鄭雪敏 唐春明
摘要:信道編碼理論中最熱門的課題之一是利用組合設計和群論等數(shù)學知識構造新的循環(huán)碼.由于循環(huán)碼具有良好的代數(shù)結構,被廣泛應用于工程和通信等領域.構造在F7m上兩類循環(huán)碼族,第一類碼的參數(shù)為[q+1,q-7,d],其中d≥6,m≥2且為整數(shù);第二類碼參數(shù)為[q+1,8,q-9],其中m≥2且為整數(shù).設q=7m,由已給出的兩類循環(huán)碼的任意非零權重的碼字的支撐集在一般射影線性群PGL(2,q)下是不變的,且一般射影線性群PGL(2,q)在射影直線PG(1,q)上的作用是3-傳遞的,從而可以驗證對應的關聯(lián)矩陣構造3-設計.
關鍵詞:t-設計; 線性碼; 一般射影線性群
中圖分類號:O157.4; O29 文獻標志碼:A 文章編號:1001-8395(2023)05-0660-08
doi:10.3969/j.issn.1001-8395.2023.
1前言
2基礎知識
3構造循環(huán)碼和3-設計
4總結
利用群作用下不變的線性碼的碼坐標集支撐3-設計,是近些年比較熱門的方法之一[13-15].本文在構造了一類循環(huán)碼以后,用所確定的循環(huán)碼及其對偶碼的碼坐標集支撐3-設計,主要結果有兩個:第一個構造了在PGL(2,q)作用下不變的循環(huán)碼C{2,3,4,5},并且確定了碼C{2,3,4,5}及其對偶碼的參數(shù);第二個基于兩類循環(huán)碼C{2,3,4,5}和C⊥{2,3,4,5}構造了支撐3-設計,并給出了證明.
參考文獻
[1] BETH T, JUNGNICKEL D, LENZ H. Design Theory[M]. Cambridge:Cambridge University Press,1999.
[2] COLBOURN C J, DINITZ J F. Handbook of Combinatorial Designs[M]. 2nd Ed. New York:Routledge and CRC Press,2006.
[3] DING C S. Designs From Linear Codes[M]. Singapore:World Sientific,2018.
[4] DING C S, TANG C M, TONCHEV V D. The projective general linear group PGL(2,q)and linear codes of length 2m+1[J]. Designs, Codes and Cryptography,2021,89(7):1713-1734.
[5] TANG C M, DING C S. An infinite family of linear codes supporting 4-designs[J]. IEEE Transactions on Information Theory,2021,67(1):244-254.
[6] XIANG C, TANG C, LIU Q. An infinite family of antiprimitive cyclic codes supporting Steiner systems S(3,8,7m+1)[J]. Designs, Codes and Cryptography,2022,90:1319-1333.
[7] DING C, LI C. Infinite families of 2-designs and 3-designs from linear codes[J]. Discrete Mathematics,2017,340(10):2415-2431.
[8] HUFFMAN W C, PLESS V. Fundamentals of Error-Correcting Codes[M]. Cambridge:Cambridge University Press,2003.
[9] TANG C M. Infinite families of 3-designs from APN functions[J]. Journal of Combinatorial Designs,2020,28(2):97-117.
[10] DELSARTE P. On subfield subcodes of modified Reed-Solomon codes (Corresp.)[J]. IEEE Transactions on Information Theory,1975,21(5):575-576.
[11] GIORGETTI M, PREVITALI A. Galois invariance, trace codes and subfield subcodes[J]. Finite Fields and Their Applications,2010,16(2):96-99.
[12] LIU Q, DING C, MESNAGER S, et al. On infinite families of narrow-sense antiprimitive BCH codes admitting 3-transitive automorphism groups and their consequences[J]. IEEE Transactions on Information Theory,2022,68(5):3096-3107.
[13] DU X, WANG R, FAN C. Infinite families of 2-designs from a class of cyclic codes[J]. Journal of Combinatorial Designs,2020,28(3):157-170.