国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

窄間隙激光焊研究現(xiàn)狀及發(fā)展趨勢(shì)

2023-05-30 10:48:04駱傳萬(wàn)馮杰才沈裕航劉樹(shù)磊姜夢(mèng)魏連峰
關(guān)鍵詞:組織力學(xué)性能工藝

駱傳萬(wàn) 馮杰才 沈裕航 劉樹(shù)磊 姜夢(mèng) 魏連峰

摘要: 針對(duì)鈦合金、鎳基高溫合金、高強(qiáng)鋼、不銹鋼及鋁合金等材料的窄間隙激光焊進(jìn)行了介紹。在窄間隙激光焊焊接過(guò)程中,焊接工藝參數(shù)(如激光功率、焊接速度及送絲速度等)會(huì)影響焊縫的微觀組織和力學(xué)性能,坡口尺寸影響焊縫側(cè)壁熔合性;若焊接過(guò)程控制不當(dāng),常規(guī)的窄間隙激光焊仍有可能出現(xiàn)焊縫側(cè)壁未熔合、氣孔等問(wèn)題。激光-電弧復(fù)合焊、激光熱絲焊、超窄間隙激光焊、擺動(dòng)激光焊、真空激光焊和電磁輔助激光焊等新方法應(yīng)運(yùn)而生,解決了窄間隙激光焊中存在的焊接缺陷,同時(shí)進(jìn)一步拓寬了窄間隙激光焊的應(yīng)用領(lǐng)域。在焊接前對(duì)熔池流動(dòng)行為、匙孔穩(wěn)定性、溫度場(chǎng)等進(jìn)行模擬和分析,不僅可以揭示激光焊接復(fù)雜的物理過(guò)程及連接機(jī)理,還可用來(lái)優(yōu)化焊接工藝,得到材料的有效連接。

關(guān)鍵詞: 窄間隙焊接; 激光焊; 工藝; 組織; 力學(xué)性能

中圖分類號(hào): TG 456.7

Research status and development trend of narrow gap laser welding

Luo Chuanwan1, Feng Jiecai1, Shen Yuhang1, Liu Shulei1, Jiang Meng2, Wei Lianfeng3

(1.Shanghai University, Shanghai 200444, China; 2.State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China; 3.Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041, Sichuan, China)

Abstract: Narrow gap laser welding of titanium alloy, nickel base superalloy, high strength steel, stainless steel and aluminum alloy was introduced. In the process of narrow gap laser welding, welding parameters such as laser power, welding speed and wire feeding speed, would affect microstructure and mechanical properties of weld, and groove size would affect side wall fusion of weld. If the welding process was not properly controlled, the conventional narrow gap laser welding might still cause problems such as side wall incomplete fusion of weld wall and porosity. New methods such as laser-arc hybrid welding, laser hot wire welding, ultra-narrow gap laser welding, swing laser welding, vacuum laser welding and electromagnetic assisted laser welding emerged at the right moment, which solved welding defects in narrow gap laser welding, and further broadened application field of narrow gap laser welding. Simulating and analyzing flow behavior of molten pool, keyhole stability and temperature field before welding could not only reveal complex physical processes and connection mechanisms of laser welding, but also be used to optimize welding process and obtain effective material connections.

Key words:? narrow gap welding; laser welding; technology; microstructure; mechanical properties

基金項(xiàng)目: 先進(jìn)焊接與連接國(guó)家重點(diǎn)實(shí)驗(yàn)室開(kāi)放課題研究基金資助(AWJ-22M02)

0 前言焊接是航空航天、船舶、核電和軌道交通等行業(yè)大型構(gòu)件制造的關(guān)鍵技術(shù)[1]。鈦合金、鎳基高溫合金、高強(qiáng)鋼和鋁合金等常用材料傳統(tǒng)的焊接方法主要有熔化極電弧焊、埋弧焊和鎢極氬弧焊(TIG)等,但仍存在焊接效率低、熱影響區(qū)寬、工件變形嚴(yán)重、能耗大和勞動(dòng)強(qiáng)度大等問(wèn)題[2-3],急需開(kāi)發(fā)先進(jìn)的焊接技術(shù)。電子束焊接雖然可以實(shí)現(xiàn)高速焊,但是需要抽真空,且不易實(shí)現(xiàn)大型復(fù)雜構(gòu)件的焊接,極大的限制了該技術(shù)的推廣應(yīng)用。近年來(lái),激光焊因具有焊接速度快、熱輸入小、焊材消耗低和易于自動(dòng)化等優(yōu)點(diǎn),已成為一種重要的高效高質(zhì)連接技術(shù)[4-9]。與傳統(tǒng)電弧焊相比,窄間隙激光焊在焊接變形、焊材消耗[10-11]和焊接效率[12-13]等方面更勝一籌,而且,磁場(chǎng)輔助激光焊、擺動(dòng)激光焊和雙光束激光焊等新型激光焊方法進(jìn)一步拓寬窄間隙激光焊的應(yīng)用領(lǐng)域。

1 不同材料的窄間隙激光焊

航空航天、船舶和軌道交通等行業(yè)常用的材料有鈦合金、鎳基高溫合金、高強(qiáng)鋼、不銹鋼和鋁合金等,國(guó)內(nèi)外研究機(jī)構(gòu)對(duì)上述材料的激光焊接可行性、焊縫組織及力學(xué)性能等方面開(kāi)展了大量的研究,取得了豐碩的研究成果。

鈦合金因具有較高的比強(qiáng)度、優(yōu)異的耐腐蝕性和良好的加工成形等特點(diǎn)[14],廣泛應(yīng)用于航天航空、核潛艇等領(lǐng)域[15-16],但鈦合金的焊縫組織及力學(xué)性能對(duì)焊接熱輸入非常敏感,大的熱輸入會(huì)使組織惡化,降低焊縫的力學(xué)性能。Fang等學(xué)者[17]通過(guò)控制激光功率大小來(lái)控制焊接時(shí)的熱輸入大小,研究了10 mm厚TC4鈦合金激光焊接頭組織及性能,研究表明:增加焊接熱輸入,焊縫中心等軸區(qū)的寬度會(huì)增大,其晶粒的平均尺寸也變大,但焊縫熔合區(qū)硬度卻降低了。此外,Liu等學(xué)者[18]采用試驗(yàn)和模擬相結(jié)合的方法,開(kāi)展了TC4鈦合金窄間隙激光多道焊接研究,該研究指出,焊縫區(qū)柱狀晶體的生長(zhǎng)方向與最高溫度梯度的方向一致。同時(shí),焊縫重熔區(qū)經(jīng)歷了多次熱循環(huán),是導(dǎo)致該區(qū)域組織晶粒粗大的主要原因。同時(shí),F(xiàn)ang等學(xué)者[19]則研究了Ar,He保護(hù)氣體對(duì)20 mm厚TC4鈦合金窄間隙激光焊組織及性能的影響,發(fā)現(xiàn):Ar作為保護(hù)氣體時(shí),形成的熱影響區(qū)比He氣的寬,這主要是因?yàn)锳r比He的電離能低,形成了更多的等離子體,在焊縫表面以熱傳導(dǎo)的形式對(duì)焊縫加熱,導(dǎo)致了其熱影響區(qū)較寬;同時(shí),與Ar相比,采用He作為保護(hù)氣體,得到的α′馬氏體顯微結(jié)構(gòu)更加細(xì)小,焊縫硬度更加均勻,且其硬度值略高,如圖1[19]和圖2[19]所示。Gui等學(xué)者[20]指出:激光焊的冷卻速率較快,是鈦合金焊縫熱影響區(qū)寬度較窄的主要原因;當(dāng)焊接速度為1.6 mm/min、激光功率為2~3 kW時(shí),焊縫氣孔率最低。

鎳基高溫合金具有良好的耐高溫腐蝕性、熱穩(wěn)定性和抗蠕變性等[21-23],廣泛應(yīng)用于燃?xì)廨啓C(jī)鍋爐管、燃燒室、超高溫反應(yīng)堆(VHTR)等器件[24]。Keler等學(xué)者[25]采用窄間隙激光多道焊(Laser-multi-pass-narrow-gap-welding, Laser-MPNG)焊接了72.5 mm厚的鎳基高溫合金,如圖3[25]所示,研究發(fā)現(xiàn):與窄間隙TIG(圖6a)相比,Laser-MPNG(圖3b)不僅焊材消耗量減少了2倍,而且焊接速度提高了5倍。Thejasree等學(xué)者[26]研究焊接熱輸入對(duì)Inconel 625鎳基合金焊縫的影響,發(fā)現(xiàn):隨著激光功率的增大,焊縫熔深也增大,如圖4[26]所示;同時(shí),采用數(shù)值模擬的方法,獲得的顯微組織、力學(xué)性能和熱循環(huán)等模擬結(jié)果與實(shí)際試驗(yàn)所獲得的結(jié)果非常接近,這表明:數(shù)值模擬可以有效的指導(dǎo)焊接試驗(yàn),對(duì)深入了解焊接的相關(guān)物理過(guò)程有較大的意義。Sun等學(xué)者[27]研究了焊接坡口對(duì)12 mm厚Inconel 617鎳基高溫合金激光焊接特性的影響,研究表明:相比于U形坡口,V形坡口容易產(chǎn)生未熔合、氣孔等缺陷;對(duì)于U形坡口,熔融金屬的潤(rùn)濕性更好,有助于獲得形成良好的焊縫;該研究還發(fā)現(xiàn):由于激光焊縫出現(xiàn)碳化物沉淀強(qiáng)化現(xiàn)象,焊縫的硬度、抗拉強(qiáng)度和沖擊韌性都高于母材,與電弧焊[28]相比,采用Laser-MPNG,焊接效率更高,焊材消耗更少。高強(qiáng)鋼一直被廣泛應(yīng)用于船舶、核電、大型鋼鐵建筑等行業(yè),高效高質(zhì)焊接技術(shù)是相關(guān)產(chǎn)品制造過(guò)程的關(guān)鍵技術(shù)。Wu等學(xué)者[29]對(duì)35 mm厚的CLF-1鋼進(jìn)行Laser-MPNG,研究表明:經(jīng)過(guò)焊后熱處理(PWHT)后,焊縫側(cè)壁完全熔合,沒(méi)有發(fā)現(xiàn)未熔合、氣孔及裂紋等缺陷,但PWHT會(huì)降低晶界強(qiáng)度,容易產(chǎn)生裂紋。此外,Guo等學(xué)者[30]采用激光填絲焊焊接8 mm厚的S60高強(qiáng)度鋼,研究表明:傳統(tǒng)的TIG會(huì)使焊接接頭產(chǎn)生較高的殘余應(yīng)力和變形。同時(shí),Guo等學(xué)者[31]提出:采用單道自熔焊焊接S960和S700高強(qiáng)鋼時(shí),采用2G焊接位置更有利于解決1G焊接位置出現(xiàn)的未熔合及焊縫下凹等缺陷;同時(shí),該研究還發(fā)現(xiàn):采用超窄間隙激光多道焊不僅能夠得到無(wú)裂紋、氣孔及未熔合等缺陷的焊縫,如圖5b[31]所示,相比于單道自熔焊,避免了對(duì)于高功率激光器的要求,但多層激光焊接過(guò)程中的快速冷卻,使得焊縫的熔合區(qū)和熱影響區(qū)出現(xiàn)了馬氏體組織,降低了焊接接頭的韌性。隨后,Ning等學(xué)者[32]指出:與傳統(tǒng)的TIG相比,采用Laser-MPNG焊接D406超強(qiáng)度鋼,焊縫組織更加均勻,抗拉強(qiáng)度更高。

對(duì)于不銹鋼焊接,激光焊比傳統(tǒng)電弧焊有更多的優(yōu)勢(shì),焊接變形更小。Shi等學(xué)者[33]采用窄間隙激光填絲焊和窄間隙TIG對(duì)20 mm厚奧氏體不銹鋼進(jìn)行焊接,研究表明:激光填絲焊獲得的焊接變形更小。Ragavendran等學(xué)者[34]研究了激光焊、激光-TIG復(fù)合焊、激光-MIG復(fù)合焊對(duì)316L(N)不銹鋼的焊縫組織及力學(xué)性能的影響,發(fā)現(xiàn):復(fù)合焊焊縫的二次枝晶間距較大,主要是復(fù)合焊的冷卻速率比激光焊的小、熱輸入較大所致。由于熱輸入的影響,TIG和MIG焊縫體積也比激光焊的大,頂部和底部的焊縫寬度也更寬;同時(shí),MIG焊縫硬度也高于TIG和激光焊焊縫,其強(qiáng)度、延展性和韌性更好。Yang等學(xué)者[35]發(fā)現(xiàn)采用超窄間隙激光焊焊接100 mm厚304不銹鋼時(shí),對(duì)坡口側(cè)壁和底部同時(shí)加熱,可以獲得良好的焊縫成形。

近年來(lái),汽車、軌道交通、航天航空等行業(yè)越來(lái)越關(guān)注鋁合金等輕量化材料[36-39]。Zhang等學(xué)者[40]采用窄間隙激光多道焊對(duì)20 mm厚的7A52高強(qiáng)度鋁合金進(jìn)行焊接,研究表明:對(duì)焊縫進(jìn)行焊后熱處理,促使焊縫金屬的沉淀相急劇增加,使得焊縫顯微硬度略有增加。Zhang等學(xué)者[41]還指出,采用單一的U形或I形坡口,都有利于焊縫側(cè)壁的熔合。而且,采用鋁鎂合金焊絲填充焊縫,可提高焊接接頭的抗拉強(qiáng)度、屈服強(qiáng)度和斷后伸長(zhǎng)率。Suckow等學(xué)者[42]對(duì)AA7075鋁合金激光焊接頭進(jìn)行焊后熱處理,焊縫顯微組織表明:沿晶界處形成富Mg-Al-Cu相和富Mg-Zn相,是AA7075接頭力學(xué)性能顯著提高的原因之一。

綜上所述,對(duì)于鈦合金、鎳基高溫合金、高強(qiáng)鋼、不銹鋼及鋁合金等材料,窄間隙激光焊方法比傳統(tǒng)電弧焊方法更有優(yōu)勢(shì)。在窄間隙激光焊焊接過(guò)程中,焊接工藝參數(shù)(如激光功率、焊接速度及送絲速度等)會(huì)影響焊縫的微觀組織和力學(xué)性能,坡口尺寸影響焊縫側(cè)壁熔合性;若焊接過(guò)程控制不當(dāng),常規(guī)的窄間隙激光焊仍有可能出現(xiàn)焊縫側(cè)壁未熔合、氣孔等問(wèn)題。

2 窄間隙激光焊新方法

近年來(lái),研究人員提出了激光-電弧復(fù)合焊、激光熱絲焊、超窄間隙激光焊、擺動(dòng)激光焊、真空激光焊和電磁輔助激光焊等新方法,不僅能夠解決窄間隙激光焊存在的問(wèn)題,同時(shí)進(jìn)一步拓寬窄間隙激光焊的應(yīng)用領(lǐng)域。

Li等學(xué)者[43]采用激光自熔焊、激光填絲焊和激光-電弧復(fù)合焊3種焊接方法組合的形式焊接30 mm厚的Q235鋼板,研究表明:激光復(fù)合焊焊縫無(wú)明顯的氣孔,表面無(wú)焊瘤,如圖6[43]所示,在焊縫頂部,坡口間隙最大的地方,側(cè)壁也沒(méi)有未熔合的缺陷,但是在焊縫的根部存在未熔合,主要是由于較窄的側(cè)壁吸收了更多的激光能量,而導(dǎo)致到達(dá)焊接坡口底部的能量減少;激光自熔焊焊縫的熱影響區(qū)最小,而后續(xù)焊道,依次采用激光填絲焊和激光-電弧復(fù)合焊,由于經(jīng)歷了多次熱循環(huán),熱影響區(qū)較寬。Zhang等學(xué)者[44]采用窄間隙激光-電弧復(fù)合焊對(duì)厚40 mm的低碳鋼進(jìn)行焊接,焊縫無(wú)明顯的氣孔、未熔合等等缺陷;焊縫根部針狀鐵素體含量最低,力學(xué)性能相對(duì)較低,但是其抗拉強(qiáng)度和沖擊吸收能量仍分別比母材高49%和60%。

Kaplan等學(xué)者[45]采用窄間隙激光填熱絲焊對(duì)7 mm厚的鋼板進(jìn)行焊接,研究表明:采用填充熱絲,不僅可以減少激光功率的消耗,還能促進(jìn)熔融金屬的潤(rùn)濕性,提高填充效率及質(zhì)量。然而,若加熱焊絲的電壓過(guò)高,容易形成電弧或造成熔滴脫落。Wei等學(xué)者[46]也發(fā)現(xiàn):通過(guò)電流等方式對(duì)焊絲進(jìn)行預(yù)熱,可減少激光功率,提高了焊接間隙公差,并獲得了更大的熔深。此外,Liu等學(xué)者[47]也指出:與傳統(tǒng)激光填冷絲焊相比,激光填熱絲焊可減少熱輸入,有利于抑制未熔合、氣孔和裂紋等缺陷的形成。

Li等學(xué)者[48]的研究表明:采用窄間隙擺動(dòng)激光焊焊接鋁合金,在較低的激光熱輸入下,合適的激光束擺動(dòng)參數(shù),可以獲得良好的焊縫成形;而采用常規(guī)窄間隙激光焊時(shí),需要增加離焦量,以獲得大激光光斑,將導(dǎo)致熱輸入增加,可能會(huì)惡化焊縫組織;當(dāng)激光束擺動(dòng)振幅為2.0 mm、頻率為150 Hz時(shí),得到較寬、較淺的焊縫形態(tài),而且更有利于避免側(cè)壁未熔合現(xiàn)象。同時(shí),Wu等學(xué)者[49]、Fetzer等學(xué)者[50]、Hagenlocher等學(xué)者[51]及Wang等學(xué)者[52]的研究表明:與常規(guī)激光焊相比,擺動(dòng)激光焊可以有效調(diào)節(jié)激光能量的分布,抑制氣孔缺陷;激光束攪拌熔池,可以細(xì)化焊縫晶粒,提高焊接接頭的強(qiáng)韌性。

采用激光一次性焊透厚板材料,雖然易于實(shí)現(xiàn),但是焊接飛濺較大,焊縫容易形成氣孔和裂紋等缺陷[53]。Guo等學(xué)者[54]采用超窄間隙激光多道焊對(duì)6 mm厚S960高強(qiáng)度鋼板進(jìn)行焊接,研究表明:超窄間隙激光焊能節(jié)省更多的焊材;當(dāng)激光功率為2 kW、焊接速度為0.6m/min、送絲速率為3.3m/min時(shí),成功獲得了無(wú)明顯氣孔和未熔合的焊縫,將優(yōu)化的參數(shù)略作調(diào)整后焊接8 mm厚S960和13 mm厚S700鋼,拉伸斷裂位置均位于母材。Elmesalamy等學(xué)者[55]采用超窄間隙激光焊焊接20 mm厚的不銹鋼,研究了激光功率、焊接速度和送絲速率等工藝參數(shù)對(duì)焊縫的熔合性和表面氧化的影響規(guī)律,發(fā)現(xiàn):提高激光功率和焊接速度可以提高焊縫熔合性;當(dāng)焊接速度增加而激光功率降低時(shí),焊縫表面層金屬光澤,無(wú)氧化現(xiàn)象,原因是熱量輸入減少,焊縫表面溫度降低,有效抑制了氧化反應(yīng)。

對(duì)于激光焊,激光功率與焊縫熔深一般呈正比關(guān)系,但是功率越大,越容易產(chǎn)生飛濺、氣孔及變形等問(wèn)題[56]。同時(shí),在大氣壓力下,大功率激光焊接的光致等離子體密度較大,會(huì)吸收部分激光束能量,影響了材料對(duì)激光束能量的吸收,且焊縫表面容易氧化,很難獲得成形良好的焊縫。Gao等學(xué)者[57]和Jiang等學(xué)者[58]的研究表明:與傳統(tǒng)激光焊相比,在亞大氣壓環(huán)境或真空條件下,可以極大的提高激光束的穿透能力,焊縫熔深更大。Luo等學(xué)者[59]及Li等學(xué)者[60]指出:在亞大氣壓條件下,焊縫的氣孔、裂紋等缺陷受到了明顯的抑制,焊縫質(zhì)量有所提高。Wang等學(xué)者[56]采用低真空激光焊接新技術(shù)連接130 mm厚5A06鋁合金,研究表明:焊縫無(wú)明顯氣孔和未熔合缺陷;焊縫的抗拉強(qiáng)度達(dá)到母材的95%以上。

對(duì)于鋁合金的焊接,常規(guī)激光焊獲得的焊縫成形較差,焊縫表面通常會(huì)有凹陷,背面余高較大。Qi等學(xué)者[61]在激光焊中,引入輔助電磁場(chǎng),以產(chǎn)生一個(gè)向上的穩(wěn)定的電磁力,可以有效降低熔池塌陷現(xiàn)象,焊縫成形良好。Xu等學(xué)者[62]也采用電磁場(chǎng)輔助激光焊焊接10 mm厚A5083鋁合金,研究表明:當(dāng)磁感應(yīng)強(qiáng)度為80 mT、頻率為400 Hz時(shí),可以有效抑制焊縫根部焊瘤的形成;外加振蕩的電磁場(chǎng)對(duì)熔池具有一定的攪拌作用,可以細(xì)化晶粒,有效降低焊縫的開(kāi)裂敏感性。此外,一些學(xué)者采用雙束激光焊[63]、雙脈沖激光焊[64]等方法,也可以有效降低鋁合金焊縫裂紋問(wèn)題。

Nsstrm等學(xué)者[65]采用斜向上窄間隙激光多道焊焊接15 mm厚鋼板(圖7b[65]),與傳統(tǒng)水平窄間隙激光多道焊(圖7a[65])相比,水平焊接的焊縫表面成形均勻,但在焊縫邊緣有一些凹陷,在焊接縫中心有一些焊接凸起(圖8a[65]);而斜向上窄間隙激光多道焊焊縫的中間出現(xiàn)周期性的凹陷(圖8b[65])。2種方式得到的焊縫孔隙率均小于0.3%,但是采用斜向上窄間隙多層焊新方法的工藝魯棒性更好。

綜上所述,新型的激光焊方法一定程度上可以規(guī)避常規(guī)窄間隙焊中存在的側(cè)壁未熔合、氣孔等問(wèn)題,極大的拓寬了窄間隙激光焊的應(yīng)用領(lǐng)域。

3 窄間隙激光焊發(fā)展趨勢(shì)

近年來(lái),窄間隙激光焊向著多能量場(chǎng)復(fù)合的方向發(fā)展。窄間隙激光填熱絲焊、電磁輔助激光焊和超窄間隙激光焊等新方法在一定程度上解決了窄間隙激光焊?jìng)?cè)壁未熔合、氣孔等缺陷,同時(shí)也拓寬了激光焊的應(yīng)用領(lǐng)域。因此,隨著多能量場(chǎng)激光復(fù)合焊技術(shù)的不斷發(fā)展,窄間隙激光焊將有望在厚板焊接領(lǐng)域發(fā)揮更重要的作用。同時(shí),相關(guān)研究也指出:在激光焊焊接過(guò)程中,激光光束作用在焊件表面上的溫度變化、焊件的應(yīng)力應(yīng)變變化、熔池的流動(dòng)行為和匙孔的穩(wěn)定性,很大程度上決定了焊縫的質(zhì)量。因此,采用數(shù)值模擬對(duì)激光焊焊接過(guò)程中的溫度場(chǎng)、應(yīng)力應(yīng)變場(chǎng)和熔池流動(dòng)進(jìn)行分析,一定程度上能夠預(yù)測(cè)實(shí)際焊縫的成形情況,為實(shí)際激光焊焊接工藝參數(shù)的選擇提供理論指導(dǎo)和參考,更好的發(fā)揮出窄間隙激光焊的優(yōu)勢(shì)。

4 結(jié)束語(yǔ)

激光焊因具有焊接速度快、熱輸入小和易于自動(dòng)化等優(yōu)點(diǎn),受到了眾多研究機(jī)構(gòu)的關(guān)注,取得了較多的研究成果,為該技術(shù)的推廣應(yīng)用提供了理論基礎(chǔ)和技術(shù)支撐。側(cè)壁未熔合、氣孔和根部裂紋是窄間隙激光焊常見(jiàn)的焊接缺陷,若在焊接前對(duì)激光焊焊接過(guò)程進(jìn)行數(shù)值模擬,通過(guò)對(duì)整個(gè)過(guò)程的熔池流動(dòng)行為、匙孔穩(wěn)定性行為、溫度場(chǎng)等進(jìn)行分析,進(jìn)而來(lái)優(yōu)化工藝,也可揭示激光焊接復(fù)雜的物理過(guò)程及其連接機(jī)理,實(shí)現(xiàn)鈦合金、鎳基高溫合金、高強(qiáng)鋼、不銹鋼和鋁合金等材料的有效連接。同時(shí),隨著電磁場(chǎng)輔助激光焊、擺動(dòng)激光焊和真空激光焊等多能量場(chǎng)復(fù)合窄間隙激光焊的不斷發(fā)展,窄間隙激光焊將有望在厚板焊接領(lǐng)域發(fā)揮更重要的作用。

參考文獻(xiàn)

[1] You D Y, Gao X D, Katayama S. Review of laser welding monitoring [J]. Science and Technology of Welding and Joining, 2014, 19(3): 181-201.

[2] Wang Jianfeng, Sun Qingjie, Feng Jicai, et al. Characteristics of welding and arc pressure in TIG narrow gap welding using novel magnetic arc oscillation[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4): 413-420.

[3] Chen Jicheng, Wei Yanhong, Zhan Xiaohong, et al. Weld profile microstructure and mechanical property of laser-welded butt joints of 5A06 Al alloy with static magnetic field support[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(5-8): 1677- 1686.

[4] Zhang Mingjun, Chen Shun, Zhang Yingzhe, et al. Mechanisms for improvement of weld appearance in autogenous fiber laser welding of thick stainless steels[J]. Metals, 2018, 8(8): 625.

[5] Ya Wei, Pathiraj B, Yu Xinghua. From statistical analysis to process optimization during cladding using a Nd:YAG laser[J]. China Welding, 2022, 31(4): 7-22.

[6] Mei Lifang, Yan Dongbing, Chen Genyu, et al. Comparative study on CO2 laser overlap welding and resistance spot welding for automotive body in white[J]. Materials and Design, 2015, 78: 107-117.

[7] Wang Lei, Xu Xuezong Wang Kehong, et al. Effect of shielding gas and defocusing on porosity during laser beam welding of 7A52 alloy[J]. China Welding, 2020, 29(3): 20-25.

[8] Sofia D, Barletta D,Poletto M. Laser sintering process of ceramic powders: the effect of particle size on the mechanical properties of sintered layers[J]. Additive Manufacturing, 2018, 23: 215-224.

[9] Hou Jijun, Dong Junhui, Bai Xueyu, et al. Weld shape and microstructure of TC4 laser welding with activating flux of Na2SiF6[J]. China Welding, 2020, 29(4): 19-24.

[10] Guo Wei , DongShiyun, Guo Wei, et al. Microstructure and mechanical characteristics of a laser welded joint in SA508 nuclear pressure vessel steel[J]. Materials Science and Engineering: A, 2015, 625: 65-80.

[11] Yu Y C, Yang S L, Yin Y, et al. Multi-pass laser welding of thick plate with filler wire by using a narrow gap joint configuration[J]. Journal of Mechanical Science and Technology, 2013, 27(7): 2125-2131.

[12] Li Junzhao, Wen Kai, Sun Qingjie, et al. The comparison of multi-layer narrow-gap laser and arc welding of S32101 duplex stainless steel[J]. China Welding, 2022, 31(4): 37-47.

[13] Elmesalamy A, Francis J A, Li L. A comparison of residual stresses in multi pass narrow gap laser welds and gas-tungsten arc welds in AISI 316L stainless steel[J]. International Journal of Pressure Vessels and Piping, 2014, 113: 49-59.

[14] 杜勇, 李峰, 夏?,|, 等. TC4鈦合金窄間隙激光填絞股焊絲焊接接頭組織及性能[J]. 焊接, 2022(12): 1-5.

[15] 馮靖, 呂雪巖, 周曉鋒, 等. 熱連軋高強(qiáng)鈦合金厚壁管道的TIG工藝及組織和性能[J]. 焊接, 2022(1): 8-13.

[16] 肖珺, 雷一鼎, 陳樹(shù)君, 等. 基于多點(diǎn)柔性支撐的鈦合金激光焊接變形控制[J]. 焊接學(xué)報(bào), 2022, 43(8): 8-12.

[17] Fang Naiwen, Guo Erjun, Huang Ruisheng, et al. Effect of welding heat input on microstructure and properties of TC4 titanium alloy ultra-narrow gap welded joint by laser welding with filler wire[J]. Materials Research Express, 2021, 8(1): 016511.

[18] Liu Jinzhao, Zhan Xiaohong, Gao Zhuanni, et al. Microstructure and stress distribution of TC4 titanium alloy joint using laser-multi-pass-narrow-gap welding[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(11-12): 3725-3735.

[19] Fang Naiwen, Guo Erjun, Xu Kai, et al. Effect of shielding gas on microstructures and mechanical properties of TC4 titanium alloy ultra-narrow gap welded joint by laser welding with filler wire[J]. Advances in Materials Science and Engineering, 2021, 2021: 9582421.

[20] Gui Zhenzhen, Min Guoqing, Liu Dejian, et al. Double-sided laser welding of dissimilar titanium alloys with linear variable thickness[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(9-12): 1597-1606.

[21] Zhang Yu, Jing Hongyang, Xu Lianyong, et al. Microstructure and mechanical performance of welded joint between a novel heat-esistant steel and Inconel 617 weld metal[J]. Materials Characterization, 2018, 139: 279-292.

[22] 種潤(rùn), 郭紹慶, 張文揚(yáng), 等. GH4169合金激光增材制造過(guò)程熱-力發(fā)展數(shù)值模擬[J]. 焊接, 2021(3): 13-21.

[23] 滕彬, 武鵬博, 李曉光, 等. GH3128合金激光焊接頭組織與性能[J]. 焊接學(xué)報(bào), 2022, 43(7): 82-87.

[24] 王玨, 董建新, 張麥倉(cāng), 等. 700 ℃以上超超臨界電站鍋爐過(guò)熱器管材用典型鎳基合金的平衡析出相規(guī)律[J]. 北京科技大學(xué)學(xué)報(bào), 2012, 34(7): 799-807.

[25] Keler B, Brenner B,Dittrich D, et al. Laser-multi-pass-narrow-gap-welding of nickel superalloy—alloy 617OCC[J]. Journal of Laser Application, 2019, 31(2): 022412.

[26] Thejasree P, Manikandan N, Binoj J S. Numerical simulation and experimental investigation on laser beam welding of Inconel 625[J]. Materials Today: Proceedings, 2021, 39: 268-273.

[27] Sun Junhao, Ren Wenjie, Nie Pulin, et al. Study on the weldability, microstructure and mechanical properties of thick Inconel 617 plate using narrow gap laser welding method[J]. Materials and Design, 2019, 175: 107823.

[28] Fink C,Zinke M. Welding of nickel-based alloy 617 using modified dip arc processes[J]. Welding in the World, 2013, 57(3): 323-333.

[29] Wu Shikai, Zhang Jianchao, Yang Jiaoxi, et al. Investigation on microstructure and properties of narrow-gap laser welding on reduced activation ferritic/martensitic steel CLF-1 with a thickness of 35 mm[J]. Journal of Nuclear Materials, 2018, 503: 66-74.

[30] Guo Wei, Li Lin, Dong Shiyun, et al. Comparison of microstructure and mechanical properties of ultra-narrow gap laser and gas-metal-arc welded S960 high strength steel[J]. Optics and Lasers in Engineering, 2017, 91: 1-15.

[31] Guo Wei, Li Lin, Crowther D, et al. Laser welding of high strength steels (S960 and S700) with medium thickness[J]. Journal of Laser Applications, 2016, 28(2): 002425.

[32] Ning Jie, Zhang LinJie, Yang Jiannan, et al. Characteristics of multi-pass narrow-gap laser welding of D406A ultra-high strength steel[J]. Journal of Materials Processing Technology, 2019, 270: 168-181.

[33] Shi Hao, Zhang Ke, Xu Zhengyi, et al. Applying statistical models optimize the process of multi-pass narrow-gap laser welding with filler wire[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(1-4): 279-291.

[34] Ragavendran M, Vasudevan M. Laser and hybrid laser welding of type 316L(N) austenitic stainless steel plates[J]. Materials and Manufacturing Processes, 2020, 35(8): 922-934.

[35] Yang Wuxiong, Xin Jijun, Fang Chao, et al. Microstructure and mechanical properties of ultra-narrow gap laser weld joint of 100 mm-thick SUS304 steel plates[J]. Journal of Materials Processing Technology, 2019, 265: 130-137.

[36] Tan Caiwang, Yang Jia, Zhao Xiaoye, et al. Influence of Ni coating on interfacial reactions and mechanical properties in laser welding-brazing of Mg/Ti butt joint[J]. Journal of Alloys and Compounds, 2018, 764: 186-201.

[37] Zhou L, Li G H, Zhang R X, et al. Microstructure evolution and mechanical properties of friction stir spot welded dissimilar aluminum-copper joint[J]. Journal of Alloys and Compounds, 2019, 775: 372-382.

[38] Geng Huihui, Xia Zehua, Zhang Xu, et al. Microstructures and mechanical properties of the welded AA5182/HC340LA joint by magnetic pulse welding[J]. Materials Charactization, 2018, 138: 229-237.

[39] 范霽康, 倪程, 徐鴻林, 等. 3003鋁合金激光焊接組織和力學(xué)性能[J]. 焊接, 2021(3): 22-25.

[40] Zhang Zhihui, Dong Shiyun, Wang Yujiang, et al. Microstructure characteristics of thick aluminum alloy plate joints welded by fiber laser[J]. Materials and Design, 2015, 84: 173-177.

[41] Zhang Z H, Dong S Y, Wang Y J, et al. Study on microstructures and mechanical properties of super narrow gap joints of thick and high strength aluminum alloy plates welded by fiber laser[J]. The International Journal of Advanced Manufacturing Technology, 2016, 82(1-4): 99-109.

[42] Suckow T, Vlkers S, cal E B, et al. Effect of shortened post weld heat treatment on the laser welded AA7075 alloy[J]. Metals, 2022, 12(3): 393.

[43] Li Ruoyang, Wang Tianjiao, Wang Chunming, et al. A study of narrow gap laser welding for thick plates using the multi-layer and multi-pass method[J]. Optics and Laser Technology, 2014, 64: 172-183.

[44] Zhang Chen, Li Geng, Gao Ming, et al. Microstructure and mechanical properties of narrow gap laser-arc hybrid welded 40 mm thick mild steel[J]. Materials, 2017, 10(2): 106.

[45] Kaplan A F H, Kim K H, Bang H S, et al. Narrow gap laser welding by multilayer hot wire addition[J]. Journal of Laser Application, 2016, 28 (2): 022410.

[46] Wei Haiying, Zhang Yi, Tan Lipeng, et al. Energy efficiency evaluation of hot-wire laser welding based on process characteristic and power consumption[J]. Journal of Cleaner Production, 2015, 87: 255-262.

[47] Liu Wei, Liu Shuang, Ma Junjie, et al. Real-time monitoring of the laser hot-wire welding process[J]. Optics and Laser Technology, 2014, 57: 66-76.

[48] Li Junzhao. Liu Yibo, Zhen Zuyang, et al. Analysis and improvement of laser wire filling welding process stability with beam wobble[J]. Optics and Laser Technology, 2021, 134: 106594.

[49] Wu Q, Xiao R S, Zou J L, et al. Weld formation mechanism during fiber laser welding of aluminum alloys with focus rotation and vertical oscillation[J]. Journal of Manufacturing Processes, 2018, 36: 149-154.

[50] Fetzer F, Martin S, Weber R, et al. Reduction of pores by means of laser beam oscillation during remote welding of Al-Mg-Si[J]. Optics and Lasers in Engineering, 2018, 108: 68-77.

[51] Hagenlocher C, Sommer M, Fetzer F, et al. Optimization of the solidification conditions by means of beam oscillation during laser beam welding of aluminum[J]. Materials and Design, 2018, 160: 1178-1185.

[52] Wang Lei, Gao Ming, Zhang Chen, et al. Effect of beam oscillating pattern on weld characterization of laser welding of AA6061-T6 aluminum alloy[J]. Materials and Design, 2016, 108: 707-717.

[53] Guo Wei, Liu Qiang, Francis J A, et al. Comparison of laser welds in thick section S700 high strength steel manufactured in flat (1G) and horizontal (2G) positions[J]. CIRP Annals-Manufacturing Technology, 2015, 64(1): 197-200.

[54] Guo Wei, Crowther D, Francis J A, et al. Process-parameter interactions in ultra-narrow gap laser welding of high strength steels[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(9-12): 2547-2566.

[55] Elmesalamy A S, Li L, Francis J A, et al. Understanding the process parameter interactions in multiple-pass ultra-narrow-gap laser welding of thick-section stainless steels[J]. The International Journal of Advanced Manufacturing Technology, 2013, 68(1-4): 1-17.

[56] Wang Jiming, Peng Genchen, Li Liqun, et al. 30 kW-level laser welding characteristics of 5A06 aluminum alloy thick plate under sub-atmospheric pressure[J]. Optics and Laser Technology, 2019, 119: 105668.

[57] Gao Ming,Kawahito Y, Kajii S. Observation and understanding in laser welding of pure titanium at sub-atmospheric pressure[J]. Optics Express, 2017, 25(12): 13539.

[58] Jiang Meng, Tao Wang, Wang Shuliang, et al. Effect of ambient pressure on interaction between laser radiation and plasma plume in fiber laser welding[J]. Vacuum, 2017, 138: 70-79.

[59] Luo Yan, Tang Xinhua, Lu Fenggui, et al. Effect of sub-atmospheric pressure on plasma plume in fiber laser welding[J]. Journal of Materials Processing Technology, 2015, 215: 219-224.

[60] Li Liqun, Peng Genchen, Wang Jiming, et al. Numerical and experimental study on keyhole and melt flow dynamics during laser welding of aluminum alloys under sub-atmospheric pressure[J]. International Journal of Heat and Mass Transfer, 2019, 133: 812-826.

[61] Qi Yi, Chen Genyu. Root defects in full penetration laser welding of thick plates using steady electromagnetic force[J]. Journal of Materials Processing Technology, 2018, 260: 97-103.

[62] Xu Lidong, Tang Xinhua, Zhang Ruolin, et al. Weld bead characteristics for full-penetration laser welding of aluminum alloy under electromagnetic field support[J]. Journal of Materials Processing Technology, 2021, 288: 116896.

[63] Coniglio N, Patry M. Measuring laser weldability of aluminum alloys using controlled restraint weldability test[J]. Science and Technology of Welding and Joining, 2013, 18(7): 573-580.

[64] von Witzendorff P, Hermsdorf J, Kaierle S, et al. Double pulse laser welding of 6082 aluminum alloys[J]. Science and Technology of Welding and Joining, 2015, 20(1): 42-47.

[65] Nsstrm J, Brueckner F, Kaplan A F H. A near-vertical approach to laser narrow gap multi-layer welding[J]. Optics and Laser Technology, 2020, 121: 105798.

收稿日期: 2022-12-12

駱傳萬(wàn)簡(jiǎn)介: 碩士研究生;主要從事激光焊接機(jī)理的研究;2634187248@qq.com。

馮杰才簡(jiǎn)介: 通信作者,博士,副教授;主要從事激光焊、激光清洗、激光熔覆、激光切割等激光加工技術(shù)的研究;已發(fā)表論文30余篇;fengjiecai@shu.edu.cn。

猜你喜歡
組織力學(xué)性能工藝
Pr對(duì)20MnSi力學(xué)性能的影響
云南化工(2021年11期)2022-01-12 06:06:14
轉(zhuǎn)爐高效復(fù)合吹煉工藝的開(kāi)發(fā)與應(yīng)用
山東冶金(2019年6期)2020-01-06 07:45:54
5-氯-1-茚酮合成工藝改進(jìn)
Mn-Si對(duì)ZG1Cr11Ni2WMoV鋼力學(xué)性能的影響
山東冶金(2019年3期)2019-07-10 00:54:00
在項(xiàng)目管理中如何做好項(xiàng)目經(jīng)理
品三口而知味
農(nóng)民合作組織問(wèn)題分析
一段鋅氧壓浸出與焙燒浸出工藝的比較
INCONEL625+X65復(fù)合管的焊接組織與力學(xué)性能
焊接(2015年9期)2015-07-18 11:03:53
自己的“組織”
南方周末(2014-05-01)2014-05-01 23:12:26
霍城县| 两当县| 兴和县| 潍坊市| 三门峡市| 临城县| 定州市| 钟山县| 彰化市| 新巴尔虎右旗| 镶黄旗| 明水县| 东安县| 南华县| 屏南县| 武安市| 临西县| 甘泉县| 崇左市| 江津市| 望谟县| 汕尾市| 南安市| 通化市| 黎城县| 玉屏| 高阳县| 青神县| 桐庐县| 吉木萨尔县| 宕昌县| 商都县| 资中县| 焉耆| 成都市| 泰来县| 秀山| 阿拉善左旗| 庆元县| 邮箱| 莎车县|