国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

假臭草來源植物內(nèi)生真菌生物轉(zhuǎn)化(+)-檸檬烯產(chǎn)物分析

2023-07-20 02:03:21楊道茂
關(guān)鍵詞:二醇生物轉(zhuǎn)化內(nèi)生

摘要:

為了篩選能夠生物轉(zhuǎn)化(+)-檸檬烯的微生物,將7株假臭草內(nèi)生真菌作為生物催化劑,在30 ℃,150 r·min-1下發(fā)酵6 d后,添加體積分?jǐn)?shù)為0.5%的(+)-檸檬烯繼續(xù)轉(zhuǎn)化4 d,并采用薄層層析、氣相色譜-質(zhì)譜聯(lián)用和核磁共振技術(shù)分析產(chǎn)物.結(jié)果表明:各真菌生物轉(zhuǎn)化(+)-檸檬烯的主要產(chǎn)物為(1S,2S,4R)-檸檬烯-1,2-二醇、環(huán)氧檸檬烯、(1S,2R,4R)-檸檬烯-1,2-二醇等;菌株Alternaria Nees PS08生成唯一產(chǎn)物(1S,2S,4R)-檸檬烯-1,2-二醇,質(zhì)量濃度達(dá)到(2.46±0.16) g·L-1.

關(guān)鍵詞:

(+)-檸檬烯; 假臭草; 植物內(nèi)生真菌; (1S,2S,4R)-檸檬烯-1,2-二醇

中圖分類號(hào): Q 53文獻(xiàn)標(biāo)志碼: A?? 文章編號(hào): 1000-5013(2023)04-0495-07

Analysis of Biotransformation Products of (+)-Limonene by Plant Endophytic Fungi From Praxelis clematidea

YANG Daomao

(College of Chemical Engineering, Huaqiao University, Xiamen 361021, China)

Abstract:

In order to screen microorganisms of biotransformation of (+)-limonene, seven endophytic fungi from Praxelis clematidea were used as biocatalysts. After 6 days of fermentation under 30 ℃ and 150 r · min-1, 0.5% volume fraction of (+)-limonene was added for further 4 days, the products were analyzed by Thin Layer Chromatography, Gas Chromatography-Mass Spectrometry and Nuclear Magnetic Resonance technology. The results showed that the main products of biotransformation of (+)-limonene by various fungi were (1S,2S,4R)-limonene-1,2-diol, limonene epoxide, (1S,2R,4R)-limonene-1,2-diol, etc.. The strain Alternaria Nees PS08 produced only product (1S,2S,4R)-limonene-1,2-diol, and its mass concentration reached (2.46±0.16) g·L-1.

Keywords: (+)-limonene; Praxelis clematidea; plant endophytic fungi; (1S,2S,4R)-limonene-1,2-diol

(+)-檸檬烯為檸檬精油的主要成分,屬于柑橘加工過程中的副產(chǎn)物.由于結(jié)構(gòu)簡單、價(jià)格低廉,有多個(gè)可以催化的位點(diǎn)[1],(+)-檸檬烯一直是理想的生物轉(zhuǎn)化底物模型.能轉(zhuǎn)化(+)-檸檬烯的微生物種類多樣,如假單胞屬細(xì)菌(Pseudomonas sp.)[2-3],尖孢鐮刀菌152b[4]、指狀青霉菌[5-6]、黑曲霉[7]、解脂耶氏酵母[8-9].雖然在生物催化劑的篩選領(lǐng)域取得了巨大的進(jìn)展,但微生物的低轉(zhuǎn)化效率[10]和巨大的篩選工作量嚴(yán)重影響生物轉(zhuǎn)化的推廣與應(yīng)用,如ROTTAVA等[11]從405株菌株中只發(fā)現(xiàn)8株菌株能夠轉(zhuǎn)化(+)-檸檬烯.針對(duì)該問題,有學(xué)者指出植物內(nèi)生真菌是一個(gè)很有發(fā)展前景的篩選來源.植物內(nèi)生真菌因?yàn)樾枰c宿主植物一起共進(jìn)化來適應(yīng)環(huán)境的變化,使其可能會(huì)產(chǎn)生豐富的酶來適應(yīng)宿主[12],如海藻來源內(nèi)生真菌Botryosphaeria sp.[13]能將外消旋樟腦轉(zhuǎn)化為6-endo-羥基樟腦、6-exo-羥基樟腦等產(chǎn)物,火炬松來源內(nèi)生真菌Phomopsis sp.能轉(zhuǎn)化(+)-檸檬烯合成香芹酮和檸檬烯-1,2-二醇,如果底物為柑橘皮提取物,則生成單一產(chǎn)物檸檬烯-1,2-二醇[14],內(nèi)生真菌Aspergillus fumigatus [15]能轉(zhuǎn)化硫利達(dá)嗪.因此,利用植物內(nèi)生真菌進(jìn)行生物轉(zhuǎn)化是可行的[16].

假臭草(Praxelis clematidea (Griseb.) R. M. King & H. Rob.)屬于菊科植物,原產(chǎn)南美,現(xiàn)入侵亞洲和大洋州等地.由于假臭草對(duì)土壤肥力吸收力強(qiáng),嚴(yán)重影響果樹的生長,此外,它能分泌一種有毒的惡臭味,影響家畜覓食,屬于入侵植物.研究發(fā)現(xiàn)假臭草花精油對(duì)柑橘木虱具有驅(qū)避和致死活性[17],且其總黃酮類化合物對(duì)金黃葡萄球菌有抑菌活性[18].

目前,尚未見到假臭草內(nèi)生真菌用于生物轉(zhuǎn)化(+)-檸檬烯的相關(guān)報(bào)道.基于此,本文以分離自假臭草內(nèi)生真菌為生物轉(zhuǎn)化劑,考察其生物轉(zhuǎn)化產(chǎn)物.

1 材料與方法

1.1 藥品與儀器

(+)-檸檬烯(日本東京化成工業(yè)株式會(huì)社);石油醚(60~90 ℃)、無水乙醇、乙酸乙酯(上海市國藥試劑有限公司);(1S,2S,4R)-(+)-二戊烯-1,2-二醇((1S,2S,4R)-檸檬烯-1,2-二醇,CAS號(hào):38630-75-0,美國Sigma-Aldrich公司);氘代甲醇(廣東省廣州賽迪菲生物科技有限公司).以上試劑均為分析純.0.22 μm濾膜(天津市津騰實(shí)驗(yàn)設(shè)備有限公司);100目硅膠、GF254型薄層層析硅膠板(50 mm×200 mm,山東省青島海洋化工廠分廠).

ZQZY-75CN型振蕩培養(yǎng)箱(上海支楚儀器有限公司);XH-C型旋渦混合器(江蘇省金壇市白塔新寶儀器廠);SW-CJ-1FD型潔凈工作臺(tái)(江蘇省蘇州安泰空氣技術(shù)有限公司);H1650型醫(yī)用離心機(jī)(湖南湘儀實(shí)驗(yàn)室儀器開發(fā)有限公司);Agilent 8860 GC System-5977B型氣質(zhì)聯(lián)用儀器(帶G4513A自動(dòng)進(jìn)樣器,美國安捷倫科技有限公司);EYELA N-1100型旋轉(zhuǎn)蒸發(fā)儀(日本東京理化器械株式會(huì)社);Bruker-500 MHz型核磁共振譜儀(瑞士布魯克公司,由華僑大學(xué)分析測試中心提供).

1.2 微生物與培養(yǎng)基

7株植物內(nèi)生真菌(Alternaria Nees PS01,Alternaria Nees PS06,Alternaria Nees PS07,Alternaria Nees PS09,Alternaria Nees PS10,Alternaria Nees PS18,Diaporthe amygdali PS08)由華僑大學(xué)化工學(xué)院王奇志博士饋贈(zèng).

培養(yǎng)基均采用沙保氏培養(yǎng)基:蛋白胨10 g·L-1,葡萄糖40 g·L-1(pH值為4.0~6.0).

1.3 檢測方法

薄層層析(TLC)方法:展開劑為V(石油醚)∶V(乙酸乙酯)=7∶3,顯色劑采用體積分?jǐn)?shù)為1%的香草醛濃硫酸溶液.

氣相色譜-質(zhì)譜聯(lián)用(GC-MS):Agilent HP-5 ms型色譜柱(30 m×250 μm ×0.25 μm),載氣為氦氣,進(jìn)樣量為1 μL.溫度程序:60 ℃保持1 min,20 ℃·min-1升溫到300 ℃,保持13 min.MS離子源溫度為230 ℃,MS四極桿溫度為150 ℃,質(zhì)譜掃描范圍(m/z)為60~800.

2 實(shí)驗(yàn)步驟

2.1 菌株活化與發(fā)酵

各測試菌株接種于裝有馬鈴薯葡萄糖瓊脂培養(yǎng)基的培養(yǎng)皿(直徑為90 mm)上,在30 ℃恒溫培養(yǎng)箱中培養(yǎng)6 d后,存于4 ℃冰箱中備用.

每株菌挑取一接種環(huán)菌絲接種于裝有100 mL培養(yǎng)基的250 mL錐形瓶中,在28 ℃,150 r·min-1條件下培養(yǎng)6 d.

2.2 生物轉(zhuǎn)化(+)-檸檬烯及產(chǎn)物分析

生物轉(zhuǎn)化流程參考海洋真菌的生物轉(zhuǎn)化流程并做細(xì)微調(diào)整[19],具體流程為:在每株菌培養(yǎng)了6 d的100 mL發(fā)酵液中,加入1 mL經(jīng)0.22 μm濾膜過濾除菌的(+)-檸檬烯-乙醇溶液(檸檬烯溶于等體積乙醇,檸檬烯的最終體積分?jǐn)?shù)為0.5%),在28 ℃,150 r·min-1條件下繼續(xù)培養(yǎng)4 d.

轉(zhuǎn)化結(jié)束,發(fā)酵液用布氏漏斗過濾后,取3 mL濾液轉(zhuǎn)移到150 mm×15 mm的試管中,用等體積乙酸乙酯萃?。蝗缓?,將萃取相轉(zhuǎn)移到干燥的150 mm×15 mm的試管中,并用無水硫酸鈉脫水;最后,取萃取相進(jìn)行TLC和GC-MS檢測.

2.3 菌株P(guān)S18轉(zhuǎn)化產(chǎn)物結(jié)構(gòu)鑒定

鑒于TLC檢測結(jié)果,選取包含2個(gè)轉(zhuǎn)化產(chǎn)物的菌株P(guān)S18,按照節(jié)2.2的生物轉(zhuǎn)化流程制備轉(zhuǎn)化產(chǎn)物.具體流程為:配制2.5 L發(fā)酵培養(yǎng)基,分裝于25瓶250 mL錐形瓶中.后續(xù)的發(fā)酵與轉(zhuǎn)化步驟參考節(jié)2.1,2.2.轉(zhuǎn)化結(jié)束,將發(fā)酵液用布氏漏斗過濾,等體積乙酸乙酯萃取濾液2次后,合并萃取液,用旋轉(zhuǎn)蒸發(fā)儀于40 ℃,真空度-0.1 MPa下蒸發(fā)有機(jī)溶劑,最終獲得轉(zhuǎn)化產(chǎn)物3.33 g.

取少量乙酸乙酯完全溶解轉(zhuǎn)化產(chǎn)物后,用100目硅膠拌樣陰干,隨后采用干法上玻璃色譜柱(300 mm×25 mm),洗脫劑體系采用V(石油醚)∶V(乙酸乙酯)為14∶2~14∶4

進(jìn)行洗脫,每個(gè)梯度洗脫體積為200 mL以上,并用TLC跟蹤洗脫結(jié)果.最終獲得化合物PS18-1(1.56 g),PS18-2(0.87 g),用氘代甲醇溶解后進(jìn)行核磁共振檢測.

2.4 各菌株轉(zhuǎn)化產(chǎn)物的質(zhì)量濃度檢測

建立檸檬烯-1,2-二醇標(biāo)準(zhǔn)曲線.實(shí)驗(yàn)步驟為:用乙酸乙酯溶解標(biāo)準(zhǔn)品并配制8.600 0 g·L-1母液,采用逐步稀釋的方法,將母液稀釋成不同質(zhì)量濃度,隨后采用節(jié)1.3的方法獲得檸檬烯-1,2-二醇的峰面積-質(zhì)量濃度的關(guān)系圖.

挑取各菌株的菌絲接種于裝有100 mL培養(yǎng)基的250 mL錐形瓶中,每株菌重復(fù)3次,后續(xù)發(fā)酵和生物轉(zhuǎn)化步驟參考節(jié)2.1,2.2.最后,依據(jù)標(biāo)準(zhǔn)曲線求出各菌株轉(zhuǎn)化產(chǎn)物的平均質(zhì)量濃度.

3 實(shí)驗(yàn)結(jié)果與討論

3.1 各菌萃取液TLC分析

將各真菌的萃取相進(jìn)行TLC檢測,結(jié)果如圖1所示.

由圖1可知:菌株P(guān)S01,PS06和PS08的條帶僅發(fā)現(xiàn)1個(gè)主要斑點(diǎn),且比移值(Rf)與標(biāo)準(zhǔn)品((1S,2S,4R)-檸檬烯-1,2-二醇)一致;菌株P(guān)S07,PS18的條帶明顯多出1個(gè)斑點(diǎn).從真菌測序結(jié)果可知,除了菌株P(guān)S08歸屬于扁桃腐皮殼菌(D. amygdali),其余菌株歸屬于鏈格孢屬(A. Nees),但轉(zhuǎn)化產(chǎn)物卻不相同,說明轉(zhuǎn)化產(chǎn)物與種屬之間不存在必然的聯(lián)系.

3.2 轉(zhuǎn)化產(chǎn)物GC-MS檢測

各菌株轉(zhuǎn)化產(chǎn)物總離子色譜(TIC)圖,如圖2所示.圖2中:I為強(qiáng)度;t為時(shí)間.

檢索NIST 17.0數(shù)據(jù)庫可知,峰1匹配環(huán)氧檸檬烯(limonene oxidde),屬于檸檬烯-1,2-二醇前體物質(zhì)[20-22];峰2匹配化合物檸檬烯-1,2-二醇,保留時(shí)間與標(biāo)準(zhǔn)品一致;峰3匹配結(jié)果與峰2一致,推測為峰2的同分異構(gòu)體;峰4未檢索到匹配的化合物.

3.3 轉(zhuǎn)化產(chǎn)物結(jié)構(gòu)鑒定

化合物PS18-1,PS18-2的TLC圖和TIC圖,如圖3所示.

經(jīng)數(shù)據(jù)庫檢索,化合物PS18-1,PS18-2均匹配為檸檬烯-1,2-二醇,結(jié)合TLC結(jié)果,推測二者為同分異構(gòu)體.

化合物PS18-1碳譜13C NMR(500 MHz,CD3OD)的化學(xué)位移(δ)為151.44,108.98,74.41,71.70,38.79,35.13,34.38,27.63,27.41,21.08.該碳譜化學(xué)位移與文獻(xiàn)報(bào)道的化合物2((1S,2S,4R)-檸檬烯-1,2-二醇)完全一致[23],也與化合物2a的碳譜化學(xué)位移相同[24].化合物PS18-1的氫譜1H NMR(500 MHz,CD3OD)的化學(xué)位移(δ)為3.55(dd,J = 2.3,2.0,1H,H-2),1.63(m,H-3),1.91(ddd,1Heq,13.2,13.2,2.6,H-3),2.27(m,1H,H-4),1.48(m,Hax-5),1.60(m,Heq-5),1.49(m,1Hax,H-6),1.73(m,1Heq,H-6),1.20(s,3H,H-7),4.71(bs,1H,H-9),4.68(bs,1H,H-9),1.72(s,3H,H-10).該數(shù)據(jù)與化合物2的氫譜數(shù)據(jù)一致[23].

綜上,化合物PS18-1歸屬于(1S,2S,4R)-檸檬烯-1,2-二醇.化合物PS18-1和化合物2的碳譜圖和氫譜圖,如圖4所示.

化合物PS18-2碳譜13C NMR(500 MHz,CD3OD)的化學(xué)位移(δ)為150.11,109.39,77.83,74.45,45.23,39.79,37.87,29.77,21.02,18.91.該碳譜數(shù)據(jù)與化合物1((1S,2R,4R)-檸檬烯-1, 2-二醇)數(shù)據(jù)完全相同[23].化合物PS18-2的氫譜1H NMR(500 MHz,CD3OD)的化學(xué)位移(δ)為3.50(dd,J = 4.6,11.8,1H,H-2), 1.30(m,Hax-3), 1.83(m,1Heq,H-3), 2.06(dddd,1H,12.4,12.4,3.5,3.4,H-4),1.47(dddd,17.5,14.8,14.8,3.5,Hax-5),1.75(m,Heq-5),1.25(m,1Hax,H-6),1.63(m,1Heq,H-6),1.15(s,3H,H-7),4.71(bs,1H,H-9),4.69(bs,1H,H-9),1.72(s,3H,H-10),該數(shù)據(jù)與化合物1的氫譜數(shù)據(jù)一致[23].

綜上,PS18-2歸屬為(1S,2R,4R)-檸檬烯-1,2-二醇.PS18-2與化合物1的碳譜圖和氫譜圖,如圖5所示.

由圖3,4,5可知:Rf較高的斑點(diǎn)為(1S,2S,4R)-檸檬烯-1,2-二醇,Rf較低的斑點(diǎn)為(1S,2R,4R)-檸檬烯-1,2-二醇.文獻(xiàn)[25]報(bào)道檸檬烯轉(zhuǎn)化為檸檬烯-1,2-二醇時(shí),需要通過FAD結(jié)合單加氧酶(FAD-binding monooxygenase)生成檸檬烯環(huán)氧化物(limonene-1,2-epoxide),再通過環(huán)氧化物水解酶(epoxide hydrolase)生成檸檬烯-1,2-二醇.通過比較7株植物內(nèi)生真菌的轉(zhuǎn)化產(chǎn)物,可得以下2個(gè)結(jié)論.1) 來源于不同種屬植物內(nèi)生真菌的環(huán)氧化物水解酶存在差異,如D. amygdali PS08和A. Nees PS18,前者生成(1S,2S,4R)-檸檬烯-1,2-二醇,后者額外生成(1S,2R,4R)-檸檬烯-1,2-二醇,與文獻(xiàn)[26]報(bào)道的氯過氧化物酶轉(zhuǎn)化(+)-檸檬烯生成檸檬烯-1,2-二醇類似,該酶在氯離子存在下生成2種手性產(chǎn)物.2) 即使是來源于同一種屬植物內(nèi)生真菌的環(huán)氧化物水解酶也可能存在差異,如A. Nees PS01與A. Nees PS06生成(1S,2S,4R)-檸檬烯-1,2-二醇,而A. Nees PS07,A. Nees PS09和A. Nees PS18則額外生成(1S,2R,4R)-檸檬烯-1,2-二醇.因此,該轉(zhuǎn)化機(jī)制可能需要進(jìn)一步完善.

3.4 產(chǎn)物的測量

檸檬烯-1,2-二醇標(biāo)準(zhǔn)曲線,如圖6所示.圖6中:S為峰面積;ρ為檸檬烯-1,2-二醇的質(zhì)量濃度.

由圖6可得標(biāo)準(zhǔn)曲線方程為S=129 971.734 13ρ-15 963.437 46,R2=0.993.

依此標(biāo)準(zhǔn)曲線,各菌株產(chǎn)(1S,2S,4R)-檸檬烯-1,2-二醇的質(zhì)量濃度,如圖7所示.

由圖7可知:各菌株產(chǎn)(1S,2S,4R)-檸檬烯-1,2-二醇的質(zhì)量濃度為0.36~2.46 g·L-1.其中,菌株P(guān)S08產(chǎn)量最高,達(dá)到(2.46±0.16) g·L-1,實(shí)驗(yàn)結(jié)果與文獻(xiàn)[14]吻合.

4 結(jié)束語

轉(zhuǎn)化產(chǎn)物檸檬烯-1,2-二醇(檸檬甘油)屬于一種比較重要的檸檬烯含氧衍生物.研究表明,該化合物具有抗癌[27-29]和抗炎活性[28],也可作為合成其他生物活性物質(zhì)前體[30-32].由于該化合物存在4種立體構(gòu)型[24],手性不同的純萜類對(duì)映體其藥理活性(抗微生物活性、毒性或氣味特性)存在差異[33],如(1S,2R,4R)-檸檬烯-1,2-二醇和(1S,2S,4R)-檸檬烯-1,2-二醇對(duì)新生隱球菌(Cryptococcus neoformans)的最小抑制濃度分別為184,1 470 μmol·L-1[23].因此,4種構(gòu)型的化合物生物活性數(shù)據(jù)有待進(jìn)一步挖掘.

采用假臭草來源植物內(nèi)生真菌轉(zhuǎn)化(+)-檸檬烯,轉(zhuǎn)化單一且產(chǎn)量達(dá)克級(jí),轉(zhuǎn)化效果較理想.

參考文獻(xiàn):

[1] 臺(tái)亞楠,董曼,任婧楠,等.檸檬烯微生物轉(zhuǎn)化的研究進(jìn)展[J].食品科學(xué),2014,35(17):272-277.DOI:10.7506/spkx1002-6630-201417052.

[2] SPEELMANS G,BIJLSMA A,EGGINK G.Limonene bioconversion to high concentrations of a single and stable product, perillic acid, by a solvent-resistant Pseudomonas putida strain[J].Applied Microbiology and Biotechnology,1998,50(5):538-544.DOI:10.1007/s002530051331.

[3] MIRATA M A,HEERD D,SCHRADER J.Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264[J].Process Biochemistry,2009,44(7):764-771.DOI:10.1016/j.procbio.2009.03.013.

[4] MOLINA G,BUTION M L,BICAS J L,et al.Comparative study of the bioconversion process using R-(+)- and S-(-)-limonene as substrates for Fusarium oxysporum 152B[J].Food Chemistry,2015,174(1):606-613.DOI:10.1016/j.foodchem.2014.11.059.

[5] ADAMS A,DEMYTTENAERE J C R,DE KIMPE N.Biotransformation of (R)-(+)- and (S)-(-)-limonene to α-terpineol by Penicillium digitatum: Investigation of the culture conditions[J].Food Chemistry,2003,80(4):525-534.DOI:10.1016/S0308-8146(02)00322-9.

[6] DEMYTTENAERE J C R,VANOVERSCHELDE J,DE KIMPE N.Biotransformation of (R)-(+)- and (S)-(-)-citronellol by Aspergillus sp. and Penicillium sp., and the use of solid-phase microextraction for screening[J].Journal of Chromatography A,2004,1027(1/2):137-146.DOI:10.1016/j.chroma.2003.08.090.

[7] PARSHIKOV I A,SUTHERLAND J B.The use of Aspergillus niger cultures for biotransformation of terpenoids[J].Process Biochemistry,2014,49(12):2086-2100.DOI:10.1016/j.procbio.2014.09.005.

[8] FERRARA M A,ALMEIDA D S,SIANI A.et al.Bioconversion of R-(+)-limonene to perillic acid by the yeast Yarrowia lipolytica[J].Brazilian Journal of Microbiology,2013,44(4):1075-1080.DOI:10.1590/S1517-838220140 05000008.

[9] VESPERMANN K A C,PAULINO B N,BARCELOS M C S,et al.Biotransformation of α- and β-pinene into flavor compounds[J].Applied Microbiology and Biotechnology,2017,101(5):1805-1817.DOI:10.1007/s00253-016-8066-7.

[10] BICAS J L,F(xiàn)ONTANILLE P,PASTORE G M,et al.A bioprocess for the production of high concentrations of R-(+)-α-terpineol from R-(+)-limonene[J].Process Biochemistry,2010,45(4):481-486.DOI:10.1016/j.procbio.2009.11.007.

[11] ROTTAVA I,CORTINA P F,GRANDO C E,et al.Isolation and screening of microorganisms for R-(+)-limonene and (-)-β-pinene biotransformation[J].Applied Biochemistry and Biotechnology,2010,162(3):719-732.DOI:10.1007/s12010-009-8872-9.

[12] RODRIGUEZ P,GONZALEZ D,GIORDANO S R.Endophytic microorganisms: A source of potentially useful biocatalysts[J].Journal of Molecular Catalysis B: Enzymatic,2016,133(1):S569-S581.DOI:10.1016/j.molcatb.2017.02.013.

[13] DE JESUS H C R,JELLER A H,DEBONSI H M,et al.Multiple monohydroxylation products from rac-camphor by marine fungus Botryosphaeria sp.isolated from marine alga Bostrychia radicans[J].Journal of the Brazilian Chemical Society,2017,28(3):498-504.DOI:10.21577/0103-5053.20160262.

[14] BIER M C,MEDEIROS A B,SOCCOL C R.Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media[J].Fungal Biology,2017,121(2):137-144.

[15] BORGES K B,BORGES W D E S,PUPO M T,et al.Endophytic fungi as models for the stereoselective biotransformation of thioridazine[J].Applied Microbial and Cell Physiology,2007,77(3):669-674.DOI:10.1007/s00253-007-1171-x.

[16] DEMYTTENAERE J C R,WILLEMEN H M.Biotransformation of linalool to furanoid and pyranoid linalool oxides by Aspergillus niger[J].Phytochemistry,1997,47(6):1029-1036.DOI:10.1016/s0031-9422(98)80066-6.

[17] 王奇志,劉育梅,李書明,等.假臭草花精油的化學(xué)組成及對(duì)柑橘木虱的驅(qū)避和致死活性[J].昆蟲知識(shí),2018,55(1):117-125.

[18] 王偉,代光明,李書明,等.假臭草總黃酮超聲波輔助提取工藝優(yōu)化及抑菌活性[J].天然產(chǎn)物研究與開發(fā),2017,29(8):1343-1361.

[19] 楊道茂,陳煌.近海海洋真菌生物轉(zhuǎn)化(+)-檸檬烯[J].華僑大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,41(1):67-71.DOI:10.11830/ISSN.1000-5013.201904020.

[20] MAROSTICA M R,PASTORE G M.Biotransformation of limonene: A review of the main metabolic pathways[J].Quimica Nova,2007,30(2):382-387.DOI:10.1590/S0100-40422007000200027.

[21] 張璐璐,范剛,何進(jìn),等.檸檬烯微生物轉(zhuǎn)化及其相關(guān)酶的研究進(jìn)展[J].食品工業(yè)科技,2019,40(12):317-326.DOI:10.13386/j.issn1002-0306.2019.12.051.

[22] FONTANILLE P,GROS J B,LARROCHE C.Biotransformations with crude enzymes and whole cells[M]∥Pandey A,et al.Enzyme Technology.New York:Asiatech Publishers Inc,2006.

[23] LEITO S G,MARTINS G R,MARTNEZ-FRUCTUOSO L,et al.Absolute stereochemistry of antifungal limonene-1,2-diols from Lippia rubella[J].Revista Brasileira de Farmacognosia,2020,30(4):537-543.DOI:10.1007/s43450-020-00081-x.

[24] MORIKAWA H,YAMAGUCHI J I,SUGIMURA S I,et al.Systematic synthetic study of four diastereomerically distinct limonene-1,2-diols and their corresponding cyclic carbonates[J].Beilstein Journal of Organic Chemistry,2019,15:130-136.DOI:10.3762/bjoc.15.13.

[25] SALES A,MOREIRA R C,PASTORE G M,et al.Establishment of culture conditions for biotransformation of R-(+)-limonene to limonene-1,2-diol by Colletotrichum nymphaeae CBMAI[J].Process Biochemistry,2019,78:8-14.DOI:10.1016/j.procbio.2019.01.022.

[26] GUILA S,VAZQUEZ-DUHALT R,TINOCO R,et al.Stereoselective oxidation of R-(+)-limonene by chloroperoxidase from Caldariomyces fumago[J].Green Chemistry,2008,10(6):647-653.DOI:10.1039/B719992A.

[27] LEE T K,ROH H S,YU J S,et al.Pinecone of pinus koraiensis inducing apoptosis in human lung cancer cells by activating caspase-3 and its chemical constituents[J].Chemical Biodiversity,2016,14(4):e1600412.DOI:10.1002/cbdv.201600412.

[28] LAPPAS C M,LAPPAS N T.D-Limonene modulates T lymphocyte activity and viability[J].Cellular Immunology,2012,279(1):30-41.DOI:10.1016/j.cellimm.2012.09.002.

[29] ALEXANDRINO T D,DE MEDEIROS T D M,RUIZ A L T G,et al.Structural properties and evaluation of the antiproliferative activity of limonene-1,2-diol obtained by the fungal biotransformation of R-(+)- and S-(-)-limonene[J].Chirality,2022,34(6):887-893.DOI:10.1002/chir.23439.

[30] BLAIR M,TUCK K L.A new diastereoselective entry to the (1S,4R)- and (1S,4S)-isomers of 4-isopropyl-1-methyl-2-cyclohexen-1-ol, aggregation pheromones of the ambrosia beetle Platypus quercivorus[J].Tetrahedron: Asymmetry,2009,20(18):2149-2153.DOI:10.1016/j.tetasy.2009.08.009.

[31] LEUNG A E,RUBBIANI R,GASSER G,et al.Enantioselective total syntheses of the proposed structures of prevezol B and evaluation of anti-cancer activity[J].Organic and Biomolecular Chemistry,2014,12(41):8239-8246.DOI:10.1039/C4OB01662A.

[32] LEUNG A E,BLAIR M,F(xiàn)ORSYTH C M,et al.Synthesis of the proposed structures of Prevezol C[J].Organic Letters,2013,15(9):2198-2201.

[33] SILVA A C R D,LOPES P M,AZEVEDO M M B D,et al.Biological activities of α-pinene and β-pinene Enantiomers[J].Molecules,2012,17(6):6305-6316.DOI:10.3390/molecules17066305.

(責(zé)任編輯: 錢筠 ??英文審校: 劉源崗)

收稿日期: 2023-02-03

通信作者: 楊道茂(1975-),男,講師,博士,主要從事微生物生物轉(zhuǎn)化的研究.E-mail:ydmao@hqu.edu.cn.

基金項(xiàng)目: 國家級(jí)大學(xué)生科創(chuàng)項(xiàng)目(202110385039); 福建省個(gè)人和團(tuán)隊(duì)科技員項(xiàng)目(2022年度); 華僑大學(xué)高層次人才科研啟動(dòng)資金資助項(xiàng)目(Z15X0004)

http:∥www.hdxb.hqu.edu.cn

猜你喜歡
二醇生物轉(zhuǎn)化內(nèi)生
植物內(nèi)生菌在植物病害中的生物防治
火星表面高氯酸鹽生物轉(zhuǎn)化及原位制氧工藝技術(shù)
內(nèi)生微生物和其在作物管理中的潛在應(yīng)用
“黨建+”激活鄉(xiāng)村發(fā)展內(nèi)生動(dòng)力
人參水解物中人參二醇的工藝優(yōu)化及其HPLC-ELSD含量測定方法
授人以漁 激活脫貧內(nèi)生動(dòng)力
苦丁茶冬青總皂苷生物轉(zhuǎn)化工藝的優(yōu)化
中成藥(2018年4期)2018-04-26 07:12:45
1,4丁炔二醇對(duì)Ni-WC納米復(fù)合鍍層性能的影響
皂苷體外生物轉(zhuǎn)化水解反應(yīng)的研究進(jìn)展
新人參二醇滴丸制備及體外溶出度研究
伊宁县| 迁西县| 桃江县| 武冈市| 双柏县| 宁陕县| 仙桃市| 梅河口市| 纳雍县| 吴川市| 天气| 日土县| 隆化县| 宁陵县| 鸡东县| 双牌县| 宕昌县| 大洼县| 锦州市| 周口市| 邵东县| 云安县| 开阳县| 双流县| 衡阳县| 洮南市| 西盟| 犍为县| 大石桥市| 宁晋县| 鹤山市| 宁蒗| 沙坪坝区| 于都县| 崇信县| 仙居县| 册亨县| 昌江| 东乡| 稻城县| 彭水|