黃婉娟 羅雙華 張成毅
摘要:由于分位數(shù)回歸模型的損失函數(shù)不光滑,所得參數(shù)估計(jì)的效率不高,為提高參數(shù)估計(jì)的效率,首先提出復(fù)合分位數(shù)光滑經(jīng)驗(yàn)對(duì)數(shù)似然比,包括完全數(shù)據(jù)復(fù)合分位數(shù)光滑經(jīng)驗(yàn)對(duì)數(shù)似然比、加權(quán)復(fù)合分位數(shù)光滑經(jīng)驗(yàn)對(duì)數(shù)似然比和插值復(fù)合分位數(shù)光滑經(jīng)驗(yàn)對(duì)數(shù)似然比,并在一定條件下證明了它們都是服從漸近卡方分布的.其次,根據(jù)該似然比構(gòu)造了回歸參數(shù)的置信區(qū)間,并證明了復(fù)合分位數(shù)光滑經(jīng)驗(yàn)似然估計(jì)量是漸近正態(tài)的.最后,通過(guò)數(shù)值模擬實(shí)驗(yàn)說(shuō)明了所得估計(jì)的有效性.
關(guān)鍵詞:缺失數(shù)據(jù); 復(fù)合分位數(shù)回歸模型; 光滑經(jīng)驗(yàn)對(duì)數(shù)似然比; 漸近正態(tài)性
中圖分類(lèi)號(hào):O212 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1001-8395(2023)05-0628-10
1研究背景
與均值回歸只擬合一條條件均值曲線相比,分位數(shù)回歸擬合一簇曲線,能夠充分考慮到各個(gè)分位點(diǎn)處的信息.于是,Zou等[1]提出適當(dāng)?shù)鼐C合不同分位點(diǎn)處的信息以提高估計(jì)效率的想法,并證明了該方法能顯著地提高參數(shù)估計(jì)的效率.另外,復(fù)合分位數(shù)回歸估計(jì)方法不僅有效克服了單個(gè)分位數(shù)回歸估計(jì)效率下降的缺陷,還繼承了分位數(shù)回歸的穩(wěn)健性,且被證實(shí)可以克服非正態(tài)誤差的干擾并顯著提高估計(jì)效率,是一種穩(wěn)健且有效的參數(shù)估計(jì)方法.
2方法與主要結(jié)果
3數(shù)值模擬
4主要定理的證明
5結(jié)束語(yǔ)
本文主要研究了響應(yīng)數(shù)據(jù)隨機(jī)缺失下一般線性復(fù)合分位數(shù)回歸模型的光滑經(jīng)驗(yàn)似然估計(jì).由于分位數(shù)回歸的損失函數(shù)不光滑,所得估計(jì)效率不高,為提高估計(jì)效率,故考慮對(duì)響應(yīng)數(shù)據(jù)隨機(jī)缺失的一般線性復(fù)合分位數(shù)回歸模型使用光滑經(jīng)驗(yàn)似然方法,并在一定條件下證明了缺失數(shù)據(jù)下一般線性復(fù)合分位數(shù)回歸模型的光滑經(jīng)驗(yàn)似然估計(jì)量的大樣本性質(zhì).通過(guò)模擬實(shí)驗(yàn)說(shuō)明了本文所提出估計(jì)的有效性.
參考文獻(xiàn)
[1] ZOU H, YUAN M. Composite quantile regression and the oracle model selection theory[J]. The Annals of Statistics,2008,36(3):1108-1126.
[2] OWEN A B. Empirical likelihood ratio confidence regions[J]. The Annals of Statistics,1990,18(1):90-120.
[3] OWEN A B. Empirical Likelihood[M]. New York:Chapman & Hall/CRC,2001.
[4] 李乃醫(yī),李永明,韋盛學(xué). 缺失數(shù)據(jù)下非線性分位數(shù)回歸模型的光滑經(jīng)驗(yàn)似然推斷[J]. 統(tǒng)計(jì)與決策,2015(1):97-99.
[5] REN J J. Smoothed weighted empirical likelihood ratio confidence intervals for quantiles[J]. Bernoulli,2008,14(3):725-748.
[6] 張雨婷,羅雙華. 縱向數(shù)據(jù)缺失且具有輔助信息的光滑經(jīng)驗(yàn)似然估計(jì)[J]. 寶雞文理學(xué)院學(xué)報(bào)(自然科學(xué)版),2021,41(4):9-14.
[7] 吉肖肖,張成毅,羅雙華. 缺失數(shù)據(jù)和輔助信息下分位數(shù)回歸的光滑經(jīng)驗(yàn)似然[J]. 紡織高?;A(chǔ)科學(xué)學(xué)報(bào),2020,33(2):70-77.
[8] 李忠桂,何書(shū)元. 分位數(shù)回歸的光滑經(jīng)驗(yàn)似然[J]. 應(yīng)用概率統(tǒng)計(jì),2017,33(5):497-507.
[9] LUO S H, MEI C L, ZHANG C Y. Smoothed empirical likelihood for quantile regression models with response data missing at random[J]. AStA Advances in Statistical Analysis,2017,101(1):95-116.
[10] ZHANG T, WANG L. Smoothed empirical likelihood inference and variable selection for quantile regression with nonignorable missing response[J]. Computational Statistics & Data Analysis,2020,144:106888.
[11] ZHANG T, WANG L. Smoothed partially linear quantile regression with nonignorable missing response[J]. Journal of the Korean Statistical Society,2022,51:441-479.
[12] ZHAO P X, ZHOU X S, LIN L. Empirical likelihood for composite quantile regression modeling[J]. Journal of Applied Mathematics and Computing,2015,48(1):321-333.
[13] SUN J, MA Y Y. Empirical likelihood weighted composite quantiles regression with partially missing covariates[J]. Journal of Nonparametric Statistics,2017,29(1):137-150.
[14] LI X Y, YUAN J Q. Empirical likelihood method for quantile with response data missing at random[J]. Acta Mathematicae Applicatae Sinica,2012,28(2):265-274.
[15] 郭東林. 缺失數(shù)據(jù)下幾類(lèi)回歸模型的估計(jì)方法與理論[D]. 北京:北京工業(yè)大學(xué),2017.
[16] 鞠婷婷. 缺失數(shù)據(jù)下基于經(jīng)驗(yàn)似然的變系數(shù)分位數(shù)回歸統(tǒng)計(jì)推斷[D]. 長(zhǎng)春:長(zhǎng)春工業(yè)大學(xué),2018.
[17] LUO S H, ZHANG C Y, WANG M H. Composite quantile regression for varying coefficient models with response data missing at random[J]. Symmetry,2019,11(9):1065-1083.
[18] WHANG Y J. Smoothed empirical likelihood methods for quantile regression models[J]. Econometric Theory,2006,22(2):173-205.
[19] XUE L G. Empirical likelihood confidence intervals for response mean with data missing at random[J].Scandinavian Journal of Statistics,2009,36(4):671-685.
[20] WONG H, GUO S J, CHEN M, et al. On locally weighted estimation and hypothesis testing of varying-coefficient models with missing covariates[J]. Journal of Statistical Planning & Inference,2009,139(9):2933-2951.
[21] QIN J, LAWLESS J. Empirical likelihood and general estimating equations[J]. The Annals of Statistics,1994,22(1):300-325.
Smoothed Empirical Likelihood Method of General Linear Composite
Quantile Regression Model with Missing Response DataHUANG Wanjuan1,LUO Shuanghua1,ZHANG Chengyi2(1. School of Science, Xian Polytechnic University, Xian 710048, Shanxi;
2. School of Economics and Finance, Xian Jiaotong University, Xian 710049, Shanxi)
Abstract:Since the loss function of quantile regression model with missing response data is not smooth, the efficiency of parameter estimation is not high. In order to improve the efficiency of parameter estimation, the smoothed empirical log likelihood ratio of composite quantile regression model is firstly proposed in this paper, including the smoothed empirical log likelihood ratio of composite quantile regression model with complete data, weighted data and imputation, and the constructed smoothed empirical log likelihood ratio is proved to obey the asymptotic Chi-square distribution under certain conditions. Secondly, the confidence interval of regression parameter is constructed according to the likelihood ratio, and the empirical likelihood estimator is proved to be asymptotically normality. Finally, the performance of the estimators is assessed by numerical simulation.
Keywords:missing data; composite quantile regression model; smoothed empirical log likelihood ratio; asymptotically normality〖=〗
2020 MSC:62E20
(編輯 劉剛)