillets[J]. Worlds Poultry Science Journal, 2019, 75(4): 559-582. DOI:10.1017/S0043933919000436.
[6] DONG Ming, CHEN Hongqiang, ZHANG Yumei, et al. Processing properties and improvement of pale, soft, and exudative-like chicken meat: a review[J]. Food and Bioprocess Technology, 2020, 13(8): 1280-1291. DOI:10.1007/s11947-020-02464-3.
[7] STANGIERSKI J, TOMASZEWSKA-GRAS J, BARANOWSKA H M,?et al. The effect of deep pectoral myopathy on the properties of broiler chicken muscles character rised by selected instrumental techniques[J]. European Food Research and Technology, 2019, 245(2): 459-467. DOI:10.1007/s00217-018-3177-2.
[8] KIJOWSKI J, KUPISKA E, STANGIERSKI J, et al. Paradigm of deep pectoral myopathy in broiler chickens[J]. Worlds Poultry Science Journal, 2014, 70(1): 125-138. DOI:10.1017/S0043933914000117.
[9] OZMEN O. Pathological examination of deep pectoral myopathy in house reared broilers[J]. Kafkas Universitesi Veteriner Fakultesi Dergisi, 2017, 23(5): 831-834. DOI:10.9775/kvfd.2017.17989.
[10] DINEV I, KANAKOV D. Deep pectoral myopathy: prevalence in 7 weeks old broiler chickens in Bulgaria[J]. Revue De Medecine Veterinaire, 2011, 162(6): 279-283.
[11] PASTUSZCZAK-FRAK M, URADZI?SKI J. Hygienic and technological value of meat of turkey raw meat originating from flocks with green muscle disease[J]. Polish Journal of Veterinary Sciences, 2009, 12(2): 243. DOI:10.1371/journal.ppat.1000281.
[12] JACEK K, EMILIA K. Dilemmas of limitation of DMP-type pectoral muscle myopathy in broiler chickens[J]. Zywnosc Nauka Technologia Jakosc, 2013, 20(6): 32-44. DOI:10.15193/zntj/2013/91/032-044.
[13] YALCIN S, AHIN K, TUZCU M, et al. Muscle structure and gene expression in pectoralis major muscle in response to deep pectoral myopathy induction in fast-and slow-growing commercial broilers[J]. British Poultry Science, 2019, 60(3): 195-201. DOI:10.1080/00071668.2018.1430351.
[14] KECHUN T, BREEN E C, HANS-PETER G, et al. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle[J]. Physiological Genomics, 2004, 18(1): 63-69. DOI:10.1152/physiolgenomics.00023.2004.
[15] PETRACCI M, MUDALAL S, SOGLIA F, et al. Meat quality in fast-growing broiler chickens[J]. Worlds Poultry Science Journal, 2015, 71(2): 363-374. DOI:10.1017/S0043933915000367.
[16] LILBURN M S, GRIFFIN J R, WICK M. From muscle to food: oxidative challenges and developmental anomalies in poultry breast muscle[J]. Poultry Science, 2018, 98(10): 4255-4260. DOI:10.3382/ps/pey409.
[17] ZHAO Xue, BAI Yun, XING Tong, et al. Use of an isoelectric solubilization/precipitation process to modify the functional properties of PSE (pale, soft, exudative)-like chicken meat protein: a mechanistic approach[J]. Food Chemistry, 2018, 248: 201-209. DOI:10.1016/j.foodchem.2017.12.048.
[18] KUTTAPPAN V A, OWENS C M, COON C, et al. Incidence of broiler breast myopathies at 2 different ages and its impact on selected raw meat quality parameters[J]. Poultry Science, 2017, 96(8): 3005-3009. DOI:10.3382/ps/pex072.
[19] CARVALHO R H, SOARES A L, HONORATO D C, et al. The incidence of pale, soft, and exudative (PSE) turkey meat at a Brazilian commercial plant and the functional properties in its meat product[J]. LWT-Food Science and Technology, 2014, 59(2): 883-888. DOI:10.1016/j.lwt.2014.07.019.
[20] ZHE Xueshen, XU Xinglian, MIN Huihui, et al. Occurrence and characterization of pale, soft, exudative-like broiler muscle commercially produced in china[J]. Journal of Integrative Agriculture, 2012(8): 1384-1390. DOI:10.1016/S2095-3119(12)60137-3.
[21] KIM Y H B, WARNER R D, ROSENVOLD K. Influence of high pre-rigor temperature and fast pH fall on muscle proteins and meat quality: a review[J]. Animal Production Science, 2014, 54(4):?375-395. DOI:10.1071/AN13329.
[22] ZHAO Xue, XING Tong, XU Xinglian, et al. Influence of extreme alkaline pH induced unfolding and aggregation on PSE-like chicken protein edible film formation[J]. Food Chemistry, 2020, 319: 126574. DOI:10.1016/j.foodchem.2020.126574.
[23] 康壯麗, 趙穎穎, 李可, 等. 類PSE禽肉的品質(zhì)特征探討及研究進(jìn)展[J]. 食品科學(xué), 2017, 38(7): 284-289. DOI:10.7506/spkx1002-6630-201707045.
[24] CARVALHO R H, HONORATO D C B, GUARNIERI P D, et al.?In-transit development of color abnormalities in turkey breast meat during winter season[J]. Journal of Animal Science and Technology, 2017, 59(1): 4-10. DOI:10.1186/s40781-017-0157-1.
[25] TH?RON L, SAYD T, CHAMBON C, et al. Toward the prediction of PSE-like muscle defect in hams: using chemometrics for the spectral fingerprinting of plasma[J]. Food Control, 2020, 109: 106929. DOI:10.1016/j.foodcont.2019.106929.
[26] HE Jun, XIA Chenlan, HE Yuxin, et al. Proteomic responses to oxidative damage in meat from ducks exposed to heat stress[J]. Food Chemistry, 2019, 295: 129-137. DOI:10.1016/j.foodchem.2019.05.073.
[27] XING Tong, ZHAO Zerun, ZHAO Xue, et al. Phosphoproteome analysis of sarcoplasmic and myofibrillar proteins in stress-induced dysfunctional broiler pectoralis major muscle[J]. Food Chemistry, 2020, 319: 126531. DOI:10.1016/j.foodchem.2020.126531.
[28] 孫皓, 徐幸蓮, 王鵬. 雞肉類PSE肉與正常肉功能特性比較研究[J].?食品科學(xué), 2013, 34(21): 60-63. DOI:10.7506/spkx1002-6630-201321013.
[29] CHAN T Y, OMANA D A, BETTI M. Effect of ultimate pH and freezing on the biochemical properties of proteins in turkey breast meat[J]. Food Chemistry, 2011, 127(1): 109-117. DOI:10.1016/j.foodchem.2010.12.095.
[30] CHEN Hongqiang, WANG Huhu, WANG Mengyao, et al. Chicken breast quality-normal, pale, soft and exudative (PSE) and woody-influences the functional properties of meat batters[J]. International Journal of Food Science and Technology, 2018, 53(3): 654-664. DOI:10.1111/ijfs.13640.
[31] XING Tong, XU Xinglian, ZHOU Guanghong, et al. The effect of transportation of broilers during summer on the expression of heat shock protein70, postmortem metabolism and meat quality[J]. Journal of Animal Science, 2015, 93(1): 62-70. DOI:10.2527/jas.2014-7831.
[32] MARIELLE M O, PAULA G, BARROS S, et al. Effects of PSE meat and salt concentration on the technological and sensory characteristics of restructured cooked hams[J]. Meat Science, 2019, 152: 96-103. DOI:10.1016/j.meatsci.2019.02.020.
[33] ZHAO Xue, XING Tong, CHEN Xing, et al. Precipitation and ultimate pH effect on chemical and gelation properties of protein prepared by isoelectric solubilization/precipitation process from pale, soft, exudative (PSE)-like chicken breast meat[J]. Poultry Science, 2017, 96(5): 1504-1512. DOI:10.3382/ps/pew412.
[34] SHEARD P R, HUGHES S I, JASPAL M H. Colour, pH and weight changes of PSE, normal and DFD breast fillets from British broilers treated with a phosphate-free, low salt marinade[J]. British Poultry Science, 2012, 53(1): 57-65. DOI:10.1080/00071668.2012.655707.
[35] CHAN J T, OMANA D A, BETTI M. Application of high pressure processing to improve the functional properties of pale, soft, and exudative (PSE)-like turkey meat[J]. Innovative Food Science and Emerging Technologies, 2011, 12(3): 216-225. DOI:10.1016/j.ifset.2011.03.004.
[36] LI Ke, KANG Zhuangli, ZHAO Yingying, et al. Use of high-intensity ultrasound to improve functional properties of batter suspensions prepared from PSE-like chicken breast meat[J]. Food and Bioprocess Technology, 2014, 7(12): 3466-3477. DOI:10.1007/s11947-014-1358-y.
[37] Zhao Xue, XING Tong, WANG Peng, et al. Oxidative stability of isoelectric solubilization/precipitation-isolated PSE-like chicken protein[J]. Food Chemistry, 2019, 283(15): 646-655. DOI:10.1016/j.foodchem.2019.01.035.
[38] XU Yujuan, ZHAO Xue, BIAN Guanglian, et al. Structural and solubility properties of pale, soft and exudative (PSE)-like chicken breast myofibrillar protein: effect of glycosylation[J]. LWT-Food Science and Technology, 2018, 95: 209-215. DOI:10.1016/j.lwt.2018.04.051.
[39] DONG Ming, XU Yujuan, ZHANG Yumei, et al. Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: effects of pulsed electric field (PEF)[J]. Innovative Food Science and Emerging Technologies, 2020, 59: 102277. DOI:10.1016/j.ifset.2019.102277.
[40] PRAUD C, JIMENEZ J, PAMPOUILLE E, et al. Molecular phenotyping of white striping and wooden breast myopathies in chicken[J]. Frontiers in Physiology, 2020, 11: 633. DOI:10.3389/fphys.2020.00633.
[41] KUTTAPPAN V A, HARGIS B M, OWENS C M. White striping and woody breast myopathies in the modern poultry industry: a review[J]. Poultry Science, 2016, 95(11): 2724-2733. DOI:10.3382/ps/pew216.
[42] HASEGAWA Y, HARA T, KAWASAKI, et al. Effect of wooden breast on postmortem changes in chicken meat[J]. Food Chemistry, 2020, 315: 126285. DOI:10.1016/j.foodchem.2020.126285.
[43] BILGILI S F, MELOCHE K J, CAMPASINO A, et al. The influence of carnitine and guanidino acetic acid supplementation of low and high amino acid density diets on Pectoralis major myopathies in broiler chickens[J]. Poultry Science, 2014, 93: 56. DOI:10.1093/jas/skab203.
[44] GRIFFIN J R, MORAES L, WICK M, et al. Onset of white striping and progression into wooden breast as defined by myopathic changes underlying Pectoralis major growth: estimation of growth parameters as predictors for stage of myopathy progression[J]. Avian Pathology, 2018, 47(1): 2-13. DOI:10.1080/03079457.2017.1356908.
[45] TIJARE V V, YANG F L, KUTTAPPAN V A, et al. Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies[J]. Poultry Science, 2016, 95(9): 2167-2173. DOI:10.3382/ps/pew129.
[46] XING Tong, ZHAO Xue, ZHANG Lian, et al. Characteristics and incidence of broiler chicken wooden breast meat under commercial conditions in China[J]. Poultry Science, 2019, 99(1): 620-628. DOI:10.3382/ps/pez560.
[47] CRUZ R F, VIEIRA S L, KINDLEIN L, et al. Occurrence of white striping and wooden breast in broilers fed grower and finisher diets with increasing lysine levels[J]. Poultry Science, 2017, 96(2): 501-510. DOI:10.3382/ps/pew310.
[48] ZOTTE A D, TASONIERO G, PUOLANNE E, et al. Effect of “Wooden Breast” appearance on poultry meat quality, histological traits, and lesions characterization[J]. Czech Journal of Animal Science, 2017, 62(2): 51-57. DOI:10.17221/54/2016-CJAS.
[49] SIHVO H K, AIRAS N, LIND?N J, et al. Pectoral vessel density and early ultrastructural changes in broiler chicken wooden breast myopathy[J]. Journal of Comparative Pathology, 2018, 161: 1-10. DOI:10.1016/j.jcpa.2018.04.002.
[50] 王成. 氧化應(yīng)激影響肉仔雞肉品質(zhì)的主要MAPK信號(hào)轉(zhuǎn)導(dǎo)通路[D]. 北京: 中國(guó)農(nóng)業(yè)科學(xué)院, 2010.
[51] HOSOTANI M, KAWASAKI T, HASEGAWA Y, et al. Physiological and pathological mitochondrial clearance is related to Pectoralis major muscle pathogenesis in broilers with wooden breast syndrome[J]. Frontiers in Physiology, 2020, 11: 579. DOI:10.3389/fphys.2020.00579.
[52] BALDI G, YEN C N, DAUGHTRY M R, et al. Exploring the factors contributing to the high ultimate ph of broiler Pectoralis major muscles affected by wooden breast condition[J]. Frontiers in Physiology, 2020, 11: 343-346. DOI:10.3389/fphys.2020.00343.
[53] ZAMBONELLI P, ZAPPATERRA M, SOGLIA F, et al. Detection of differentially expressed genes in broiler Pectoralis major muscle affected by White Striping-Wooden Breast myopathies[J]. Poultry Science, 2016, 95(12): 2771-2785. DOI:10.3382/ps/pew268.
[54] SOGLIA F, MAZZONI M, PETRACCI M. Spotlight on avian pathology: current growth-related breast meat abnormalities in broilers[J]. Avian Pathology, 2019, 48(1): 1-3. DOI:10.1080/03079457.2018.1508821.
[55] PAPAH M B, ABASHT B. Dysregulation of lipid metabolism and appearance of slow myofiber-specific isoforms accompany the development of Wooden Breast myopathy in modern broiler chickens[J]. Scientific Reports, 2019, 9(1): 17170. DOI:10.1038/s41598-019-53728-8.
[56] TIJARE V V, YANG F L, KUTTAPPAN V A, et al. Meat quality of broiler breast fillets with white striping and woody breast muscle myopathies[J]. Poultry Science, 2016, 95(9): 2167-2173. DOI:10.3382/ps/pew129.
[57] VELLEMAN S G. Pectoralis major (breast) muscle extracellular matrix fibrillar collagen modifications associated with the wooden breast fibrotic myopathy in broilers[J]. Frontiers in Physiology, 2020, 11: 461. DOI:10.3389/fphys.2020.00461.
[58] CAI Ke, SHAO Wen, CHEN Xian, et al. Meat quality traits and proteome profile of woody broiler breast (Pectoralis major) meat[J]. Poultry Science, 2017, 97(1): 337-346. DOI:10.3382/ps/pex284.
[59] TRAFFANO-SCHIFFO M V, CASTRO-GIRALDEZ M, COLOM R J,?et al. Development of a spectrophotometric system to detect white striping physiopathy in whole chicken carcasses[J]. Sensors, 2017, 17(5): 1024. DOI:10.3390/s17051024.
[60] CAROLINE G B, MARTIELLO M S, RAFAEL H D C, et al. Computer vision system and near-infrared spectroscopy for identification and classification of chicken with wooden breast, and physicochemical and technological characterization[J]. Infrared Physics and Technology, 2019, 96: 303-310. DOI:10.1016/j.infrared.2018.11.036.
[61] WOLD J P, VEISETHKENT E, HOST V, et al. Rapid on-line detection and grading of wooden breast myopathy in chicken fillets by near-infrared spectroscopy[J]. PLoS ONE, 2017, 12(3): 17-21. DOI:10.1371/journal.pone.0173384.
[62] GARNER L J, MOREY A, SMITH A E, et al. Application of bioelectrical impedance analysis to detect broiler breast filets affected with woody breast myopathy[J]. Frontiers in Physiology, 2020, 11: 808-811. DOI:10.3389/fphys.2020.00808.
[63] CARVALHO L M D, MADRUGA M S, MARIO E, et al. Occurrence of wooden breast and white striping in Brazilian slaughtering plants and use of near-infrared spectroscopy and multivariate analysis to identify affected chicken breasts[J]. Journal of Food Science, 2020, 85(10): 3102-3112. DOI:10.1111/1750-3841.15465.
[64] BALDI G, SOGLIA F, LAGHI L, et al. Comparison of quality traits among breast meat affected by current muscle abnormalities[J]. Food Research International, 2019, 115: 369-376. DOI:10.1016/j.foodres.2018.11.020.
[65] CHAUHAN S S, ENGLAND E M. Postmortem glycolysis and glycogenolysis: insights from species comparisons[J]. Meat Science, 2018, 144: 118-126. DOI:10.1016/j.meatsci.2018.06.021.
[66] BALDI G, SOGLIA F, MAZZONI M, et al. Implications of white striping and spaghetti meat abnormalities on meat quality and histological features in broilers[J]. Animal, 2018, 12(1): 164-173. DOI:10.1017/S1751731117001069.
[67] TASONIERO G, CULLERE M, CECCHINATO M, et al. Technological quality, mineral profile, and sensory attributes of broiler chicken breasts affected by white striping and wooden breast myopathies[J]. Poultry Science, 2016, 95(11): 2707-2714. DOI:10.3382/ps/pew215.
[68] TASONIERO G, BOWKER B, ZHUANG H. Texture characteristics of Wooden Breast fillets deboned at different postmortem times[J]. Poultry Science, 2020, 99: 4096-4099. DOI:10.1016/j.psj.2020.04.028.
[69] SOGLIA F, PETRACCI M, PUOLANNE E. Sarcomere lengths in wooden breast broiler chickens[J]. Italian Journal of Animal Science, 2020, 19(1): 569-573. DOI:10.1080/1828051X.2020.1761271.
[70] ZHANG Xue, ZHAI Wei, LI Shuting, et al. Early postmortem proteome changes in normal and woody broiler breast muscles[J]. Journal of Agricultural and Food Chemistry, 2020, 68(39): 11000-11010. DOI:10.1021/acs.jafc.0c03200.
[71] MA D, KIM Y H B. Proteolytic changes of myofibrillar and small heat shock proteins in different bovine muscles during aging: their relevance to tenderness and water-holding capacity[J]. Meat Science, 2020, 163: 108090. DOI:10.1016/j.meatsci.2020.108090.
[72] CLARK D L, VELLEMAN S G. Spatial influence on breast muscle morphological structure, myofiber size, and gene expression associated with the wooden breast myopathy in broilers[J]. Poultry Science, 2016, 95(12): 2930-2945. DOI:10.3382/ps/pew243.
[73] TASONIERO G, BERTRAM H C, YOUNG J F, et al. Relationship between hardness and myowater properties in Wooden Breast affected chicken meat: a nuclear magnetic resonance study[J]. LWT-Food Science and Technology, 2017, 86: 20-24. DOI:10.1016/j.lwt.2017.07.032.
[74] SOGLIA F, LAGHI L, CANONICO L, et al. Functional property issues in broiler breast meat related to emerging muscle abnormalities[J]. Food Research International, 2016, 89(3): 1071-1076. DOI:10.1016/j.foodres.2016.04.042.
[75] PETRACCI M, SOGLIA F, MADRUGA M, et al. Wooden-breast, white striping, and spaghetti meat: causes, consequences and consumer perception of emerging broiler meat abnormalities[J]. Comprehensive Reviews in Food Science and Food Safety, 2019, 18: 565-583. DOI:10.1111/1541-4337.12431.
[76] 陳宏強(qiáng), 王虎虎, 趙雪, 等. 木質(zhì)化雞胸肉發(fā)生率統(tǒng)計(jì)及其肉糜功能特性研究[J]. 食品工業(yè)科技, 2017, 38(20): 49-53. DOI:10.13386/j.issn1002-0306.2017.20.010.
[77] LIU Ru, ZHAO Siming, XIE Bijun, et al. Contribution of protein conformation and intermolecular bonds to fish and pork gelation properties[J]. Food Hydrocolloids, 2011, 25(5): 898-906. DOI:10.1016/j.foodhyd.2010.08.016.
[78] BODLE B C, ALVARADO C, SHIRLEY R B, et al. Evaluation of different dietary alterations in their ability to mitigate the incidence and severity of woody breast and white striping in commercial male broilers[J]. Poultry Science, 2018, 97(9): 3298-3310. DOI:10.3382/ps/pey166.
[79] ZAMPIGA M, LAGHI L, PETRACCI M, et al. Effect of different arginine-to-lysine ratios in broiler chicken diets on the occurrence of breast myopathies and meat quality attributes[J]. Poultry Science, 2019, 98(6): 1-7. DOI:10.3382/ps/pey608.
[80] C?RDOVA-NOBOA H A, OVIEDO-ROND?N E O, SARSOUR A H, et al. Performance, meat quality, and pectoral myopathies of broilers fed either corn or sorghum based diets supplemented with guanidino acetic acid[J]. Poultry Science, 2018, 97(7): 2479-2493. DOI:10.3382/ps/pey096.
[81] CHEN Hongqiang, WANG Huhu, QI Jun, et al. Chicken breast quality-normal, pale, soft and exudative (PSE) and woody-influences the functional properties of meat batters[J]. International Journal of Food Science and Technology, 2017, 53(3): 175. DOI:10.1111/ijfs.13640.
[82] 孫嘯, 尤金杰, 周頔, 等. 添加木質(zhì)肉的雞肉火腿腸品質(zhì)特性分析[J]. 現(xiàn)代食品科技, 2020, 36(8): 153-159. DOI:10.13982/j.mfst.1673-9078.2020.8.0082.
[83] TASONIERO G, BOWKER B, STELZLENI A, et al. Use of blade tenderization to improve wooden breast meat texture[J]. Poultry Science, 2019, 98(9): 4204-4211. DOI:10.3382/ps/pez163.
[84] BILGILI S F. Worthwhile Operational Guidelines and Suggestion. Broiler chicken myopathies: IV stringy/mushy breast[Z]. 2015.
[85] BALDI G, SOGLIA F, MAZZONI M, et al. Implications of white striping and spaghetti meat abnormalities on meat quality and histological features in broilers[J]. Animal and International Journal of Animal Bioscience, 2017, 12(1): 164-173. DOI:10.1017/S1751731117001069.
[86] TASONIERO G, ZHUANG H, GAMBLE G R, et al. Effect of spaghetti meat abnormality on broiler chicken breast meat composition and technological quality[J]. Poultry Science, 2020, 99(3): 1724-1733. DOI:10.1016/j.psj.2019.10.069.
收稿日期:2023-05-05
基金項(xiàng)目:山東現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系項(xiàng)目(SDAIT-11-11);山東省自然科學(xué)基金面上項(xiàng)目(ZR2022MC087)
第一作者簡(jiǎn)介:王可(1997—)(ORCID: 0000-0001-6636-8041),男,博士研究生,研究方向?yàn)槿馄芳庸づc質(zhì)量安全控制。
E-mail: 15993632979@163.com
*通信作者簡(jiǎn)介:孫京新(1970—)(ORCID: 0000-0002-9211-2151),男,教授,博士,研究方向?yàn)槿馄芳庸づc質(zhì)量安全控制。
E-mail: jxsun20000@163.com