雷蕾 帥柯 楊漢博 肖昌
摘? 要:肉雞壞死性腸炎(necrotic enteritis,NE)是產(chǎn)氣莢膜梭菌(Clostridium perfringens)引發(fā)的一種嚴(yán)重的腸道疾病,給肉雞業(yè)造成了巨大的經(jīng)濟損失。為深入了解肉雞壞死性腸炎的致病因子和致病機理,本文對產(chǎn)氣莢膜梭菌的主要毒素及其在肉雞壞死性腸炎致病機理中的作用進(jìn)行了概述,為該病的臨床診斷、監(jiān)測和防控提供參考。
關(guān)鍵詞:肉雞;產(chǎn)氣莢膜梭菌;毒素;壞死性腸炎;致病機理
中圖分類號:S831.4 文獻(xiàn)標(biāo)志碼:A 文章編號:1001-0769(2023)01-0018-08
肉雞壞死性腸炎(necrotic enteritis,NE)是一種常見的由產(chǎn)氣莢膜梭菌(Clostridium perfringens)引發(fā)的一種嚴(yán)重的腸道疾病[1]。產(chǎn)氣莢膜梭菌是肉雞腸道菌群中的一員,是一種條件性致病菌,也可導(dǎo)致人和動物發(fā)病,是一種食源性致病菌。隨著全球肉雞飼養(yǎng)量大幅增長,產(chǎn)氣莢膜梭菌誘發(fā)的壞死性腸炎已成為持續(xù)性挑戰(zhàn),造成了巨大的經(jīng)濟損失。與此同時多國禁止使用抗生素生長促進(jìn)劑,該病的發(fā)病率再次升高,導(dǎo)致肉雞的體重或增重降低,影響肉雞的生產(chǎn)力和肉品質(zhì)。因此,有必要深入了解產(chǎn)氣莢膜梭菌及其所產(chǎn)毒素對肉雞壞死性腸炎的致病機理,從而為該病的防控打下基礎(chǔ)。
1? 產(chǎn)氣莢膜梭菌的生物學(xué)特性
產(chǎn)氣莢膜梭菌是一種革蘭陽性菌,呈棒狀,無運動性,可形成孢子。其大小隨生長環(huán)境而變化,例如,在淀粉培養(yǎng)基中,菌體較大,而在葡萄糖培養(yǎng)基中則較小。產(chǎn)氣莢膜梭菌對寒冷有較強抵抗力,其芽孢耐熱[2]。產(chǎn)氣莢膜梭菌可水解明膠,能將硝酸鹽還原為亞硝酸鹽;在含硫培養(yǎng)基中,由于硫元素被還原,會產(chǎn)生黑色菌落。其特征性鑒定試驗為乳糖發(fā)酵試驗,即劇烈乳糖發(fā)酵,因為其在牛乳中可產(chǎn)生大量氣體。該菌能產(chǎn)生大量超氧化物歧化酶,因此可在微氧條件下生長[3-4]。產(chǎn)氣莢膜梭菌能形成芽孢,可以在各種環(huán)境中生存,常見于廢水、塵埃、空氣以及健康的人和動物的腸道[5]。該菌是肉雞腸道正常菌群的一員,與其他腸道微生物呈競爭性生長關(guān)系,屬于條件性致病菌[6]。產(chǎn)氣莢膜梭菌也是常見的食源性致病菌之一,可導(dǎo)致人發(fā)生胃腸炎等疾病[7]。
2? 產(chǎn)氣莢膜梭菌的毒素類型及其所致疾病
產(chǎn)氣莢膜梭菌釋放的毒素在肉雞壞死性腸炎致病機理中起著重要作用。迄今為止,已經(jīng)鑒定出20多種不同類型的產(chǎn)氣莢膜梭菌毒素[8]。根據(jù)是否存在產(chǎn)氣莢膜梭菌alpha(α)、beta(β)、epsilon(ε)、iota(ι)毒素以及最近增加的產(chǎn)氣莢膜梭菌腸毒素(Clostridium perfringens enterotoxin,CPE)、β2-毒素和壞死性腸炎B-樣毒素(necrotic enteritis B-like toxin,NetB)編碼基因,禽類產(chǎn)氣莢膜梭菌可分為7種類型(表1)[9-10],與肉雞密切相關(guān)的產(chǎn)氣莢膜梭菌類型為A、C和G型。每種毒素類型與人和動物疾病的關(guān)系見表2。
2.1 α-毒素
在所有毒素類型中,α-毒素是唯一所有類型產(chǎn)氣莢膜梭菌都能產(chǎn)生的毒素。產(chǎn)氣莢膜梭菌毒素基因見于染色體和質(zhì)粒。早期研究發(fā)現(xiàn),α-毒素具有酶活性,可以催化在其作用位點發(fā)生的反應(yīng)[12]。
α-毒素是一種磷脂酶C和神經(jīng)鞘磷脂酶,可水解細(xì)胞膜的磷脂,從而導(dǎo)致細(xì)胞死亡。因此,α-毒素具有細(xì)胞毒性、溶血活性、皮膚壞死性和致死性等特性[13]。α-毒素是導(dǎo)致氣性壞疽的主要原因,但其對壞死性腸炎的作用尚有爭議[14]。
α-毒素在A型產(chǎn)氣莢膜梭菌的致病機理中起重要作用。研究發(fā)現(xiàn),患病雞體內(nèi)的α-毒素水平高于健康雞的[15]。接種A型產(chǎn)氣莢膜梭菌的肉湯培養(yǎng)上清液或純化的α-毒素接種無特定病原雞,成功誘導(dǎo)了雞死亡和腸道病變,而用α-毒素抗血清和α-毒素后并未導(dǎo)致雞死亡[16]。
盡管A型產(chǎn)氣莢膜梭菌通常見于環(huán)境和健康腸道,但侵襲性菌株可產(chǎn)生多得多的α-毒素。Rehman等[17]在體外研究中發(fā)現(xiàn),α-毒素可影響腸黏膜的屏障功能。但這些研究使用的是粗制的或部分純化的毒素,因此,毒素中可能存在其他的蛋白共同發(fā)揮作用[18]。Cooper和Songer[19]研究發(fā)現(xiàn),盡管使用重組α-毒素進(jìn)行免疫可部分保護(hù)產(chǎn)氣莢膜梭菌誘發(fā)的壞死性腸炎,但壞死性腸炎病變的產(chǎn)生與體外α-毒素的產(chǎn)量并無關(guān)聯(lián)。
但是,使用從發(fā)病雞和健康雞上分離的產(chǎn)氣莢膜梭菌進(jìn)行的另一項研究發(fā)現(xiàn),α-毒素產(chǎn)量并無差異。2006年以前,研究人員認(rèn)為壞死性腸炎主要的毒力因子是α-毒素,但其后的研究表明,不攜帶α-毒素基因的突變株也能導(dǎo)致肉雞發(fā)生壞死性腸炎[18]。因此,尚不能確定α-毒素是否是壞死性腸炎的主要毒力因子。
α-毒素可與細(xì)胞膜上的一種神經(jīng)節(jié)苷脂糖-β-氨丙基(ganglioside sugar-β-aminopropy,GM1a)結(jié)合,誘導(dǎo)二?;视驮诩?xì)胞中蓄積,導(dǎo)致酪氨酸激酶A被激活,從而誘導(dǎo)釋放白介素-8[20]。α-毒素可促進(jìn)膽固醇生成,其可與另一種毒素——產(chǎn)氣莢膜梭菌溶素O(perfringolysin O,PFO,也稱為θ-毒素)結(jié)合[21]。PFO屬于膽固醇依賴性細(xì)胞溶素家族。該毒素家族的成員具有40%~80%的結(jié)構(gòu)同源性和相似的生物特性[22]。產(chǎn)氣莢膜梭菌產(chǎn)生的這些亞基可在具有膽固醇來源的細(xì)胞表面上聚合,然后插入跨膜區(qū),從而產(chǎn)生一個穿孔[23],允許細(xì)胞膜內(nèi)外的粒子和大分子穿越[24]。
在利用氣腫疽的實驗動物模型進(jìn)行的研究發(fā)現(xiàn),A型產(chǎn)氣莢膜梭菌分泌的PFO可損傷宿主組織以及該部位的炎性細(xì)胞。該毒素通過傳播可擴散進(jìn)入全身血液循環(huán),使多形核白細(xì)胞上的黏附分子發(fā)生改變。研究人員認(rèn)為這會導(dǎo)致白細(xì)胞的細(xì)胞周期停滯和局部組織缺氧[25]。
2.2 壞死性腸炎B-樣毒素
壞死性腸炎B-樣毒素(necrotic enteritis B-like toxin,NetB)是β-穿孔毒素中的α-溶血素家族成員,分離自發(fā)生壞死性腸炎的雞體內(nèi)的A型產(chǎn)氣莢膜梭菌菌株。之所以取名為NetB,是因為其與產(chǎn)氣莢膜梭菌β-毒素具有相似性。研究發(fā)現(xiàn),某些A和G型產(chǎn)氣莢膜梭菌分離株產(chǎn)生的穿孔毒素NetB(而非α-毒素)是壞死性腸炎致病機理中一種非誘發(fā)性毒力因子[26]。
研究發(fā)現(xiàn),野生型菌株與分離自發(fā)生壞死性腸炎的肉雞的α-毒素陰性突變株均可誘發(fā)相似的壞死性腸炎[27]。使用雞肝癌細(xì)胞(leghorn male hepatocellular cells,LMH)開展的體外試驗也顯示,NetB毒素可導(dǎo)致細(xì)胞變圓和裂解。這些結(jié)果對以往的一種觀點提出了挑戰(zhàn),即α-毒素是壞死性腸炎致病機理中的唯一毒力因子。但是,在發(fā)生壞死性腸炎的雞體內(nèi)也檢出了NetB陰性細(xì)菌[28],同時,在另一個實驗性壞死性腸炎模型中,NetB陰性產(chǎn)氣莢膜梭菌未能誘發(fā)壞死性腸炎[29]。
感染不攜帶α-毒素基因突變株的肉雞在攻毒后發(fā)生壞死性腸炎,這表明,α-毒素并不是導(dǎo)致肉雞發(fā)病的唯一致病因素[18]。NetB毒素的發(fā)現(xiàn)開啟了肉雞壞死性腸炎研究的新征程。研究人員已在幾個田間病例中鑒定出該毒素[30-32]。NetB毒素與其他穿孔毒素的序列相似性不高,如產(chǎn)氣莢膜梭菌的β-毒素和δ-毒素(序列相似性分別為38%和40%),金黃色葡萄球菌的α和γ-溶血素[33]。NetB毒素的7個亞基在細(xì)胞膜上聚合,形成一個穿孔,這與α-溶血素的裝配和作用相似[34]。存在膽固醇時,NetB毒素的毒力增強,不過,該毒素與細(xì)胞結(jié)合的受體尚不明確[22]。
在不同的國家,健康和患病家禽體內(nèi)含NetB毒素的分離株比例不同。研究發(fā)現(xiàn),在澳大利亞,分離自患病雞的70%的產(chǎn)氣莢膜梭菌有NetB基因,所有這些分離株在體外均能產(chǎn)生NetB毒素[35]。在美國,分離自患病雞的58%產(chǎn)氣莢膜梭菌和分離自健康雞的9%菌株含有NetB基因[31]。在丹麥開展的一項研究顯示,分離自健康雞的61%的產(chǎn)氣莢膜梭菌含有NetB基因;而患病雞中只有52%的分離株含有該基因[30]。
存在NetB基因并不能說明該細(xì)菌會產(chǎn)生NetB毒素,因為不是所有的NetB基因陽性分離株都會在體外產(chǎn)生該毒素。但是,來自患病雞的分離株產(chǎn)生該毒素的可能性高于來自健康雞的分離株[36]。
產(chǎn)氣莢膜梭菌中許多獨立基因的激活以及毒力因子的釋放均受控于一個雙組份信號轉(zhuǎn)導(dǎo)系統(tǒng)。該系統(tǒng)包含一個傳感器分子VirS以及一個效應(yīng)器分子VirR。VirS是一種跨膜蛋白,其胞外域可感受細(xì)胞的外部環(huán)境,并促進(jìn)胞內(nèi)結(jié)構(gòu)域的自體磷酸化,導(dǎo)致細(xì)胞質(zhì)中的VirR發(fā)生磷酸化反應(yīng)。NetB毒素受VirSR(VirS/VirR)系統(tǒng)調(diào)控,在接種細(xì)菌對數(shù)生長后期(培養(yǎng)4 h后)產(chǎn)生[27]。
VirSR的編碼基因最初是在PFO、α-毒素和唾液酸酶釋放的調(diào)控中被發(fā)現(xiàn),其還可以調(diào)控幾種參與大分子降解(從而為細(xì)菌提供營養(yǎng)物質(zhì))的基因。通過該系統(tǒng)進(jìn)行調(diào)控的其他基因似乎也參與了營養(yǎng)物質(zhì)的攝入和代謝[37]。目前尚不清楚是什么因子激活了VirS來促進(jìn)毒力因子的釋放。如果可以抑制毒素釋放,就可以預(yù)防發(fā)生壞死性病變。
研究發(fā)現(xiàn),產(chǎn)氣莢膜梭菌含有3個抗原基因座,這些基因座可能在壞死性腸炎致病機制中起作用。基因座NELoc1位于質(zhì)粒上,長度42 kb。另外兩個基因座NELoc2和NELoc3較短,分別為11.2 kb和5.6 kb,NELoc3也位于質(zhì)粒上,NELoc2位于染色體上[38]。
2.3 產(chǎn)氣莢膜梭菌產(chǎn)生的其他毒素
研究發(fā)現(xiàn),β-毒素與動物的出血性黏膜潰瘍形成有關(guān)[13],具有細(xì)胞裂解性、皮膚壞死性等特性。但是,尚不清楚其作用模式。
β2-毒素基因位于質(zhì)粒上[13],首次發(fā)現(xiàn)C型產(chǎn)氣莢膜梭菌,該菌分離于患有壞死性小腸結(jié)腸炎的仔豬體內(nèi)[39]。目前已從健康和患病的家禽體內(nèi)分離到了β2-毒素[40]。但是,β2-毒素在動物腸道疾病中的作用尚有爭議。2007年,在荷蘭開展的一項研究表明,攜帶非典型cpb2基因的產(chǎn)氣莢膜梭菌與蛋雞的亞急性壞死性腸炎有關(guān)[41]。
某些產(chǎn)氣莢膜梭菌分離株中的腸毒素與人的胃腸道疾病相關(guān)。腸毒素基因etx位于質(zhì)粒上,其編碼的ε-毒素以無活性形式分泌,然后通過蛋白酶水解作用轉(zhuǎn)化為毒性形式[13]。腸毒素是一種穿孔毒素,可與細(xì)胞緊密連接的組分閉合蛋白(claudin)結(jié)合,在細(xì)胞表面形成一個前孔,然后插入細(xì)胞[42]。這些穿孔的形成可使鈣離子進(jìn)入細(xì)胞。在低濃度時,該過程可誘導(dǎo)細(xì)胞凋亡;在高濃度時,該過程可導(dǎo)致腫瘤病變,細(xì)胞體積變大,并能誘發(fā)炎性細(xì)胞死亡[43]。這種毒素會導(dǎo)致皮膚壞死,導(dǎo)致犬、馬和人出現(xiàn)腹瀉相關(guān)疾病[44]。
腸毒素在產(chǎn)氣莢膜梭菌的孢子形成過程中產(chǎn)生,并在蛋白酶消化后被活化,該過程會去除24個N末端氨基酸[44],其特性包括細(xì)胞毒性、紅斑性和致死性[13]。ε-毒素分離自綿羊、山羊和小鼠的D型產(chǎn)氣莢膜梭菌分離株[45],但也見于B型產(chǎn)氣莢膜梭菌分離株,是產(chǎn)氣莢膜梭菌所產(chǎn)生的重要毒力因子之一[46]。
ι-毒素屬二元毒素家族成員,由兩個獨立的多肽(Ia和Ib)構(gòu)成,這兩個多肽協(xié)同作用可破壞肌動蛋白細(xì)胞骨架,導(dǎo)致細(xì)胞死亡[44]。這些蛋白質(zhì)以前體分子的形式分泌,需要對N末端區(qū)域進(jìn)行蛋白水解來激活。Ib可與宿主細(xì)胞脂蛋白相互作用,一旦結(jié)合,Ia可與Ib發(fā)生相互作用,促進(jìn)ι-毒素的內(nèi)吞,從而破壞宿主細(xì)胞的細(xì)胞骨架[47]。
產(chǎn)氣莢膜梭菌產(chǎn)生的其他毒素可能有助于壞死性腸炎的發(fā)病過程,如Perfrin、TpeL和μ-毒素[26]。Perfrin是最近發(fā)現(xiàn)的一種細(xì)菌素,可能是壞死性腸炎的一種毒力因子。細(xì)菌素具有抗菌作用[48],Perfrin對其他產(chǎn)氣莢膜梭菌分離株具有抗菌活性,抑制其他分離株的生長,從而促進(jìn)具有該毒素的侵襲性分離株的生長[49]。
TpeL毒素(最初發(fā)現(xiàn)于C型產(chǎn)氣莢膜梭菌中)見于A型產(chǎn)氣莢膜梭菌,研究發(fā)現(xiàn)其可以增加壞死性腸炎的嚴(yán)重程度。該毒素至少有A、B、C和D四個活性結(jié)構(gòu)域,其中B結(jié)構(gòu)域可與細(xì)胞結(jié)合。該毒素被細(xì)胞內(nèi)吞后,D結(jié)構(gòu)域可插入內(nèi)吞小體膜中。細(xì)胞質(zhì)組分可以激活C結(jié)構(gòu)域,導(dǎo)致毒素被裂解,并釋放出A結(jié)構(gòu)域。A結(jié)構(gòu)域可激活細(xì)胞質(zhì)中的GTP酶。TpeL可修飾Rac1和Ras,以介導(dǎo)其細(xì)胞毒性作用[29]。這些小的GTP酶分子可在肌動蛋白細(xì)胞骨架重排和細(xì)胞增殖中起作用[50]。
A型產(chǎn)氣莢膜梭菌也可能含有μ-毒素。μ-毒素是一種透明質(zhì)酸酶,可降解胞外基質(zhì)中的透明質(zhì)酸。研究人員認(rèn)為其可提高產(chǎn)氣莢膜梭菌的毒力,其作用機制是通過提高細(xì)胞通透性增強其他毒素的生物學(xué)效應(yīng)[51]。
3? 結(jié)論與展望
產(chǎn)氣莢膜梭菌可產(chǎn)生多種毒素,每種毒素類型均與特定的人或動物疾病相關(guān),這提示產(chǎn)氣莢膜梭菌毒力與毒素的產(chǎn)生相關(guān)[52]。深入了解每種毒素的結(jié)構(gòu)和功能,對研究肉雞壞死性腸炎的致病機理至關(guān)重要,不僅可以深刻認(rèn)識肉雞壞死性腸炎病理變化的發(fā)生、發(fā)展和轉(zhuǎn)歸,還可以為壞死性腸炎的臨床診斷或監(jiān)測工具開發(fā)提供理論依據(jù)。當(dāng)前,已經(jīng)基于這些研究結(jié)果建立了基因檢測方法[53-55]和ELISA檢測方法[56-58],此外,找到引發(fā)壞死性腸炎的關(guān)鍵致病毒素,將有利于開發(fā)有效的亞單位疫苗[59-60]或抗體[61-62],這對無抗生素時代肉雞壞死性腸炎的防控意義重大。
參考文獻(xiàn)
[1] PARISH W E.Necrotic enteritis in the fowl(Gallus gallus domesticus).I.Histopathology of the disease and isolation of a strain of Clostridium welchii[J].Journal of Comparative Pathology,1961,71:377-393.
[2] SARKER M R,SHIVERS R P,SPARKS S G,et al.Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid enterotoxin genes versus chromosomal enterotoxin genes[J].Applied and Environmental Microbiology,2000,66(12):5549.
[3] GEISSMANN T A,TEUBER M,MEILE L.Transcriptional analysis of the rubrerythrin and superoxide dismutase genes of Clostridium perfringens[J].Journal of Bacteriology,1999,181(22):7136-7139.
[4] JEAN D,BRIOLAT V,REYSSET G.Oxidative stress response in Clostridium perfringens[J].Microbiology,2004,150(6):1649-1659.
[5] KHELFA D E D G,ABD EL-GHANY W,SALEM H.Recent status of Clostridial enteritis affecting early weaned rabbits in Egypt[J].Life Science Journal,2012,9(4):2272-2279.
[6] VAN IMMERSEEL F,DE BUCK J,PASMANS F,et al.Clostridium perfringens in poultry:An emerging threat for animal and public health[J].Avian Pathology,2004,33(6):537-549.
[7] MAY F J,POLKINGHORNE B G,F(xiàn)EARNLEY E J.Epidemiology of bacterial toxin-mediated foodborne gastroenteritis outbreaks in Australia,2001 to 2013[J].Communicable Diseases Intelligence Quarterly Report,2016,40(4):E460-E469.
[8] LI J H,ADAMS V,BANNAM T L,et al.Toxin plasmids of Clostridium perfringens[J].Microbiology and Molecular Biology Reviews:MMBR,2013,77(2):208-233.
[9] SONGER J G.Clostridial enteric diseases of domestic animals[J].Clinical Microbiology Reviews,1996,9(2):216-234.
[10] ROOD J I,ADAMS V,LACEY J,et al.Expansion of the Clostridium perfringens toxin-based typing scheme[J].Anaerobe,2018,53:5-10.
[11] KIU R,HALL L J.An update on the human and animal enteric pathogen Clostridium perfringens[J].Emerging Microbes & Infections,2018,7(1):1-15.
[12] MACFARLANE M G,KNIGHT B C.The biochemistry of bacterial toxins:The lecithinase activity of Cl.welchii toxins[J].The Biochemical Journal,1941,35(8/9):884-902.
[13] PETIT L,GIBERT M,POPOFF M R.Clostridium perfringens:Toxinotype and genotype[J].Trends in Microbiology,1999,7(3):104-110.
[14] AWAD M M,BRYANT A E,STEVENS D L,et al.Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens-mediated gas gangrene[J].Molecular Microbiology,1995,15(2):191-202.
[15] HOFSHAGEN M,STENWIG H.Toxin production by Clostridium perfringens isolated from broiler chickens and capercaillies (Tetrao urogallus) with and without necrotizing enteritis[J].Avian Diseases,1992,36(4):837-843.
[16] FUKATA T,HADATE Y,BABA E,et al.Influence of Clostridium perfringens and its toxin in germ-free chickens[J].Research in Veterinary Science,1988,44(1):68-70.
[17] REHMAN H,IJAZ A,SPECHT A,et al.In vitro effects of alpha toxin from Clostridium perfringens on the electrophysiological parameters of jejunal tissues from laying hens preincubated with inulin and N-acetyl-L-cysteine[J].Poultry Science,2009,88(1):199-204.
[18] KEYBURN A L,SHEEDY S A,F(xiàn)ORD M E,et al.Alpha-toxin of Clostridium perfringens is not an essential virulence factor in necrotic enteritis in chickens[J].Infection and Immunity,2006,74(11):6496-6500.
[19] COOPER K K,SONGER J G.Necrotic enteritis in chickens:A paradigm of enteric infection by Clostridium perfringens type A[J].Anaerobe,2009,15(1/2):55-60.
[20] ODA M,KABURA M,TAKAGISHI T,et al.Clostridium perfringens alpha-toxin recognizes the GM1a-TrkA complex[J].The Journal of Biological Chemistry,2012,287(39):33070-33079.
[21] MOE P C,HEUCK A P.Phospholipid hydrolysis caused by Clostridium perfringens α-toxin facilitates the targeting of perfringolysin O to membrane bilayers[J].Biochemistry,2010,49(44):9498-9507.
[22] POPOFF MR.Clostridial pore-forming toxins:Powerful virulence factors[J].Anaerobe,2014,30:220-238.
[23] SHEPARD L A,SHATURSKY O,JOHNSON A E,et al.The mechanism of pore assembly for a cholesterol-dependent cytolysin:Formation of a large prepore complex precedes the insertion of the transmembrane beta-hairpins[J].Biochemistry,2000,39(33):10284-10293.
[24] BILLINGTON S J,JOST B H,SONGER J G.Thiol-activated cytolysins:Structure,function and role in pathogenesis[J].FEMS Microbiology Letters,2000,182(2):197-205.
[25] BRYANT A E,BERGSTROM R,ZIMMERMAN G A,et al.Clostridium perfringens invasiveness is enhanced by effects of theta toxin upon PMNL structure and function:The role of leukocytotoxicity and expression of CD11/CD18 adherence glycoprotein[J].FEMS Immunology and Medical Microbiology,1993,7(4):321-336.
[26] KEYBURN A L,BOYCE J D,VAZ P,et al.NetB,a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens[J].PLoS Pathogens,2008,4(2):e26.
[27] CHEUNG J K,KEYBURN A L,CARTER G P,et al.The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens[J].Infection and Immunity,2010,78(7):3064-3072.
[28] CHALMERS G,BRUCE H L,HUNTER D B,et al.Multilocus sequence typing analysis of Clostridium perfringens isolates from necrotic enteritis outbreaks in broiler chicken populations[J].Journal of Clinical Microbiology,2008,46(12):3957-3964.
[29] TIMBERMONT L,HAESEBROUCK F,DUCATELLE R,et al.Necrotic enteritis in broilers:An updated review on the pathogenesis[J].Avian Pathology:Journal of the W.V.P.A,2011,40(4):341-347.
[30] MOHAMED E ABD EL-HACK,MOHAMED T EL-SAADONY,AHMED R ELBESTAWY,et al.Necrotic enteritis in broiler chickens:Disease characteristics and prevention using organic antibiotic alternatives - a comprehensive review[J].Poultry Science,2022,101(2):101590.
[31] MARTIN T G,SMYTH J A.Prevalence of netB among some clinical isolates of Clostridium perfringens from animals in the United States[J].Veterinary Microbiology,2009,136(1/2):202-205.
[32] JOHANSSON A,ASP?N A,KALDHUSDAL M,et al.Genetic diversity and prevalence of netB in Clostridium perfringens isolated from a broiler flock affected by mild necrotic enteritis[J].Veterinary Microbiology,2010,144(1/2):87-92.
[33] NAGAHAMA M,OCHI S,ODA M,et al.Recent insights into Clostridium perfringens beta-toxin[J].Toxins,2015,7(2):396-406.
[34] SAVVA C G,F(xiàn)ERNANDES D A COSTA S P,BOKORI-BROWN M,et al.Molecular architecture and functional analysis of NetB,a pore-forming toxin from Clostridium perfringens[J].The Journal of Biological Chemistry,2013,288(5):3512-3522.
[35] KEYBURN A L,YAN X X,BANNAM T L,et al.Association between avian necrotic enteritis and Clostridium perfringens strains expressing NetB toxin[J].Veterinary Research,2010,41(2):21.
[36] ABILDGAARD L,SONDERGAARDd TE,ENGBERG RM,? ? ? et al.In vitro production of necrotic enteritis toxin B,NetB,by netB-positive and netB-negative Clostridium perfringens originating from healthy and diseased broiler chickens[J].Veterinary Microbiology,2010,144(1/2):231-235.
[37] SHIMIZU T,BA-THEIN W,TAMAKI M,et al.The virR gene,a member of a class of two-component response regulators,regulates the production of perfringolysin O,collagenase,and hemagglutinin in Clostridium perfringens[J].Journal of Bacteriology,1994,176(6):1616-1623.
[38] LEPP D,ROXAS B,PARREIRA V R,et al.Identification of novel pathogenicity loci in Clostridium perfringens strains that cause avian necrotic enteritis[J].PLoS One,2010,5(5):e10795.
[39] BACCIARINI L N,BOERLIN P,STRAUB R,et al.Immunohistochemical localization of Clostridium perfringens beta2-toxin in the gastrointestinal tract of horses[J].Veterinary Pathology,2003,40(4):376-381.
[40] LEBRUN M,F(xiàn)IL?E P,MOUSSET B,et al.The expression of Clostridium perfringens consensus beta2 toxin is associated with bovine enterotoxaemia syndrome[J].Veterinary Microbiology,2007,120(1/2):151-157.
[41] ALLAART J G,DE BRUIJN N D,VAN ASTEN A J A M,et al.NetB-producing and beta2-producing Clostridium perfringens associated with subclinical necrotic enteritis in laying hens in the Netherlands[J].Avian Pathology,2012,41(6):541-546.
[42] GAO Z J,MCCLANE B A.Use of Clostridium perfringens enterotoxin and the enterotoxin receptor-binding domain (C-CPE) for cancer treatment:Opportunities and challenges[J].Journal of Toxicology,2012,2012:981626.
[43] MCCLANE B A,CHAKRABARTI G.New insights into the cytotoxic mechanisms of Clostridium perfringens enterotoxin[J].Anaerobe,2004,10(2):107-114.
[44] SONGER J G.Bacterial phospholipases and their role in virulence[J].Trends in Microbiology,1997,5(4):156-161.
[45] GARCIA J P,ADAMS V,BEINGESSER J,et al.Epsilon toxin is essential for the virulence of Clostridium perfringens type D infection in sheep,goats,and mice[J].Infection and Immunity,2013,81(7):2405-2414.
[46] ALVES G G,MACHADO D E ?VILA R A,CH?VEZ-OL?RTEGUI C D,et al.Clostridium perfringens epsilon toxin:The third most potent bacterial toxin known[J].Anaerobe,2014,30:102-107.
[47] ADAMS V,LI J H,WISNIEWSKI J A,et al.Virulence plasmids of spore-forming bacteria[J].Microbiology Spectrum,2014,2(6):2.6.04.
[48] NISHIE M,NAGAO J I,SONOMOTO K.Antibacterial peptides bacteriocins:An overview of their diverse characteristics and applications[J].Biocontrol Science,2012,17(1):1-16.
[49] TIMBERMONT L,DE SMET L,VAN NIEUWERBURGH F,? ? et al.Perfrin,a novel bacteriocin associated with netB positive Clostridium perfringens strains from broilers with necrotic enteritis[J].Veterinary Research,2014,45(1):40.
[50] NAGAHAMA M,OHKUBO A,ODA M,et al.Clostridium perfringens TpeL glycosylates the rac and ras subfamily proteins[J].Infection and Immunity,2011,79(2):905-910.
[51] CANARD B,GARNIER T,SAINT-JOANIS B,et al.Molecular genetic analysis of the nagH gene encoding a hyaluronidase of Clostridium perfringens[J].Molecular and General Genetics MGG,1994,243(2):215-224.
[52] SMEDLEY J G III,F(xiàn)ISHER D J,SAYEED S,et al.The enteric toxins of Clostridium perfringens[M]//Reviews of Physiology,Biochemistry and Pharmacology.Berlin,Heidelberg:Springer Berlin Heidelberg,2004:183-204.
[53] WISE M G,SIRAGUSA G R.Quantitative detection of Clostridium perfringens in the broiler fowl gastrointestinal tract by real-time PCR[J].Applied and Environmental Microbiology,2005,71(7):3911-3916.
[54] MOORE R J.Necrotic enteritis predisposing factors in broiler chickens[J].Avian Pathology,2016,45(3):275-281.
[55] BAILEY M A,MACKLIN K S,KREHLING J T.Use of a multiplex PCR for the detection of toxin-encoding genes netB and tpeL in strains of Clostridium perfringens[J].ISRN Veterinary Science,2013,2013:865702.
[56] COOPER K K,SONGER J G,UZAL F A.Diagnosing clostridial enteric disease in poultry[J].Journal of Veterinary Diagnostic Investigation,2013,25(3):314-327.
[57] LEE K W,LILLEHOJ H S,JEONG W,et al.Avian necrotic enteritis:Experimental models,host immunity,pathogenesis,risk factors,and vaccine development[J].Poultry Science,2011,90(7):1381-1390.
[58] LEE Y,KIM W H,LEE S J,et al.Detection of chicken interleukin-10 production in intestinal epithelial cells and necrotic enteritis induced by Clostridium perfringens using capture ELISA[J].Veterinary Immunology and Immunopathology,2018,204:52-58.
[59] YUAN B H,SUN Z F,LU M M,et al.Immunization with pooled antigens for Clostridium perfringens conferred partial protection against experimental necrotic enteritis in broiler chickens[J].Vaccines,2022,10(6):979.
[60] LEE K W,LILLEHOJ H S,PARK M S,et al.Clostridium perfringens alpha-toxin and NetB toxin antibodies and their possible role in protection against necrotic enteritis and gangrenous dermatitis in broiler chickens[J].Avian Diseases,2012,56(1):230-233.
[61] ALI SHAMSHIRGARAN M,GOLCHIN M,MOHAMMADI E.Lactobacillus casei displaying Clostridium perfringens NetB antigen protects chickens against necrotic enteritis[J].Applied Microbiology and Biotechnology,2022,106(19):6441-6453.
[62] ABADEEN Z U,JAVED M T,JAMIL T,et al.Ameliorative effects of anti-clostridial egg yolk antibodies (IgYs) in experimentally-induced avian necrotic enteritis[J].Animals,2022,12(10):1307.