黃慶享,趙 燦,杜君武,高 彬,毛小娃,楊涵問(wèn)
(1.西安科技大學(xué) 能源學(xué)院,陜西 西安 710054;2.西安科技大學(xué) 西部礦井開(kāi)采及災(zāi)害防治教育部重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710054;3.陜煤集團(tuán)神木張家峁礦業(yè)有限公司,陜西 神木 719300)
近年來(lái),隨著采煤裝備水平的提高,回采速度加快,采掘接續(xù)日趨緊張。提高巷道掘進(jìn)效率,緩解采掘接續(xù)緊張局面,成為礦井高效開(kāi)采亟待解決的問(wèn)題[1]。根據(jù)《煤礦巷道錨桿支護(hù)技術(shù)規(guī)范》[2]規(guī)定:掘進(jìn)工作面嚴(yán)禁空頂作業(yè);若兩幫圍巖穩(wěn)定,幫錨桿施工可適當(dāng)滯后。實(shí)踐表明,不同礦井巷道圍巖條件各異,巷道掘進(jìn)采用的兩幫滯后支護(hù)時(shí)間和距離差異較大。兩幫滯后支護(hù)時(shí)間(距離)過(guò)小,支護(hù)與掘進(jìn)工序相互影響,制約巷道掘進(jìn)效率;兩幫滯后支護(hù)時(shí)間(距離)過(guò)大,影響巷道支護(hù)效果和安全。因此,確定合理的兩幫滯后支護(hù)距離和時(shí)間,對(duì)巷道安全和快速掘進(jìn)具有重要意義。
國(guó)內(nèi)外學(xué)者對(duì)巷道圍巖變形時(shí)空效應(yīng)和穩(wěn)定性方面展開(kāi)了大量研究。董方庭、宋宏偉等建立了巷道圍巖松動(dòng)圈支護(hù)理論,提出基于松動(dòng)圈的圍巖分類方法和錨噴支護(hù)機(jī)理[3-4]。黃慶享等根據(jù)巷道圍巖自穩(wěn)平衡現(xiàn)象,建立了巷道極限自穩(wěn)平衡圈理論,提出“治頂先治幫,治幫先治底”的巷道支護(hù)理念[5]。李曉斌等進(jìn)一步研究巷道圍巖穩(wěn)定性分類方法[6-9]。范慶忠分析巷道圍巖蠕變衍生機(jī)制,提出強(qiáng)度極限臨域內(nèi)的巖石蠕變擾動(dòng)效應(yīng)理論[10]。劉朝科等對(duì)圍巖進(jìn)行蠕變?cè)囼?yàn),得到三軸壓縮下圍巖蠕變變形規(guī)律和破壞特征[11-12]。王芝銀等基于巖石流變理論,研究不同應(yīng)力狀態(tài)下巖石黏彈塑性變形全過(guò)程的蠕變方程、蠕變破壞時(shí)間、蠕變變形與破壞屬性[13]。陳衛(wèi)忠、屈麗娜等通過(guò)三軸流變?cè)囼?yàn)分析煤巷圍巖蠕變規(guī)律,為預(yù)測(cè)巷道長(zhǎng)期變形和確定合理支護(hù)方式提供依據(jù)[14-15]。馬睿研究煤巷快速掘進(jìn)頂板穩(wěn)定性,提出合理的滯后支護(hù)方案[16]。綜上所述,當(dāng)前對(duì)巷道圍巖滯后支護(hù)主要采用物理試驗(yàn)、數(shù)值模擬、理論分析等研究方法,都強(qiáng)調(diào)巷道圍巖蠕變對(duì)巷道穩(wěn)定性的影響,重點(diǎn)關(guān)注滯后支護(hù)距離對(duì)巷道穩(wěn)定性的影響,對(duì)滯后時(shí)間的研究相對(duì)較少。
由于榆神府礦區(qū)淺埋煤層地壓較?。?7],煤層較穩(wěn)定,煤巷掘進(jìn)中通常根據(jù)經(jīng)驗(yàn)采用兩幫滯后支護(hù)以提高掘進(jìn)速度。目前,對(duì)兩幫滯后支護(hù)時(shí)間研究較少,實(shí)踐中根據(jù)經(jīng)驗(yàn)確定滯后支護(hù)時(shí)間存在一定的盲目性和安全隱患。以榆神府礦區(qū)張家峁煤礦14213膠帶運(yùn)輸巷為研究對(duì)象,采用現(xiàn)場(chǎng)調(diào)查、理論分析和FLAC3D數(shù)值計(jì)算相結(jié)合的方法,研究煤巷掘進(jìn)圍巖蠕變規(guī)律與穩(wěn)定性,確定兩幫合理滯后支護(hù)時(shí)間,為煤巷安全快速掘進(jìn)提供理論依據(jù)。
張家峁煤礦14213膠帶運(yùn)輸巷(簡(jiǎn)稱運(yùn)輸巷)位于4-2煤層,平均厚度3.34 m,平均埋深151.2 m,煤層傾角0.3°左右。覆巖土層厚度一般40 m左右,基巖厚度111.2 m。煤層直接頂為砂質(zhì)泥巖,厚2.42 m,泥質(zhì)膠結(jié),飽和抗壓強(qiáng)度17.16×106Pa,屬不穩(wěn)定型頂板?;卷敒榧?xì)粒砂巖,交錯(cuò)層理發(fā)育,孔隙式泥質(zhì)膠結(jié),厚17.76 m,飽和抗壓強(qiáng)度28.36×106Pa,屬較穩(wěn)定型頂板。直接底為泥質(zhì)粉砂巖,厚1.37 m,飽和抗壓強(qiáng)度為11.65×106Pa,屬較軟底板。運(yùn)輸巷煤層頂?shù)装邈@孔柱狀如圖1所示。
圖1 運(yùn)輸巷鉆孔柱狀圖Fig.1 Column diagram of borehole in headgate
運(yùn)輸巷斷面形狀為矩形,巷道寬6.0 m,高3.3 m,斷面面積19.8 m2。頂板采用錨網(wǎng)支護(hù),幫部采用錨桿支護(hù),巷道斷面如圖2所示。
圖2 巷道支護(hù)斷面(mm)Fig.2 Section of headgate support
頂板錨桿間距1 040 mm,排距1 200 mm,頂部最外側(cè)錨桿距幫400 mm,向幫部偏斜10°布置,其余錨桿垂直布置,每排6根錨桿,錨桿初始錨固力大于60 kN,預(yù)緊扭矩大于100 N·m。幫部錨桿間距1 000 mm,排距1 200 mm,幫部最上方錨桿距頂板500 mm,向頂部偏斜10°布置,其余錨桿均垂直輪廓線布置,每排4根錨桿。非開(kāi)采幫錨桿采用φ22 mm×1 800 mm左旋螺紋鋼錨桿,錨桿初始錨固力不低于60 kN,預(yù)緊扭矩不低于100 N·m。開(kāi)采幫采用φ20 mm×1 800 mm玻璃鋼錨桿,錨桿初始錨固力不低于60 kN,預(yù)緊扭矩不低于60 N·m。
巷道開(kāi)挖后,圍巖應(yīng)力重新分布,當(dāng)應(yīng)力達(dá)到或超過(guò)圍巖強(qiáng)度時(shí)圍巖發(fā)生破壞,從巷道周邊逐步向深部擴(kuò)展形成圍巖松動(dòng)圈[18-19],如圖3所示。
圖3 巷道開(kāi)挖后圍巖應(yīng)力分布狀態(tài)Fig.3 Stress distribution of surrounding rock after headgate excavation
巷道圍巖松動(dòng)圈的大小、圍巖強(qiáng)度和應(yīng)力相關(guān),巷道支護(hù)的作用主要是增強(qiáng)松動(dòng)區(qū)(Ⅰ區(qū))圍巖殘余強(qiáng)度,抑制碎脹變形,控制裂隙發(fā)育。對(duì)于矩形巷道,確定巷道松動(dòng)圈的方法主要有等效圓法[20-21],將矩形巷道等效為圓形巷道,通過(guò)計(jì)算圓形巷道塑性區(qū)范圍確定其松動(dòng)范圍。
根據(jù)莫爾-庫(kù)倫強(qiáng)度準(zhǔn)則及彈性理論可知,靜水壓力作用下的圓形巷道在彈性區(qū)和塑性區(qū)的徑向應(yīng)力和切向應(yīng)力為
式中 σer為彈性區(qū)徑向應(yīng)力,Pa;σeθ為彈性區(qū)環(huán)向應(yīng)力,Pa;σpθ為塑性區(qū)徑向應(yīng)力,Pa;σpr為塑性區(qū)環(huán)向應(yīng)力,Pa;r為圍巖中任一點(diǎn)與等效圓形巷道中心的距離,m;p0為原巖應(yīng)力,Pa;Rp為塑性區(qū)半徑,m;R0為圓形巷道半徑,m;C為圍巖的黏聚力,Pa;φ為圍巖的內(nèi)摩擦角,(°)。
根據(jù)圖3,切向應(yīng)力σθ的最大值位于巷道彈、塑性區(qū)的交界處,由交界處向巷道周邊逐漸減小并恢復(fù)至原巖應(yīng)力狀態(tài)。由于巷道的彈、塑性邊界處σθ相等,由式(2)和式(4)得,松動(dòng)圈半徑為
設(shè)矩形巷道寬度為2a,高度為2b,則矩形巷道的等效圓形巷道半徑,代入式(5)則可以得出等效松動(dòng)圈半徑。則矩形巷道頂板松動(dòng)高度hct和兩幫松動(dòng)寬度hcs分別為
式中 a為矩形巷道寬度的一半,m;b為矩形巷道高度的一半,m。
根據(jù)運(yùn)輸巷圍巖和覆巖資料,基巖平均容重為24 kN/m3,土層平均容重為18 kN/m3;4-2煤層內(nèi)摩擦角平均為37.41°,黏聚力為1.46×106Pa。巷道寬度6.0 m,高度3.3 m,即a=3.0 m,b=1.65 m,等效圓形巷道半徑R0=3.42 m。將相關(guān)參數(shù)代入式(5)、式(6)和式(7),可得運(yùn)輸巷頂板松動(dòng)范圍hct=1.87 m,兩幫松動(dòng)范圍hcs=0.52 m。
根據(jù)圍巖穩(wěn)定性分類[3],見(jiàn)表1,運(yùn)輸巷兩幫松動(dòng)圈位于40~100 cm,屬于較穩(wěn)定圍巖。因此,該運(yùn)輸巷圍巖較穩(wěn)定,具備滯后支護(hù)條件。
表1 圍巖穩(wěn)定性分類Table 1 Classification of surrounding rock stability
巷道圍巖的蠕變[22]一般包含初始蠕變Ⅰ、穩(wěn)定蠕變Ⅱ和加速蠕變Ⅲ的3個(gè)階段,如圖4所示。圍巖蠕變主要是由巖石損傷隨時(shí)間演化引起的,巖石損傷具有一定的臨界值,當(dāng)應(yīng)力水平低于巖石損傷臨界值,巖石將發(fā)生穩(wěn)定蠕變,不會(huì)發(fā)生破壞;當(dāng)應(yīng)力水平達(dá)到巖石損傷臨界值時(shí),巖石微裂隙將加速擴(kuò)展,出現(xiàn)加速蠕變,最終巖石發(fā)生破壞。因此,巷道滯后支護(hù)必須在加速蠕變階段前進(jìn)行,將巷道圍巖變形控制在穩(wěn)定蠕變階段,保障巷道安全。
圖4 巖石蠕變過(guò)程Fig.4 Creep process of rock
Cvisc流變模型是將馬克斯韋爾(Maxwell)模型、開(kāi)爾文(Kelvin)模型和塑性元件(St.V體)串聯(lián),即柏格斯(Burgers)模型與一個(gè)塑性元件串聯(lián)得到的黏彈塑性模型,如圖5所示。圖中σ為巖體應(yīng)力,EM,EK,ηM,ηK分別為馬克斯韋爾彈性模量、開(kāi)爾文彈性模量、馬克斯韋爾黏性系數(shù)和開(kāi)爾文黏性系數(shù);σf為屈服應(yīng)力,若外力小于σf,則不會(huì)產(chǎn)生變形,一旦當(dāng)σ達(dá)到σf時(shí),會(huì)在等應(yīng)力下出現(xiàn)塑性流變;εM,εK,ερ分別為馬克斯韋爾體、開(kāi)爾文體的應(yīng)變和塑性應(yīng)變。Cvisc流變模型可呈現(xiàn)巖土彈性、塑性和粘性特性,能夠描述壓縮及剪切流變特性[23],能夠準(zhǔn)確反映巷道圍巖蠕變特性。
圖5 Cvisc流變模型Fig.5 Cvisc rheological model
如圖5所示,Cvisc流變模型由理想彈簧、理想黏壺和塑性元件3種基本元件組成,可得
由式(8)、式(9)得出柏格斯(Burgers)模型一維蠕變方程為
因此,Cvisc模型一維蠕變方程為
采用Cvisc流變模型,模型參數(shù)賦值時(shí)除了考慮煤巖力學(xué)參數(shù)外,還考慮開(kāi)爾文黏性系數(shù)ηK,馬克斯韋爾黏性系數(shù)ηM,膨脹角α,開(kāi)爾文剪切模量GK和馬克斯韋爾剪切模量GM,可通過(guò)剪切模量與彈性模量的換算關(guān)系由開(kāi)爾文剪切模量和馬克斯韋爾剪切模量換算出對(duì)應(yīng)的彈性模量,煤巖力學(xué)參數(shù)可反演出蠕變參數(shù)?;贑visc模型的FLAC3D軟件完成式(8)~式(11)的運(yùn)算,可以模擬巷道圍巖蠕變過(guò)程和規(guī)律,結(jié)果更加接近實(shí)際。
為揭示巷道開(kāi)挖后兩幫變形與破壞時(shí)間效應(yīng),采用FLAC3D中的Cvisc蠕變模型模擬14213膠帶運(yùn)輸巷兩幫不同滯后支護(hù)時(shí)間下的變形破壞規(guī)律,確定合理的兩幫滯后支護(hù)時(shí)間。
根據(jù)4-2煤層地質(zhì)條件及巷道煤巖力學(xué)參數(shù)構(gòu)建FLAC3D數(shù)值計(jì)算巷道模型,煤巖力學(xué)參數(shù)見(jiàn)表2,模型走向長(zhǎng)度86 m,傾向長(zhǎng)度100 m,高度54.5 m,模擬巷道斷面寬6 m,高3.3 m。模型共計(jì)172 200個(gè)單元,182 019個(gè)節(jié)點(diǎn)。模型頂部為自由邊界,底部為固定邊界,模型前后左右限制水平位移,由于模型未模擬至地表,模型以上部分根據(jù)巖層厚度及容重計(jì)算得出頂部施加2.1 MPa的等效載荷。
表2 煤巖力學(xué)參數(shù)Table 2 Mechanical parameters of coal and rock
巷道頂板錨桿支護(hù)對(duì)于巷道圍巖穩(wěn)定具有重要作用。為了分析巷道頂板支護(hù)強(qiáng)度對(duì)兩幫蠕變效應(yīng)的影響,采用FLAC3D模擬不同頂板支護(hù)強(qiáng)度下的巷道兩幫變形情況,如圖6所示??梢?jiàn),2~38 d內(nèi),頂板不支護(hù)、頂板錨桿支護(hù)60 kN錨固力和120 kN錨固力3種情況的兩幫移近量接近;40 d后,頂板不支護(hù)相較于頂板錨桿支護(hù)時(shí)兩幫移近量有所增加,最大達(dá)到295 mm;頂板錨桿支護(hù)120 kN錨固力相較于60 kN錨固力的兩幫移近量略有減小,2種情況兩幫變形量接近??紤]到60 kN錨固力施工難度較120 kN錨固力小,確定合理的頂板錨桿錨固力為60 kN。
圖6 不同頂板支護(hù)情況下兩幫蠕變Fig.6 Creep of two ribs under different roof support
運(yùn)輸巷開(kāi)挖后,對(duì)頂板進(jìn)行及時(shí)的錨桿支護(hù),兩幫不支護(hù),數(shù)值計(jì)算模型如圖7所示。運(yùn)輸巷開(kāi)挖后僅頂板支護(hù)時(shí),水平位移分布如圖8所示,巷道兩幫移近量蠕變曲線如圖9所示。
圖7 巷道僅頂板支護(hù)時(shí)計(jì)算模型Fig.7 Calculation model of headgate with only roof support
圖8 巷道僅頂板支護(hù)時(shí)水平位移分布Fig.8 Horizontal displacement distribution of headgate with only roof support
圖9 巷道僅頂板支護(hù)時(shí)兩幫移近蠕變Fig.9 Approaching creep of two ribs of headgate with only roof support
4.1.1 巷道兩幫移動(dòng)變形時(shí)間效應(yīng)
1)初始蠕變階段。巷道開(kāi)挖5 d內(nèi),兩幫移近速率由10 mm/d迅速下降,并穩(wěn)定3 mm/d以內(nèi)。
2)穩(wěn)定蠕變階段。巷道開(kāi)挖6~28 d內(nèi),兩幫移近速率由3 mm/d緩慢下降為1 mm/d,以平均2 mm/d穩(wěn)速移近,移近量增長(zhǎng)緩慢。
3)加速蠕變階段。巷道開(kāi)挖29 d后,進(jìn)入加速蠕變階段。巷道開(kāi)挖29~40 d,兩幫移近變形出現(xiàn)加速蠕變,40 d時(shí),兩幫移近速率增加至36 mm/d,增大了18倍,巷道兩幫變形劇烈,承載能力和穩(wěn)定性明顯下降。巷道開(kāi)挖40 d后,兩幫移近速率下降至3 mm/d內(nèi)。65 d后兩幫移近量穩(wěn)定在278 mm。
4.1.2 巷道兩幫塑性區(qū)發(fā)育時(shí)間效應(yīng)
僅頂板支護(hù)情況下,運(yùn)輸巷兩幫塑性區(qū)隨時(shí)間變化規(guī)律如圖10所示。巷道開(kāi)挖28 d以內(nèi),兩幫塑性區(qū)深度為0.5 m,范圍較小。巷道開(kāi)挖40 d以后,兩幫塑性區(qū)發(fā)育深度達(dá)到1.3 m,并且隨著時(shí)間的增長(zhǎng),塑性區(qū)范圍不斷擴(kuò)大。
圖10 巷道僅頂板支護(hù)時(shí)塑性區(qū)分布Fig.10 Plastic zone of headgate with only roof support
4.1.3 巷道頂板下沉?xí)r間效應(yīng)
僅頂板支護(hù)情況下,運(yùn)輸巷頂板下沉蠕變?nèi)鐖D11所示。巷道剛開(kāi)挖頂板下沉速率3.8 mm/d,然后迅速下降。開(kāi)挖4~29 d頂板下沉速率穩(wěn)定在0.25~0.8 mm/d,基本處于穩(wěn)速變形。巷道開(kāi)挖30~31 d時(shí),頂板下沉速率上升至3.3~3.5 mm/d,然后迅速下降并穩(wěn)定在0.3 mm/d以內(nèi)。開(kāi)挖40 d后頂板下沉穩(wěn)定,最大下沉量35.3 mm。巷道頂板下沉未出現(xiàn)加速蠕變,表明頂板及時(shí)支護(hù)效果明顯。
圖11 巷道僅頂板支護(hù)時(shí)頂板下沉蠕變Fig.11 Roof subsidence creep of headgate with only roof support
綜上分析,巷道開(kāi)挖28 d內(nèi)兩幫處于穩(wěn)定蠕變期,29 d后開(kāi)始加速蠕變,兩幫滯后支護(hù)需在巷道掘進(jìn)28 d內(nèi)進(jìn)行。
為保證巷道穩(wěn)定性,必須在兩幫加速蠕變之前進(jìn)行滯后支護(hù)。為此,開(kāi)展了巷道兩幫滯后支護(hù)的模擬,滯后支護(hù)選擇在巷道開(kāi)挖后28 d進(jìn)行(巷道加速蠕變前),如圖12所示。
圖12 巷道兩幫滯后支護(hù)計(jì)算模型Fig.12 Calculation model of headgate with two ribs lag support
4.2.1 巷道兩幫移動(dòng)變形時(shí)間效應(yīng)
運(yùn)輸巷兩幫滯后支護(hù)后,水平位移如圖13所示,兩幫移近蠕變曲線如圖14所示。
圖13 巷道兩幫滯后支護(hù)時(shí)水平位移分布Fig.13 Horizontal displacement distribution of headgate with two ribs lag support
圖14 巷道兩幫滯后支護(hù)時(shí)兩幫移近蠕變Fig.14 Approaching creep of two ribs of headgate with two ribs lag support
巷道掘進(jìn)滯后28 d進(jìn)行兩幫支護(hù)后,巷道兩幫移近速率由支護(hù)前的平均2 mm/d降為0.9 mm/d,下降了55%。巷道兩幫移近變形在56 d后達(dá)到穩(wěn)定,未出現(xiàn)加速蠕變,兩幫最大移近量為92.8 mm,比兩幫不支護(hù)減小67%。巷道頂板和兩幫穩(wěn)定,說(shuō)明在加速蠕變前進(jìn)行滯后支護(hù)效果明顯。
4.2.2 巷道兩幫塑性區(qū)發(fā)育時(shí)間效應(yīng)
巷道兩幫滯后支護(hù)時(shí),隨著時(shí)間的增加,巷道頂板未出現(xiàn)拉破壞,僅在巷幫及頂板中部出現(xiàn)小范圍塑性區(qū),如圖15所示。巷道開(kāi)挖40 d后,兩幫的塑性區(qū)發(fā)育深度0.5 m,比兩幫不支護(hù)減小61.5%。
圖15 巷道兩幫滯后支護(hù)時(shí)塑性區(qū)分布Fig.15 Plastic zone of headgate with two ribs lag support
4.2.3 巷道頂板下沉?xí)r間效應(yīng)
巷道兩幫滯后支護(hù)情況下,巷道頂板下沉蠕變曲線如圖16所示。開(kāi)挖20~40 d頂板下沉速率在0.5~2.2 mm/d范圍,平均下沉速率1.4 mm/d,頂板未出現(xiàn)加速蠕變??梢?jiàn),兩幫支護(hù)后頂板最大下沉速率由原來(lái)的3.2 mm/d下降為2.2 mm/d,巷道頂板下沉在40 d后趨于穩(wěn)定,頂板處于穩(wěn)定蠕變。
圖16 巷道兩幫滯后支護(hù)時(shí)頂板下沉蠕變Fig.16 Roof subsidence creep of headgate with two ribs lag support
根據(jù)上述研究,14213膠帶運(yùn)輸巷的最大滯后支護(hù)時(shí)間為掘進(jìn)后28 d。張家峁煤礦據(jù)此進(jìn)行巷道掘進(jìn)支護(hù)實(shí)踐,現(xiàn)場(chǎng)支護(hù)如圖17所示。
圖17 巷道頂板和幫部支護(hù)現(xiàn)場(chǎng)Fig.17 Site of headgate roof and two ribs support
根據(jù)4-2煤層14213膠帶運(yùn)輸巷頂板離層儀3#測(cè)點(diǎn)觀測(cè)情況,如圖18所示,該巷道自2021年2月至9月,頂板離層儀深部基點(diǎn)觀測(cè)數(shù)據(jù)最大值為12 mm,頂板離層量很小;實(shí)測(cè)巷道兩幫移近量小于30 mm,無(wú)片幫情況,巷道圍巖穩(wěn)定。實(shí)踐表明,采用合理的兩幫滯后支護(hù),提高掘進(jìn)速度,促進(jìn)工作面安全高效開(kāi)采。
圖18 頂板離層儀3#測(cè)點(diǎn)深部基點(diǎn)離層量Fig.18 Quantity of abscission at the deep base point of 3#measuring point of the roof abscission instrument
1)根據(jù)張家峁煤礦14213膠帶運(yùn)輸巷斷面及圍巖條件,通過(guò)松動(dòng)圈理論和等效圓法,得出矩形巷道兩幫松動(dòng)范圍為52 cm,巷道兩幫屬于較穩(wěn)定圍巖,可以通過(guò)兩幫滯后支護(hù),提高掘進(jìn)速度。
2)根據(jù)圍巖蠕變規(guī)律,合理的滯后支護(hù)應(yīng)當(dāng)在圍巖加速蠕變之前進(jìn)行,以保障巷道安全。
3)張家峁煤礦14213膠帶運(yùn)輸巷頂板及時(shí)支護(hù)兩幫無(wú)支護(hù)時(shí),28 d內(nèi)兩幫處于穩(wěn)定蠕變,29 d后出現(xiàn)加速蠕變,兩幫滯后支護(hù)需在28 d內(nèi)進(jìn)行;巷道兩幫滯后28 d(加速蠕變前)進(jìn)行支護(hù),兩幫移近速率下降55%,兩幫移近量下降67%,未出現(xiàn)加速蠕變,滯后支護(hù)安全。
4)合理的兩幫滯后支護(hù),可保障巷道安全,有效提高巷道掘進(jìn)速度。