陳琴 吳雷蕾 王平
摘要: 為了研究凝固劑種類對再生絲性能的影響,本文分別以十二烷基硫酸鈉、去離子水和75%乙醇作為凝固浴,通過再生絲素蛋白濕法紡絲,得到三種再生絲RSF(SDS)、RSF(DI)和RSF(ET)。結(jié)果表明,RSF(SDS)具有良好的機(jī)械性能,其斷裂伸長率達(dá)126%,高于20%RSF(DI)和26%RSF(ET)再生絲;傅里葉變換紅外光譜分析表明,RSF(SDS)中含有較高比例的β-折疊結(jié)構(gòu);進(jìn)一步通過X射線衍射和差示量熱法分析顯示,RSF(SDS)纖維比RSF(DI)和RSF(ET)纖維具有更多存在于無定形區(qū)的β-折疊結(jié)構(gòu);熒光探針法驗(yàn)證了SDS能夠促進(jìn)絲素蛋白更快速地形成β-折疊結(jié)構(gòu),乙醇則會誘導(dǎo)絲素蛋白更快速地形成結(jié)晶。本文制備了具有優(yōu)異延伸性的再生絲,可為絲素蛋白濕法紡絲提供一種新思路。
關(guān)鍵詞: 絲素蛋白;再生絲;凝固浴;力學(xué)性能;聚集態(tài)結(jié)構(gòu);成纖機(jī)制
中圖分類號: TS101.921;TQ340.64
文獻(xiàn)標(biāo)志碼: A
文章編號: 1001-7003(2023)04-0001-09
引用頁碼:
041101
DOI: 10.3969/j.issn.1001-7003.2023.04.001(篇序)
近年來,蠶絲作為一種天然蛋白質(zhì)纖維,具有良好的生物相容性、吸濕性和透氣性[1],已經(jīng)廣泛應(yīng)用于生物醫(yī)療[2-4]、人體組織工程[5-7]、光學(xué)器件[8-11]等熱門研究領(lǐng)域。然而,在實(shí)際生產(chǎn)、加工和織造過程中,會產(chǎn)生大量廢棄物。因此,基于可持續(xù)發(fā)展的原則,研究人員常從廢棄絲織品中提煉獲取再生絲素蛋白纖維(Regenerated silk fibroin,RSF),目前主要是通過濕法紡絲法,制備以再生蠶絲蛋白為原料的再生絲素蛋白纖維。再生絲素蛋白纖維具有生物相容性好、可塑性強(qiáng)、可降解性和吸濕性等優(yōu)點(diǎn),可應(yīng)用于人體組織工程[12-13]、生物傳感器[14-16]等領(lǐng)域。Ki等[17]以磷酸—甲酸作為溶劑,甲醇作為凝固浴,制備得到了斷裂強(qiáng)度和斷裂伸長率分別為274 MPa和18%的纖維;Zhou等[18]以水為溶劑,用熱的硫酸銨水溶液作為凝固浴進(jìn)行濕法紡絲,將再生絲進(jìn)行三倍牽伸后,得到了斷裂伸長率為27.7%的再生絲素蛋白纖維;吳惠英等[19]以氯化鈣甲酸作為溶劑,以水作為凝固浴,得到了斷裂伸長率為23.8%的濕紡再生絲素蛋白纖維。然而,綜上所述,由于濕法紡絲所得到的再生絲均表現(xiàn)出較差的斷裂伸長率,大幅限制了再生絲的應(yīng)用。
十二烷基硫酸鈉(Sodium dodecyl sulfate,SDS)是一種典型的陰離子表面活性劑,乳化性能較好,具有低皮膚刺激性、高安全性,它能與蛋白質(zhì)的疏水鍵發(fā)生結(jié)合[20-21]。Wu等[22]用SDS作為膠凝劑,加速絲素凝膠化,揭示了SDS誘導(dǎo)快速凝膠化的機(jī)理;Li等[23]將SDS添加到絲素水凝膠中,得到了壓縮模量為3.0 MPa的水凝膠。因此,上述結(jié)果表明,添加適量SDS不僅能夠提高水凝膠的力學(xué)性能,而且表明其具有誘導(dǎo)絲素蛋白構(gòu)象演變的功能,在基于濕法紡絲的再生絲重建中具有潛在用途。凝固浴作為濕法紡絲的重要參數(shù),會對再生絲的力學(xué)性能產(chǎn)生直接影響[24],但目前未見將表面活性劑作為凝固劑的相關(guān)研究。因此,本文以甲酸溶解的再生絲素蛋白為原料,SDS溶液作為凝固浴進(jìn)行濕法紡絲,對比考察采用去離子水和75%(V/V)乙醇作為凝固浴的再生絲性能,探究SDS對絲素蛋白構(gòu)象的影響及再生絲的形成機(jī)制。
1 實(shí) 驗(yàn)
1.1 試 劑
桑蠶絲(江蘇鑫緣繭絲綢股份有限公司);無水碳酸鈉、無水乙醇、溴化鋰、98%甲酸、無水氯化鈣、十二烷基硫酸鈉均為分析純(國藥集團(tuán)化學(xué)試劑有限公司),硫黃素T(色譜純,上海阿拉丁生化科技股份有限公司)。
1.2 制備方法
1.2.1 再生絲素蛋白溶液的制備
將蠶絲按1︰30浴比放入0.05%碳酸鈉溶液中,煮沸30 min,取出后用去離子水反復(fù)清洗去除雜質(zhì)和殘余離子,重復(fù)操作3次后,60 ℃烘干,得到脫膠蠶絲備用。
稱取適量脫膠蠶絲,溶解在9.3 mol/L的溴化鋰溶液中,質(zhì)量體積比(M/V)為1︰10,在70 ℃水浴鍋中溶解1 h后,裝入截留相對分子質(zhì)量為8 000~14 000的透析袋中,透析數(shù)日,直至透析出的溶液電導(dǎo)率小于4 μS/cm時(shí)透析結(jié)束,溶液質(zhì)量濃度采用稱重法測定,根據(jù)下式對絲素蛋白溶液的質(zhì)量濃度進(jìn)行計(jì)算。
c=M2-M1V×0.001(1)
式中:c為質(zhì)量濃度,g/L;M1為稱量瓶空瓶質(zhì)量,g;M2為絲素蛋白及稱量瓶質(zhì)量,g;V為加入的絲素蛋白的體積,mL。
1.2.2 紡絲溶液的制備
稱取適量無水氯化鈣(CaCl2),溶解于甲酸(FA)溶液中,得到質(zhì)量分?jǐn)?shù)為5% FA-CaCl2溶液。稱取4 g脫膠蠶絲于20 mL FA-CaCl2溶液中,室溫下以800 r/min的速度攪拌4 h,得到再生絲素蛋白溶液。
1.2.3 再生絲的制備
紡絲液質(zhì)量濃度為200 g/L,凝固槽長度為0.75 m,凝固浴分別為去離子水(DI)、50 g/L十二烷基硫酸鈉(SDS)溶液和75%(V/V)乙醇(ET)溶液,紡絲速度為12 mL/h,紡絲針頭內(nèi)徑為0.84 mm,收集時(shí)卷繞輥的速度為7.85 cm/s。將紡絲液倒入醫(yī)用注射器,靜置消泡,通過注射泵將注射器中的紡絲液平行擠壓到凝固浴中,紡絲原液迅速凝聚成均勻的纖維。最后,將纖維置于恒溫恒濕箱中(溫度20 ℃±1 ℃,濕度65%±3%)備測。
將RSF汽蒸處理5 min,以1 mm/s的速率將定長10 cm的樣品分別拉伸至15、20 cm和30 cm,得到牽伸后的纖維樣品,置于恒溫恒濕箱中備測。
1.3 測試方法
1.3.1 表面形態(tài)
采用SU 1510掃描電子顯微鏡(日本日立株式會社)觀察了濕紡纖維的表觀形貌。所有樣品經(jīng)表面噴金處理后,在20 kV的電壓下觀測。
1.3.2 力學(xué)性能
采用PT-1198GTD-C小型拉壓力試驗(yàn)機(jī)(廣東寶大宣力科技有限公司)測試濕紡纖維的力學(xué)性能,測試標(biāo)距20 mm,拉伸速率2 mm/min,溫度20 ℃±0.5 ℃,相對濕度50%±5%。每組至少選取5根纖維進(jìn)行拉伸測試,記錄各組樣品的應(yīng)力應(yīng)變數(shù)據(jù),計(jì)算楊氏彈性模量、斷裂功及斷裂伸長率等參數(shù),結(jié)果取平均值。
E=ΔσΔε(2)
式中:E為楊氏彈性模量,MPa;σ為應(yīng)力,MPa;ε為應(yīng)變,%。
W=l0×A×ε×∫Bp0σ(3)
式中:W為斷裂功,J;l0為標(biāo)距,m;S0為橫截面積,m2;ε為應(yīng)變,%;Bp為斷裂點(diǎn);σ為應(yīng)力,MPa。
1.3.3 傅里葉變換紅外光譜測試
采用Nicolet IS 10傅里葉變換紅外光譜儀(美國賽默飛世爾科技(中國)有限公司)分析濕紡纖維的二級結(jié)構(gòu),光譜范圍400~4 000 cm-1,光譜分辨率0.4 cm-1,累計(jì)掃描32次,結(jié)果取平均值。
1.3.4 X射線衍射測試
采用D2 PHASER X射線衍射儀(德國布魯克AXS有限公司)測試濕紡纖維的晶體結(jié)構(gòu),測試條件為:Cu—Ka靶(λ=0.154 18 nm),電壓30 kV,電流10 mA,掃描速度3°/s,掃描范圍5°~40°。
1.3.5 結(jié)晶度表征
將1 g再生絲樣品剪成5 mm碎末,以浴比1︰100加入3%的鹽酸中,然后置于94 ℃的恒溫水浴鍋中水解4 h。將殘留物過濾、洗滌至中性,烘干、平衡、稱重,得到殘留物質(zhì)量,并根據(jù)下式對材料結(jié)晶度進(jìn)行計(jì)算。
Xc/%=m0-m1m0×100(4)
式中:Xc為結(jié)晶度,%;m0為原絲質(zhì)量,g;m1為鹽酸溶解后殘留絲質(zhì)量,g。
1.3.6 差示掃描量熱測試
采用Q200差示掃描量熱儀(美國TA儀器公司)測定再生絲纖維的熱性能,氮?dú)饬髁?0 mL/min,測試范圍4~300 ℃,升溫速度10 ℃/min。
1.3.7 熒光測試
采用Hitachi F-4600熒光光譜儀(日本日立株式會社)測試絲素蛋白水溶液的熒光性能。硫黃素T(ThT):激發(fā)波長Ex為420 nm,狹縫為5 nm,發(fā)射波長范圍430~700 nm,狹縫為5 nm,電壓700 V。取30 mg/mL的絲素溶液1 mL于離心管中,加入7 μL摩爾濃度為300 mmol/L SDS溶液,使SDS摩爾濃度為0.2 mmol/L,最后加入200 μL ThT溶液,用去離子水定容至10 mL,ThT的最終摩爾濃度為20 μmol/L。樣品室溫靜置2 h,測定溶液的熒光光譜。每個(gè)樣品重復(fù)測試3次,結(jié)果取平均值。
2 結(jié)果與分析
2.1 再生絲形貌分析
為了比較RSF的表觀形貌差異,本文采用掃描電鏡對三種RSF進(jìn)行表征,如圖1所示。從圖1(a)可以看出,RSF(SDS)纖維截面近橢圓形,纖維表面有不規(guī)則的溝槽。這是因?yàn)槔w維經(jīng)過凝固浴時(shí),通過拉伸作用使纖維表面迅速脫水和取向,從而形成溝壑。從圖1(b)可以看出,RSF(DI)纖維截面近似三角形,且邊緣有大量鋸齒,纖維表面有更明顯的溝壑。這是因?yàn)橐运疄槟淘r(shí),纖維的凝固速度較慢,會
逐漸沉積到凝固浴槽的底部,進(jìn)而在外力作用下呈現(xiàn)出不規(guī)整的形貌。從圖1(c)可以看出,RSF(ET)纖維截面近圓形,表面光滑平整,說明在乙醇中絲素蛋白凝固速度很快,呈現(xiàn)各向同速的特點(diǎn)。
綜上,絲素蛋白在三種凝固浴中凝固速度不同,其中在乙醇中最快,去離子水中最慢,SDS溶液速度適中。另外,對三種RSF纖維的纖度進(jìn)行分析,結(jié)果表明RSF(DI)最粗為11.61 tex,RSF(SDS)適中為9.48 tex,RSF(ET)最細(xì)為8.44 tex。
2.2 再生絲力學(xué)性能分析
通過拉伸實(shí)驗(yàn)評價(jià)三種RSF(SDS、DI和ET)及不同牽伸倍數(shù)樣品的力學(xué)性能。在進(jìn)行牽伸后處理時(shí),RSF(DI)最多能牽伸到原長的1.5倍,記為RSF(DI-1.5×),RSF(ET)可以牽伸到原長的1.5和2倍,記為RSF(ET-1.5×)和RSF(ET-2×),RSF(SDS)可以牽伸到原長的1.5倍和3倍,記為RSF(SDS-1.5×)和RSF(SDS-3×)。紡絲液在進(jìn)入凝固浴時(shí)會發(fā)生溶劑交換時(shí),基于凝固速率的不同,所形成初生纖維的結(jié)晶程度有差異,因此三組樣品可承受的牽伸倍數(shù)有所差異。
對樣品進(jìn)行力學(xué)測試,獲得結(jié)果如圖2所示。結(jié)果表明,RSF(DI)表現(xiàn)為硬而強(qiáng),模量為2 819 MPa,且有較高的屈服應(yīng)力51 MPa和20%的斷裂伸長率。經(jīng)過牽伸后,RSF(DI-1.5×)模量為3 282 MPa,增加了16%,屈服應(yīng)力為74 MPa。這是因?yàn)镽SF(DI)成纖過程緩慢,纖維較粗,易形成較大尺寸的結(jié)晶區(qū),因此,當(dāng)出現(xiàn)外力拉伸時(shí),表現(xiàn)出較高斷裂強(qiáng)度和彈性模量,但不具有延伸性。對于RSF(ET)而言,其整體呈現(xiàn)為軟而弱,模量為1 239 MPa,屈服應(yīng)力為20 MPa,斷裂伸長
率為26%。經(jīng)牽伸后,RSF(ET-1.5×)模量提高為2 570 MPa,屈服應(yīng)力稍提高為27 MPa,斷裂伸長率為25.13%沒有明顯下降;RSF(ET-2×)則表現(xiàn)為硬而脆,模量為2 626 MPa,屈服應(yīng)力為31 MPa,且斷裂伸長率降低為17.70%,表現(xiàn)出脆性。這是由于RSF(ET)成纖快,纖維細(xì),纖維質(zhì)地均勻,能夠承受一定程度的牽伸作用,但有所限制。相比于其他兩種再生絲纖維,RSF(SDS)表現(xiàn)為軟而韌,模量為997 MPa,具有很好的延性(斷裂伸長率達(dá)到126%),屈服應(yīng)力較低,約為18 MPa。經(jīng)牽伸后,RSF(SDS-1.5×)表現(xiàn)為硬而韌,模量為2 292 MPa,增加了130%,屈服應(yīng)力提高到33 MPa,斷裂伸長率有所降低但是仍然較高為105%;RSF(SDS-3×)表現(xiàn)為硬而韌,模量為3 307 MPa,增加了231%,屈服應(yīng)力提高至57 MPa,斷裂伸長率(79%)有所降低。RSF(SDS)成纖速度適中,纖維粗細(xì)也適中,因此表現(xiàn)出優(yōu)異的延伸性。經(jīng)過蒸汽加濕之后,能夠在外力牽伸的作用下使絲素分子鏈發(fā)生排列取向而趨于更穩(wěn)定的結(jié)構(gòu),因而明顯提高了斷裂強(qiáng)度和彈性模量。整體看來,RSF(SDS)組樣品斷裂伸長和斷裂應(yīng)力均較高,表現(xiàn)出較好的韌性。
蠶絲是一種半結(jié)晶性的天然高分子材料,纖維中的β-折疊納米晶體結(jié)構(gòu)嵌入富含甘氨酸的無定形結(jié)構(gòu)(非結(jié)晶區(qū)域)中,這常被認(rèn)為是蠶絲內(nèi)部分子網(wǎng)絡(luò)的物理交聯(lián)點(diǎn),是影響蠶絲物理性能的主要因素[25-26]。已有研究表明,絲蛋白纖維中二級結(jié)構(gòu)結(jié)晶區(qū)/非晶區(qū)之間的氫鍵作用決定了纖維的力學(xué)性能,其中,絲纖維間的二級結(jié)構(gòu)是影響絲纖維力學(xué)性能的關(guān)鍵因素[27-28]。因此考慮進(jìn)一步對RSF的二級結(jié)構(gòu)進(jìn)行表征,探索力學(xué)性能與蛋白結(jié)構(gòu)的關(guān)系。
2.3 再生絲聚集態(tài)結(jié)構(gòu)分析
利用傅里葉變換紅外光譜、X射線衍射技術(shù)等對三種RSF纖維進(jìn)行結(jié)構(gòu)表征,探究凝固浴對再生絲纖維力學(xué)性能的影響,如圖3所示。從圖3(a)可以看出,四組纖維樣品在1 230 cm-1(酰胺Ⅲ區(qū),歸屬于Silk Ⅰ構(gòu)象,包括α-螺旋結(jié)構(gòu)和無規(guī)則卷曲結(jié)構(gòu))[29],1 513 cm-1(酰胺Ⅱ區(qū),歸屬于β-折疊)和1 619 cm-1(酰胺Ⅰ區(qū),歸屬于β-折疊)[30]處出現(xiàn)了3個(gè)主要吸收峰,說明絲纖維中無規(guī)卷曲、α-螺旋和β-折疊3種構(gòu)象并存。將酰胺Ⅰ帶(1 700~1 600 cm-1)細(xì)分為10個(gè)子峰,通過各子峰的面積分析出聚集態(tài)結(jié)構(gòu)在三種RSF纖維中的不同[31]。圖3(b)為RSF(SDS)纖維在酰胺Ⅰ區(qū)的紅外分峰擬合曲線,擬合曲線的相似度達(dá)0.999及以上。桑蠶絲和三種RSF(SDS、DI、ET)纖維的二級構(gòu)象含量如圖3(c)所示。桑蠶絲中的β-折疊含量為47.7%,低于三種再生絲中的β-折疊含量,這是由于桑蠶絲含有結(jié)晶區(qū)和非晶區(qū),表現(xiàn)為總的β-折疊比例較少。而再生絲是從凝固浴中失水后成纖,在凝固時(shí)需要快速完成從無規(guī)卷曲和α-螺旋轉(zhuǎn)變?yōu)槭杷摩?折疊進(jìn)而析出,表現(xiàn)為相對較高的β-折疊含量。
利用X射線衍射技術(shù)和酸解法表征了三種RSF纖維的結(jié)晶情況。圖3(d)為三種RSF纖維及桑蠶絲的XRD譜圖。絲素蛋白β-折疊主衍射峰為9.1°、18.9°、20.7°和24.0°[32],無規(guī)卷曲和α-螺旋的主衍射峰分別在12.2°、19.7°、24.7°和28.2°[32-34]。四種樣品在上述特征峰的位置都出現(xiàn)了對應(yīng)了衍射峰,只是強(qiáng)度有所不同,這說明RSF與桑蠶絲具有相似的結(jié)晶情況。桑蠶絲在20.7°附近的結(jié)晶峰最為尖銳,而三種RSF纖維在此處的結(jié)晶峰表現(xiàn)為相對平滑的饅頭峰,這說明RSF纖維的結(jié)晶程度均不如桑蠶絲高。
根據(jù)酸解法測試,主要得到的是蠶絲纖維中不溶性的結(jié)晶區(qū),測得三種RSF纖維的結(jié)晶度如表1所示,相比于桑蠶絲的結(jié)晶度(~55%)[35],三種RSF纖維的結(jié)晶度都很低,這與XRD譜圖的峰型結(jié)果基本吻合。蠶絲纖維的結(jié)晶區(qū)與不溶性相關(guān),結(jié)晶區(qū)的形成與β-折疊相關(guān)[36]。如果纖維中所有β-折疊均參與結(jié)晶區(qū)形成,根據(jù)紅外分峰擬合的結(jié)果可以推測結(jié)晶度大小為RSF(SDS)>RSF(DI)>RSF(ET),但是實(shí)際上三種RSF纖維結(jié)晶度的結(jié)果為RSF(ET)>RSF(SDS)>RSF(DI),由此推斷RSF纖維中的β-折疊結(jié)構(gòu)并未全部參與結(jié)晶區(qū)的形成。
2.4 再生絲熱性能分析
為了進(jìn)一步說明RSF纖維性能與蛋白結(jié)構(gòu)的關(guān)系,本文利用差示掃描量熱技術(shù)對RSF纖維進(jìn)行表征。如圖4所示,在140~155 ℃有一個(gè)熱吸收峰,由于樣品的無定形區(qū)的緊密
程度有差異[37],結(jié)合水的蒸發(fā)溫度因此有略微的差別。在278 ℃附近的熱吸收峰,為絲素蛋白降解的特征峰[1]。在160~200 ℃,隨著溫度的升高,絲素大分子鏈段運(yùn)動(dòng)加劇,分子內(nèi)部的結(jié)合水進(jìn)一步得到釋放,分子鏈重新組合,無規(guī)卷曲結(jié)構(gòu)逐漸轉(zhuǎn)變成低結(jié)晶度的β-折疊[32,38]。由圖4可知,三種RSF纖維發(fā)生構(gòu)象轉(zhuǎn)變的溫度比為RSF(SDS)>RSF(DI)>RSF(ET),反映出三種RSF纖維中二級構(gòu)象比例的不同。同時(shí),結(jié)果表明由于RSF(SDS)纖維中大量β-折疊的存在,使得進(jìn)一步形成β-折疊的構(gòu)象轉(zhuǎn)變中需要更高的起始溫度,從而使RSF(SDS)有更好的熱穩(wěn)定性。
2.5 SDS與絲素作用機(jī)理分析
為了驗(yàn)證SDS對絲素蛋白構(gòu)象的影響,本文采用熒光探針法闡明SDS對于RSF纖維的成型影響。ThT能與蛋白質(zhì)二級結(jié)構(gòu)中的β-片層(β-折疊結(jié)構(gòu)的基礎(chǔ))發(fā)生高度特異性的結(jié)合[39],當(dāng)激發(fā)波波長為485 nm時(shí)會發(fā)射出強(qiáng)烈的熒光,同時(shí),熒光強(qiáng)度隨著β-片層數(shù)量的增加而增強(qiáng),因此,熒光探針能夠表征蛋白質(zhì)的二級結(jié)構(gòu)[40]。本文將ThT加入SF溶液、含SDS的SF溶液和含ET的SF溶液中,分析了時(shí)間對溶液熒光強(qiáng)度的影響,如圖5所示。
熒光分析法中,熒光強(qiáng)度一般與入射光強(qiáng)度和溶液濃度(β-片層結(jié)構(gòu)的比例)呈線性關(guān)系[41]。圖5顯示的是三種溶液中,絲素蛋白聚集體在485 nm處的熒光強(qiáng)度。當(dāng)入射光強(qiáng)度一致時(shí),0~30 h內(nèi)有SDS和ET的SF溶液的熒光強(qiáng)度均比純SF溶液的高,這說明含SDS和ET時(shí),在相同的時(shí)間內(nèi)絲素蛋白能生成更多的β-片層。在30~80 h內(nèi),三種溶液的熒光強(qiáng)度均呈現(xiàn)下降趨勢,這是由于大量β-片層的存在,使絲素蛋白發(fā)生成核—生長[26],進(jìn)而以沉淀的形式從溶液中析出,導(dǎo)致溶液中可檢測到的β-片層含量減少,表現(xiàn)為熒光強(qiáng)度的降低。此外,在測試過程中,能夠明確觀察到絲素蛋白溶液從澄清狀態(tài)逐漸變渾濁,直至出現(xiàn)沉淀。因此,熒光測試結(jié)果表明,乙醇和SDS均能夠促進(jìn)絲素蛋白生成β-片層,進(jìn)而形成β-折疊,以促進(jìn)絲素蛋白的凝固。相對而言,乙醇能夠在更短的時(shí)間內(nèi)促進(jìn)絲素蛋白快速形成β-折疊。
根據(jù)以上分析,本文推測RSF纖維成型的作用機(jī)理為:SDS是一種典型的小分子陰離子表面活性劑,其疏水長鏈與蛋白質(zhì)的疏水區(qū)結(jié)合,誘導(dǎo)絲素蛋白生成β-折疊結(jié)構(gòu)。部分β-折疊能夠進(jìn)一步堆疊形成結(jié)晶區(qū),剩余部分的β-折疊則留在無定形區(qū)相互連接,最后形成類似漁網(wǎng)狀的結(jié)構(gòu)[26]。在外力牽伸作用下,β-折疊結(jié)構(gòu)進(jìn)一步重排[42],使RSF(SDS)成為韌性材料。而乙醇會誘導(dǎo)絲素蛋白迅速結(jié)晶,使得內(nèi)部絲素蛋白分子結(jié)構(gòu)以雜亂無序的狀態(tài)穩(wěn)定下來[43],從而表現(xiàn)為脆性。去離子水的作用機(jī)理與乙醇類似,不過由于凝固速度相對較慢,凝固時(shí)最外層最先以無序狀態(tài)穩(wěn)定下來。在外力的牽引作用下,由于內(nèi)部還沒完全凝固,因此能夠承受一定的變形,后續(xù)內(nèi)部脫水凝固體積收縮,表面就會呈現(xiàn)大量溝壑。這與SEM的結(jié)果一致。
3 結(jié) 論
本文采用濕法紡絲制備了絲素蛋白再生絲纖維(RSF),研究了SDS凝固浴對RSF力學(xué)性能的影響,分析了RSF的聚集態(tài)結(jié)構(gòu),并探究了SDS促進(jìn)RSF成纖的機(jī)理,從而得出以下結(jié)論。
1) 以去離子水、乙醇和SDS作為凝固浴均能獲得RSF,其中RSF(SDS)及牽伸樣品具有較優(yōu)的延伸性,RSF(SDS)斷裂伸長率達(dá)126%。
2) 相比于桑蠶絲,三種體系獲得的RSF纖維結(jié)晶度均較低,且β-折疊含量與結(jié)晶區(qū)比例不完全一致。其中,RSF(SDS)纖維具有較高的β-折疊含量(60.4%),但β-折疊結(jié)構(gòu)并未完全形成結(jié)晶區(qū)。此外,相比于未添加SDS的SF溶液,SDS能誘導(dǎo)絲素蛋白溶液產(chǎn)生更多β-折疊,且無定形區(qū)β-折疊結(jié)構(gòu)的存在使RSF(SDS)具有更好的牽伸性。
3) 成纖過程中,SDS的疏水鏈段與蛋白質(zhì)疏水區(qū)結(jié)合,可快速誘導(dǎo)絲素蛋白形成大量β-折疊。其中,部分β-折疊進(jìn)一步形成結(jié)晶區(qū),剩余的則β-折疊分散在無定形區(qū),在外力作用下發(fā)生進(jìn)一步重排,使RSF(SDS)纖維表現(xiàn)出韌性材料的特征。
參考文獻(xiàn):
[1]向仲懷. 蠶絲生物學(xué)[M]. 北京: 中國林業(yè)出版社, 2005.
XIANG Zhonghuai. Biology of Silk[M]. Beijing: China Forestry Publishing House, 2005.
[2]SHI Z F, ZHENG F M, ZHOU Z T, et al. Silk-enabled conformal multifunctional bioelectronics for investigation of spatiotemporal epileptiform activities and multimodal neural encoding/decoding[J]. Advanced Science, 2019, 6(9): 1801617.
[3]GOGURLA N, KIM Y, CHO S, et al. Multifunctional and ultrathin electronic tattoo for on-skin diagnostic and therapeutic applications[J]. Advanced Materials, 2021, 33(24): 2008308.
[4]WANG L, XU B, NONG Y L, et al. Laccase-mediated construction of flexible double-network hydrogels based on silk fibroin and tyramine-modified hyaluronic acid[J]. International Journal of Biological Macromolecules, 2020, 160: 795-805.
[5]姚夢竹. 載藥碳納米管復(fù)合骨組織工程支架的制備及其與骨髓間充質(zhì)干細(xì)胞的相容性評價(jià)[D]. 杭州: 浙江大學(xué), 2016.
YAO Mengzhu. Construction a Composite Bone Scaffold with Drug-loaded CNT and Its Compatibility with Bone Marrow Mesenchymal Stem Cells[D]. Hangzhou: Zhejiang University, 2016.
[6]ZOU S Z, WANG X R, FAN S N, et al. Electrospun regenerated Antheraea pernyi silk fibroin scaffolds with improved pore size, mechanical properties and cytocompatibility using mesh collectors[J]. Journal of Materials Chemistry B, 2021, 9(27): 5514-5527.
[7]WU X L, ZHOU M L, JIANG F, et al. Marginal sealing around integral bilayer scaffolds for repairing osteochondral defects based on photocurable silk hydrogels[J]. Bioactive Materials, 2021, 6(11): 3976-3986.
[8]LEE W, ZHOU Z T, CHEN X Z, et al. A rewritable optical storage medium of silk proteins using near-field nano-optics[J]. Nature Nanotechnology, 2020, 15(11): 941-947.
[9]TOFFANIN S, KIM S, CAVALLINI S, et al. Low-threshold blue lasing from silk fibroin thin films[J]. Applied Physics Letters, 2012, 101(9): 091110.
[10]JUNG H, IN C, CHOI H, et al. Electromagnetically induced transparency analogue by self-complementary terahertz meta-atom[J]. Advanced Optical Materials, 2016, 4(4): 627-633.
[11]HONG M S, CHOI G M, KIM J, et al. Biomimetic chitin: Silk hybrids: An optically transparent structural platform for wearable devices and advanced electronics[J]. Advanced Functional Materials, 2017, 28(24): 1705480.
[12]吳慧英. 再生絲素纖維的制備及其在人工韌帶中的應(yīng)用[D]. 蘇州: 蘇州大學(xué), 2015.
WU Huiying. Preparation of Regenerated Silk Fibroin Fiber and Its Application on Artificial Ligament[D]. Suzhou: Soochow University, 2015.
[13]LIU M W, ZHANG Y J, LIU K Y, et al. Biomimicking antibacterial opto-electro sensing sutures made of regenerated silk proteins[J]. Advanced Materials, 2021, 33(1): 2004733.
[14]ALI B A, ALLAM N K. Silkworms as a factory of functional wearable energy storage fabrics[J]. Scientific Reports, 2019, 9(1): 12649.
[15]ZHANG S, ZHOU Z T, ZHONG J J, et al. Body-integrated, enzyme-triggered degradable, silk-based mechanical sensors for customized health/fitness monitoring and in situ treatment[J]. Advanced Science, 2020, 7(13): 1903802.
[16]JIA T J, WANG Y, DOU Y Y, et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles[J]. Advanced Functional Materials, 2019, 29(18): 1808241.
[17]KI C S, LEE K H, BAEK D H, et al. Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system[J]. Journal of Applied Polymer Science, 2007, 105(3): 1605-1610.
[18]ZHOU G Q, SHAO Z Z, KNIGHT D P. et al. Silk fibers extruded artificially from aqueous solutions of regenerated Bombyx mori silk fibroin are tougher than their natural counterparts[J]. Advanced Materials, 2009, 21(3): 366-370.
[19]吳惠英, 左保齊. 氯化鈣—甲酸溶解體系再生絲素長絲的制備及其性能[J]. 紡織學(xué)報(bào), 2016, 37(2): 1-6.
WU Huiying, ZUO Baoqi. Preparation and properties of regenerated silk fibroin filament using CaCl2-ormid acid system[J]. Journal of Textile Research, 2016, 37(2): 1-6.
[20]余晶梅. 熒光探針法和疏水相互作用層析法分析蛋白表面疏水性[D]. 杭州: 浙江大學(xué), 2014.
YU Jingmei. Measurement of Protein Surface Hydrophobicity by Fluorescence Probe Method and Hydrophobic Interaction Chromatography[D]. Hangzhou: Zhejiang University, 2014.
[21]左錦靜, 姚永志. 熒光法研究表面活性劑SDS與蛋白質(zhì)的相互作用[J]. 輕工科技, 2018, 34(3): 16-17.
ZUO Jinjing, YAO Yongzhi. Study on the interaction between surfactant SDS and protein by fluorescence method[J]. Light Industry Science and Technology, 2018, 34(3): 16-17.
[22]WU X L, HOU J, LI M Z, et al. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin[J]. Acta Biomaterialia, 2012, 8(6): 2185-2192.
[23]LI Z, ZHENG Z K, YANG Y H, et al. Robust protein hydrogels from silkworm silk[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1500-1506.
[24]YAN J P, ZHOU G Q, KNIGH D P. Wet-spinning of regenerated silk fiber from aqueous silk fibroin solution: Discussion of spinning parameters[J]. Biomacromolecules, 2010, 11(1): 1-5.
[25]NOVA A, KETEN S, PUGNO N M, et al. Molecular and nanostructural mechanisms of deformation, strength and toughness of spider silk fibrils[J]. Nano Letters, 2010, 10(7): 2626-2634.
[26]SCHOR M, BOLHUIS P G. The self-assembly mechanism of fibril-forming silk-based block copolymers[J]. Physical Chemistry Chemical Physics, 2011, 13(22): 10457-10467.
[27]KETEN S, BUEHLER M J. Nanostructure and molecular mechanics of spider dragline silk protein assemblies[J]. Journal of the Royal Society Interface, 2010, 7(53): 1709-1721.
[28]KETEN S, XU Z P, IHLE B, et al. Nanoconfinement controls stiffness, strength and mechanical toughness of beta-sheet crystals in silk[J]. Nature Materials, 2010, 9(4): 359-367.
[29]LING S J, QI Z M, KNIGHT D P, et al. Synchrotron FTIR microspectroscopy of single natural silk fibers[J]. Biomacromolecules, 2011, 12(9): 3344-3349.
[30]LU Y H, LIN H, CHEN Y Y, et al. Structure and performance of Bombyx mori silk modified with nano-TiO2 and chitosan[J]. Fibers and Polymers, 2007, 8(1): 1-6.
[31]HU X, KAPLAN D, CEBE P. Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy[J]. Macromolecules, 2006, 39(18): 6161-6170.
[32]DRUMMY L F, PHILLIPS D M, STONE M O, et al. Thermally induced alpha-helix to beta-sheet transition in regenerated silk fibers and films[J]. Biomacromolecules, 2005, 6(6): 3328-3333.
[33]LU Q, WANG X L, LU S Z, et al. Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process[J]. Biomaterials, 2011, 32(4): 1059-1067.
[34]MAGOSHI J, NAKAMURA S. Studies on physical properties and structure of silk: Glass transition and crystallization of silk fibroin[J]. Journal of Applied Polymer Science, 1975, 19(4): 1013-1015.
[35]TRABBIC K A, YAGER P. Comparative structural characterization of naturally-and synthetically-spun fibers of Bombyx mori fibroin[J]. Macromolecules, 1998, 31(2): 462-471.
[36]MADURGA R, GAN-CALVO A M, PLAZA G R, et al. Straining flow spinning: Production of regenerated silk fibers under a wide range of mild coagulating chemistries[J]. Green Chemistry, 2017, 19(14): 3380-3389.
[37]潘志娟, 陳宇岳, 盛家鏞, 等. 蜘蛛絲的熱性能研究[J]. 絲綢, 2002(10): 13-16.
PAN Zhijuan, CHEN Yuyue, SHENG Jiayong, et al. Study on thermal properties of spider silk[J]. Journal of Silk, 2002(10): 13-16.
[38]MAGOSHI J, MAGOSHI Y, BECKER M A, et al. Crystallization of silk fibroin from solution[J]. Thermochimica Acta, 2000, 352: 165-169.
[39]BIANCALANA M, KOIDE S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils[J]. Biochimica et Biophysica Acta-Proteins and Proteomics, 2010, 1804(7): 1405-1412.
[40]王建南, 陸長德, 白倫. Thioflavine T熒光探針法研究絲素結(jié)晶區(qū)典型肽段自聚集的β-片層結(jié)構(gòu)[J]. 化學(xué)學(xué)報(bào), 2007(2): 111-115.
WANG Jiannan, LU Changde, BAI Lun. Study on β-lamellar structure formed by self-assembly of fibroin crystal typical peptides using Thioflavine T fluorescence probe[J]. Acta Chimica Sinica, 2007(2): 111-115.
[41]DU H N, TANG L, LUO X Y, et al. A peptide motif consisting of glycine, alanine, and valine is required for the fibrillization and cytotoxicity of human alpha-synuclein[J]. Biochemistry, 2003, 42(29): 8870-8878.
[42]NING D, YANG Z, LIU X Y, et al. Structural origin of the strain-hardening of spider silk[J]. Advanced Functional Materials, 2011, 21(4): 772-778.
[43]張鴻昊. 超強(qiáng)再生絲素蛋白纖維及其形成機(jī)理[D]. 廈門: 廈門大學(xué), 2018.
ZHANG Honghao. Ultra-strong Regenerative Silk Fibroin Protein Fiber and Formation Mechanism[D]. Xiamen: Xiamen University, 2018.
Influence mechanism of coagulation bath on the structure of regenerated silk inwet spinning of silk fibroin
CHEN Qin, WU Leilei, WANG Ping
(College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China)
Abstract:
As a natural protein fiber with good biocompatibility, silk has a lot of wastes in production, processing, weaving and after-use. Based on the principle of sustainable development, silk fibroin protein can be recycled by chemical method. After recycling, silk fibroin solution can be obtained and recycled silk fibroin materials can be prepared for reuse.
Wet spinning is the first to be developed and applied in industrial production because of its uniqueness. As the process has been optimized in industrial production for a long time, wet spinning has become a relatively mature spinning method in all aspects. The choice of coagulating bath plays a key role in the solidification of spinning fluid in the coagulating basin, especially in the mechanical properties of RSF fibers. Sodium dodecyl sulfate (SDS) is a typical anionic surfactant with good emulsification performance, low skin irritation, high safety, and can interact with protein. Based on this, the study intends to establish a wet spinning process using SDS as the solidifying agent.
In the paper, SDS was used as the coagulation bath to improve the ductility of regenerated silk fibroin fibers. First of all, the silk was degummed through degumming and other pretreatment, and then the degummed silk obtained after drying was dried for later use. After that, the degummed silk was dissolved with the formic acid-calcium chloride solution to obtain the spinning stock solution. In this way, deionized water, 75% ethanol solution and 50 g/L SDS solution were selected as the coagulation bath for wet spinning, and three kinds of RSF fibers were obtained. In the end, the mechanical properties and aggregation structure of three RSF fibers were analyzed. Subsequently, the mechanism of SDS promoting fibrogenesis was verified by the fluorescence probe method.
The morphology of the three kinds of RSF fibers was characterized by scanning electron microscope. Deionized water was used as the coagulation bath to obtain the most surface folds and the largest diameter of recycled silk. The recycled silk with ethanol as the coagulation bath has a roughly round cross section, smooth surface and the smallest diameter. When SDS is used as the coagulation bath, the cross section of fiber is approximately elliptic, with a few furrows on the surface and moderate thickness. Tensile tests were conducted to the three kinds of RSF fiber samples. The results show that when SDS is used as the coagulation bath, RSF shows the characteristics of elastic materials, and its fracture strain is 126%, which is much higher than that of the two kinds of regenerated fibers using deionized water (20%) and 75% ethanol solution (26%) as the coagulation bath.
In order to explore the effect of the coagulation bath on the aggregation state of recycled silk, Fourier transform infrared spectroscopy (FTIR) was first used to analyze the secondary structure. The contents of three RSF secondary structures were obtained by the peak separation of amide Ⅰ region, and specifically, the recycled silk with SDS as the coagulation bath had the highest β-folding content. The content of β-folding of recycled silk in the coagulating bath with 75% ethanol was the lowest. In order to further explain the relationship between the mechanical properties and protein structure, X-ray diffraction was used to characterize the crystallization of the three kinds of RSF fibers, and it can be seen that the crystallinity degrees of the regenerated fibers are all low. In order to further explain the relationship between β-folding and the crystallization region, differential scanning calorimetry analysis was carried out for the three kinds of RSF, which confirmed the presence of β-folding in large quantities in RSF (SDS) fiber samples. The effect of SDS on silk fibroin protein was characterized by fluorescence probe. The results show that the surface of silk fibroin protein can produce more β-folds at the same time in the presence of SDS.
In this study, SDS was used as the coagulating bath for wet spinning, anionic surfactant was innovatively introduced as the composition of coagulating bath, and a recycled silk material with high extensibility was obtained, providing a new research idea for silk fibroin protein wet spinning.
In this paper, only the influence of the coagulation bath on the properties of recycled silk has been investigated, and the influence of post-treatment on the properties of recycled silk has not been involved. RSF (SDS) fibers, with excellent fracture elongation, can be treated to further improve the properties of recycled silk fibers.
Key words:
silk fibroin; regenerated silk; coagulation bath; mechanical properties; aggregation structure; fiber forming mechanism
收稿日期:
2022-06-16;
修回日期:
2023-02-23
基金項(xiàng)目:
江蘇省六大人才高峰高層次人才項(xiàng)目(XCL133)
作者簡介:
陳琴(1998),女,碩士研究生,研究方向?yàn)樵偕z素材料。通信作者:王平,教授,pwang@jiangnan.edu.cn。