韋晗丹 邵亮 李蓓君 曹林 何選盟 劉輝
摘要:采用固相法合成了LixLa0.57TiO3(LLTO)固體電解質(zhì)材料.利用XRD、SEM對(duì)電解質(zhì)結(jié)構(gòu)和相組成進(jìn)行了表征,研究了不同燒結(jié)溫度和鋰含量變化對(duì)電解質(zhì)離子電導(dǎo)率的影響,并研究了電解質(zhì)的鋰離子擴(kuò)散活化能.結(jié)果表明:隨著燒結(jié)溫度的升高,固體電解質(zhì)燒結(jié)越致密,主晶相為立方晶型,當(dāng)燒結(jié)溫度高于1 300 ℃,開(kāi)始出現(xiàn)四方相LLTO,導(dǎo)致鋰離子電導(dǎo)率下降;隨著鋰含量的增加,LLTO晶格發(fā)生畸變,鋰離子電導(dǎo)率先增加后減小.最終,在鋰含量為0.42,經(jīng)1 300 ℃燒結(jié)的LLTO固體電解質(zhì)具有最佳的離子電導(dǎo)率,其電導(dǎo)率達(dá)到1.30×10-3S·cm-1,鋰離子擴(kuò)散活化能為0.26 eV.
關(guān)鍵詞:LixLa0.57TiO3;? 離子導(dǎo)電率; 燒結(jié)溫度; 鋰含量
中圖分類號(hào):TB321文獻(xiàn)標(biāo)志碼: A
Study on preparation and performance of LixLa0.57TiO3solid electrolyte
WEI Han-dan SHAO Liang LI Bei-jun CAO Lin HE Xuan-meng LIU Hui(1.College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi′an 710021, China; 2.School of Material Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi′an 710021, China; 3.Binzhou Chengxin Construction Co., Ltd., Binzhou 256800, China)
Abstract:The LixLa0.57TiO3(LLTO) solid electrolyte were synthesized by the solid-state method.The structure and phase composition of electrolyte were characterized by XRD and SEM.The effects of sintering temperature and of lithium content on the ionic conductivity of the LLTO electrolyte were investigated,and the lithium ionic diffusion activation energy was furtherly calculated.The results showed that the sintering density of LLTO electrolyte increased with elevating the sintering temperature,and the main crystalline phase of electrolyte were cubic crystalline.When the sintering temperature was above 1 300 ℃,the tetragonal phase LLTO began to appear in LLTO electrolyte,resulting in the decrease of lithium ionic conductivity.As lithium content of LLTO increasing,the crystalline lattice was distorted,leading to the lithium ionic conductivity firstly increased and then decreased.Finally,the LLTO solid electrolyte sintered at 1 300 ℃ with a lithium content of 0.42 exhibited the best lithium ionic conductivity,which reaches up to 1.30×10-3S·cm-1,and the lithium ionic diffusion activation energy was 0.26 eV.
Key words:LixLa0.57TiO3; ionic conductivity; sintering temperature; lithium content
0引言
鋰離子電池由于具有高的能量密度,自放電能力小,可靈活組裝等優(yōu)點(diǎn)被廣泛應(yīng)用于新興產(chǎn)業(yè)中,如電動(dòng)汽車,固定式能源儲(chǔ)存系統(tǒng)、便攜式電子產(chǎn)品、航天潛海等設(shè)備中[1-3].在鋰離子電池構(gòu)造中,電解質(zhì)作為電池的重要組成部分,不僅在正負(fù)極間輸送和傳導(dǎo)電流,而且很大程度決定電池的工作機(jī)制,影響電池的比容量、安全性能和倍率充放電性能、循環(huán)壽命和生產(chǎn)成本.
目前,市場(chǎng)上的鋰離子電池電解質(zhì)主要為醚類、碳酸酯類的液態(tài)電解質(zhì)[4-7],其可以使鋰離子溶劑化,從而具有高的鋰離子傳輸作用.但液態(tài)電解質(zhì)在使用過(guò)程中易燃、易泄漏、易揮發(fā),存在極大的安全隱患[8,9].同時(shí),鋰負(fù)極在液態(tài)電解質(zhì)中枝晶現(xiàn)象嚴(yán)重,致使電池庫(kù)倫效率下降,存在電池短路的危險(xiǎn)[10].固體電解質(zhì)因其良好的化學(xué)穩(wěn)定性、機(jī)械強(qiáng)度高、工作溫度窗口寬等優(yōu)點(diǎn),可有效解決液態(tài)電解質(zhì)易燃、易揮發(fā)等安全問(wèn)題,同時(shí)能夠抑制鋰枝晶生長(zhǎng),可滿足高能量密度電池的應(yīng)用[11-13].因此,固體電解質(zhì)有望替代液態(tài)電解質(zhì)成為下一代全固態(tài)電池的重要組成部分.
當(dāng)前,固態(tài)電解質(zhì)的研究主要集中在鋰超離子固體電解質(zhì)(LISICON)[14]、鈉超離子固體電解質(zhì)(NASICON)[15]、石榴石型固體電解質(zhì)[16]、鈣鈦礦型固體電解質(zhì)[17]、硫化物型固體電解質(zhì)[18]、聚合物固體電解質(zhì)[19]等.其中鈣鈦礦型鈦酸鑭鋰(LLTO)由于其較高的化學(xué)穩(wěn)定性和優(yōu)異的離子電導(dǎo)率(10-3 S·cm-1)而被關(guān)注.在鈦酸鑭鋰鈣鈦礦(ABO3)晶體結(jié)構(gòu)中,鋰、鑭和空位共同占據(jù)A位置,鈦占據(jù)B位置,其離子電導(dǎo)率主要取決于載流子鋰離子的濃度、A位空位的濃度和鋰離子傳輸通道的尺寸,高離子電導(dǎo)率的獲得歸功于高濃度的載流離子和高濃度的A位空位.鈣鈦礦鈦酸鑭鋰具有較寬的容許因子,大多數(shù)金屬離子均能進(jìn)入鈣鈦礦結(jié)構(gòu)中[20].因此鈣鈦礦鈦酸鑭鋰固體電解質(zhì)可以通過(guò)離子摻雜來(lái)提升離子電導(dǎo)率.
wang等[21]通過(guò)固相法制備Sr摻雜的La0.57-2x/3SrxLi0.3TiO3(x≤0.12)固態(tài)電解質(zhì),研究發(fā)現(xiàn),Sr2+的引入可以提高鈣鈦礦固態(tài)電解質(zhì)鋰離子電導(dǎo)率,總電導(dǎo)率可達(dá)1.12×10-3S·cm-1.胡志偉等[22]研究發(fā)現(xiàn)Zr4+摻雜鈦酸鑭鋰固體電解質(zhì)的晶界特性得到明顯優(yōu)化,Zr4+摻雜量為6%的鈦酸鑭鋰固體電解質(zhì)具有高的離子電導(dǎo)率.Hu等[23]研究了Ge摻雜Li0.33La0.56TiO3,其中Li0.43La0.56Ti0.95Ge0.05O3電解質(zhì)在該系列電解質(zhì)中表現(xiàn)出最高的燒結(jié)性和Li離子傳導(dǎo)性,其總電導(dǎo)率為1.2×10-5S·cm-1.相對(duì)來(lái)說(shuō),對(duì)于增加載流子鋰離子濃度來(lái)提升電解質(zhì)離子電導(dǎo)率的研究較少,鋰離子濃度增加對(duì)電解質(zhì)結(jié)構(gòu)和性能的影響有待進(jìn)一步研究.
本文采用固相法制備鈦酸鑭鋰固體電解質(zhì),研究鋰含量和燒成工藝對(duì)固體電解質(zhì)結(jié)構(gòu)和離子電導(dǎo)率的影響,為進(jìn)一步探明鈦酸鑭鋰鋰離子傳導(dǎo)機(jī)制奠定基礎(chǔ).
1實(shí)驗(yàn)部分
1.1主要原料
碳酸鋰(Li2CO3)、氧化鑭(La2O3)、二氧化鈦(TiO2)、異丙醇(C3H8O):均為分析純,由國(guó)藥集團(tuán)有限公司提供.
1.2實(shí)驗(yàn)過(guò)程
LixLa0.56TiO3(x=0.33-0.51)固體電解質(zhì)采用高溫固相燒結(jié)法制備.具體步驟如下:按照化學(xué)計(jì)量比分別稱取分析純的La2O3、Li2CO3以及TiO2原料,其中Li2CO3過(guò)量10 wt%用于彌補(bǔ)鋰高溫?fù)]發(fā).將稱好的原料放入尼龍罐中球磨混合5 h,球磨介質(zhì)選用2~30 mm的氧化鋯球.然后,將球磨好的混合料放入馬弗爐中,經(jīng)1 000 ℃預(yù)煅燒5 h,得到煅燒粉體.稱取0.5 g煅燒粉體,并向煅燒粉體中加入少量粘結(jié)劑(1%的聚乙二醇溶液),采用壓片機(jī)在室溫、20 MPa的壓力下將煅燒粉體壓成陶瓷生坯,陶瓷生坯的直徑為10 mm,厚度約為2 mm.最后,將陶瓷生坯分別在1 200 ℃、1 250 ℃、1 300 ℃、1 350 ℃煅燒5 h,得到LLTO固體電解質(zhì)樣品.
采用X射線衍射儀(德國(guó)布魯克Bruker公司)對(duì)固體電解質(zhì)的晶體結(jié)構(gòu)進(jìn)行了表征.固體電解質(zhì)的微觀結(jié)構(gòu)和形貌采用掃描電鏡(FEI,Apero S)進(jìn)行分析.采用電化學(xué)工作站(上海辰華CHI600E)分析固體電解質(zhì)的電化學(xué)阻抗,測(cè)量頻率從0.5 Hz到0.1 MHz.測(cè)試前對(duì)固體電解質(zhì)進(jìn)行打磨、拋光、超聲清洗、干燥處理,處理后的樣品上下表面涂覆導(dǎo)電銀漿作為離子阻塞電極,隨后進(jìn)行電化學(xué)阻抗測(cè)試.最后根據(jù)電化學(xué)阻抗數(shù)據(jù)進(jìn)行離子電導(dǎo)率計(jì)算.電導(dǎo)率的計(jì)算公式如下:
σ=L/R·S(1)
式(1)中:σ為電導(dǎo)率(S·cm-1);L為材料厚度(cm);S為材料面積(cm2);R為材料電阻(Ω),由電化學(xué)阻抗數(shù)據(jù)得到.
2結(jié)果與討論
2.1物相分析
圖1是不同溫度燒結(jié)LLTO固體電解質(zhì)的XRD圖譜.從圖可以看出,經(jīng)1 200 ℃~1 300 ℃燒結(jié)的固體電解質(zhì)均為立方(Cubic)LLTO,衍射峰對(duì)應(yīng)于PDF卡片46-0465.而燒結(jié)溫度在1 350 ℃時(shí),固體電解質(zhì)在11.6,25.9和34.6出現(xiàn)新的衍射峰,對(duì)應(yīng)于PDF卡片46-0467,屬于四方(Tetragonal)LLTO.將46.8附近的衍射峰放大(圖1(b)),發(fā)現(xiàn)經(jīng)1 350 ℃燒結(jié)的固體電解質(zhì)出現(xiàn)分裂峰,進(jìn)一步證實(shí)了樣品主晶相為四方LLTO.且隨著燒成溫度的升高,衍射峰變得更加尖銳,說(shuō)明固體電解質(zhì)的結(jié)晶性增加.根據(jù)文獻(xiàn)[24]可知,立方LLTO的離子電導(dǎo)率大于四方LLTO,因此實(shí)驗(yàn)選定LLTO的最佳燒結(jié)溫度為1 300 ℃.
圖2為不同鋰含量LLTO固體電解質(zhì)經(jīng)1 300 ℃燒結(jié)樣品的XRD圖譜.從圖可以看出,當(dāng)鋰含量低于0.33時(shí),固體電解質(zhì)為四方晶型鈦酸鑭鋰.鈦酸鑭晶體本身為正交晶型,鋰離子占據(jù)部分鑭離子位置后,晶胞優(yōu)化調(diào)整為四方晶型.當(dāng)鋰含量高于0.33時(shí),固體電解質(zhì)為立方晶型鈦酸鑭鋰,且隨著鋰含量的增加,(110)晶面的衍射峰向小角度偏移,說(shuō)明隨著鋰含量的增加,立方LLTO的晶胞尺寸增大.表1為不同鋰含量LLTO固體電解質(zhì)的晶胞參數(shù).當(dāng)鋰含量增加至0.42以上時(shí),LLTO固體電解質(zhì)中出現(xiàn)了Li2Ti3O7(PDF#40-0303)和Li2O(PDF#12-0254)雜質(zhì)相,這些雜質(zhì)相的鋰離子電導(dǎo)率較低,最終將影響LLTO固體電解質(zhì)的鋰離子電導(dǎo)率.
2.2形貌與結(jié)構(gòu)分析
圖3(a)~(d)為不同溫度燒結(jié)LLTO固體電解質(zhì)的SEM照片.從圖可以看出,燒結(jié)體LLTO晶粒細(xì)小,隨著燒結(jié)溫度的升高,氣孔減少,致密度提高,這與固體電解質(zhì)密度測(cè)試結(jié)果相一致,見(jiàn)圖4(a)所示.1 200 ℃燒結(jié)的固體電解質(zhì),斷面氣孔含量高,晶界結(jié)合不緊密,這將嚴(yán)重影響鋰離子在電解質(zhì)內(nèi)部的傳輸,離子電導(dǎo)率偏低.隨著燒結(jié)溫度的提高,固體電解質(zhì)變得致密,晶界結(jié)合緊密,同時(shí)晶粒也逐漸長(zhǎng)大,晶界減少,這有助于提升固體電解質(zhì)的離子電導(dǎo)率.而1 350 ℃燒結(jié)的固體電解質(zhì),有部分熔融的液相存在,而且部分晶粒異常長(zhǎng)大,晶體朝著四方相轉(zhuǎn)變,這些結(jié)果導(dǎo)致固體電解質(zhì)的離子電導(dǎo)率下降.
圖3不同溫度燒結(jié)LLTO固體電解質(zhì)SEM照片圖4燒結(jié)LLTO固體電解質(zhì)的密度圖5為不同鋰含量LLTO固體電解質(zhì)SEM照片.從圖可以看出,鋰含量較低時(shí),固體電解質(zhì)晶粒棱角分明,晶體發(fā)育完整,可見(jiàn)明顯的四方體.隨著鋰含量的增加,晶體棱角變得圓潤(rùn),固體電解質(zhì)致密度增加,見(jiàn)圖4(b)所示.在鋰含量小于0.42時(shí),固體電解質(zhì)晶粒大小變化不大,而鋰含量在0.45~0.48時(shí),固體電解質(zhì)晶粒異常長(zhǎng)大,出現(xiàn)部分晶粒熔融顯現(xiàn).說(shuō)明鋰離子在固體電解質(zhì)中的助熔作用得以發(fā)揮,較多的熔融玻璃相反而會(huì)降低固體電解質(zhì)的鋰離子電導(dǎo)率.因此,合適的鋰含量也是控制固體電解質(zhì)致密度和鋰離子電導(dǎo)率的關(guān)鍵.
圖6為固體電解質(zhì)的元素面掃照片和EDX能譜圖.由于鋰元素為輕元素,所以面掃照片和EDX能譜中并不能探測(cè)到鋰元素,而La、Ti和O元素均勻的分布在固體電解質(zhì)中,且La、Ti和O元素含量比接近Li0.42La0.57TiO3的化學(xué)計(jì)量比,進(jìn)一步證實(shí)了所合成的固體電解質(zhì)為均一的鈦酸鑭鋰.
2.3交流阻抗分析
圖7為不同燒結(jié)溫度制備的LLTO固體電解質(zhì)的阻抗圖譜.表2為相應(yīng)的固體電解質(zhì)室溫離子電導(dǎo)率.由圖7和表2可知,隨著燒結(jié)溫度的升高,固體電解質(zhì)的離子電導(dǎo)率也隨之增大.這是因?yàn)闊Y(jié)溫度低時(shí),晶粒燒結(jié)不致密,晶粒間接觸不充分,存在孔洞等缺陷,這不利于鋰離子的傳導(dǎo).隨著燒結(jié)溫度的提高,晶粒逐漸長(zhǎng)大,晶界形成,晶粒間接觸緊密,為鋰離子的傳導(dǎo)搭建其通道,提高了鋰離子的電導(dǎo)率.當(dāng)燒結(jié)溫度達(dá)到了1 300 ℃,固體電解質(zhì)較為致密,比重大,離子電導(dǎo)率達(dá)到了最高8.56×10-4S·cm-1.而燒結(jié)溫度升高至1 350 ℃時(shí),固體電解質(zhì)雖然也較為致密,部分晶粒異常長(zhǎng)大,而且出現(xiàn)四方LLTO雜質(zhì)相,因此其鋰離子電導(dǎo)率反而下降.
圖8為不同鋰含量的LLTO固體電解質(zhì)的阻抗圖譜.通過(guò)對(duì)比并結(jié)合表2可知,隨著鋰含量的增加,固體電解質(zhì)室溫離子電導(dǎo)率隨之增大.這是因?yàn)殇嚭吭黾?,增加了固體電解質(zhì)中載流子鋰離子的濃度,因此離子電導(dǎo)率隨之增加.當(dāng)鋰含量增加至0.42時(shí),固體電解質(zhì)的離子電導(dǎo)率最高為1.30×10-3S·cm-1.隨著鋰含量進(jìn)一步增加,部分晶粒開(kāi)始熔融,產(chǎn)生的玻璃相增加,且出現(xiàn)雜質(zhì)相Li2Ti3O7和Li2O,這不利于鋰離子的傳輸.因此,離子電導(dǎo)率反而下降.
圖8不同鋰含量LLTO固體電解質(zhì)的阻抗圖譜Arrhenius曲線是以材料離子電導(dǎo)率的對(duì)數(shù)為縱軸,以相應(yīng)熱力學(xué)溫度的倒數(shù)為橫軸,得到的log與1/T的關(guān)系曲線,體系電導(dǎo)率與溫度依賴關(guān)系基本滿足Arrhenius[25]方程:
式(2)中:σ是電解質(zhì)的電導(dǎo)率,σ0是與載流子數(shù)目相關(guān)的指前因子,Ea是鋰離子遷移的活化能.圖9為基于不同溫度(20 ℃、40 ℃、60 ℃、80 ℃、100 ℃、120 ℃)下LLTO材料的Arrhenius曲線.由圖可以看出,lnσ與1 000/T呈現(xiàn)較好的線性關(guān)系,經(jīng)過(guò)計(jì)算得出在20 ℃到120 ℃范圍內(nèi)立方相LLTO的鋰離子活化能為0.26 eV,這反映了LLTO總電導(dǎo)率對(duì)溫度具有良好的響應(yīng),也意味著LLTO固體電解質(zhì)材料對(duì)溫度的電學(xué)穩(wěn)定性高.
3結(jié)論
采用固相燒結(jié)法制備了LLTO固體電解質(zhì).研究發(fā)現(xiàn),燒結(jié)溫度對(duì)固體電解質(zhì)的致密度影響較大,且隨著燒結(jié)溫度的升高出現(xiàn)立方相向四方相的轉(zhuǎn)變.隨著固體電解質(zhì)中的鋰含量增加,增加了載流子鋰離子濃度,固體電解質(zhì)的離子電導(dǎo)率增大,而鋰含量過(guò)高會(huì)導(dǎo)致晶粒熔融,產(chǎn)生的玻璃相增加,且出現(xiàn)Li2Ti3O7和Li2O雜質(zhì)相,離子電導(dǎo)率下降.在1 300 ℃燒結(jié)3 h可獲得致密的立方相LLTO固體電解質(zhì).當(dāng)鋰含量為0.42時(shí),固體電解質(zhì)的離子電導(dǎo)率可達(dá)1.30×10-3 S·cm-1.
參考文獻(xiàn)
[1] Hannan M A,Lipu M,Hussain A,et al.A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications:Challenges and recommendations[J].Renewable & Sustainable Energy Reviews,2017,78:834-854.
[2] 盧佳垚,厲英,倪培應(yīng),等.鈣鈦礦型鋰離子固體電解質(zhì)Li2x-ySr1-xTi1-yNbyO3的性能[J].工程科學(xué)學(xué)報(bào),2021,43(8):1 024-1 031.
[3] Manthiram A.A reflection on lithium-ion battery cathode chemistry[J].Nature Communications,2020,11(1):1-9.
[4] Catti M,Sommariva M,Ibberson R M.Tetragonal superstructure and thermal history of Li0.3La0.567TiO3(LLTO) solid electrolyte by neutron diffraction[J].Journal of Materials Chemistry,2007,13:1 300-1 307.
[5] Onishi H,Takai S,Yabutsuka T,et al.Synthesis and electrochemical properties of LATP-LLTO lithium Ion conductive composites[J].Electrochemistry Tokyo,2016,84(12):967-970.
[6] Cheng X B,Zhang R,Zhao C Z,et al.A review of solid electrolyte interphases on lithium metal anode[J].Advanced Science,2016,3(3):150-213.
[7] Uhlmann C,Braun P,Illig J,et al.Interface and grain boundary resistance of a lithium lanthanum titanate (Li3xLa2/3xTiO3,LLTO) solid electrolyte[J].Journal of Power Sources,2016,307(3):578-586.
[8] Wang R,Cui W,Chu F,et al.Lithium metal anodes:Present and future[J].Journal of Energy Chemistry,2020,48:145-159.
[9] 呂曉娟,孟繁麗,吳亞楠.鈣鈦礦型固體鋰離子電解質(zhì)的研究進(jìn)展[J].中國(guó)陶瓷,2019,55(4):1-6.
[10] Zhang Y,Meng Z,Wang Y.Sr doped amorphous LLTO as solid electrolyte material[J].Journal of the Electrochemical Society,2020,167(8):505-516
[11] Zinkevich T,Schwarz B,Braun P,et al.Effect of sintering temperature on Li diffusivity in Li0.29La0.57TiO3:Local hopping and long-range transport[J].Solid State Ionics,2020,357:475-486.
[12] Gao X,F(xiàn)isher C,Kimura T,et al.Lithium atom and A-site vacancy distributions in lanthanum lithium titanate[J].Chemistry of Materials,2013,25(9):1 607-1 614.
[13] 趙淑金,張楊,李國(guó)晶,等.Li2O摻雜Li3xLa2/3-xTiO3固體電解質(zhì)的制備及性能[J].硅酸鹽學(xué)報(bào),2010,38(1):50-53.
[14] Zhang B K,Yang L Y,Wang L W,et al.Cooperative transport enabling fast Li-ion diffusion in thio-LISICON Li10SiP2S12 solid electrolyte[J].Nano Energy,2019,62:844-852.
[15] Goodenough J B,Hong Y P,Kafalas J A.Fast Na+-ion transport in skeleton structures[J].Materials Research Bulletin,1976,11(2):203-220.
[16] Li Y,Chen X,Dolocan A,et al.Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries[J].Journal of the American Chemical Society,2018,140(20):6 448-6 455.
[17] Cho Y,Wolfenstine J,Rangasamy E,et al.Mechanical properties of the solid Li-ion conducting electrolyte:Li0.33La0.57TiO3[J].Journal of Materials Science,2012,47(16):5 970-5 977.
[18] Liu Z,F(xiàn)u W,Payzant E A,et al.Anomalous high ionic conductivity of nanoporousp Li3PS4[J].Journal of the American Chemical Society,2013,135(3):975-978.
[19] Arya A,Sharma A L.Polymer electrolytes for lithium ion batteries:A critical study[J].Ionics,2017,23(3):497-540.
[20] Wu J,Chen L,Song T,et al.A review on structural characteristics,lithium ion diffusion behavior and temperature dependence of conductivity in perovskite-type solid electrolyteLi3xLa2/3-xTiO3[J].Functional Materials Letters,2017,10(3):1-11.
[21] Wang Q,Zhang J,He X,et al.Synergistic effect of cation ordered structure and grain boundary engineering on long-term cycling of Li0.35La0.55TiO3based solid batteries[J].Journal of the European Ceramic Society,2019,39(11):3 332-3 337.
[22] 胡志偉,江躍,朱小紅.Li0.33La0.57TiO3固體電解質(zhì)固相合成及其摻雜改性[J].凝聚態(tài)物理學(xué)進(jìn)展,2018,7(1):12-21.
[23] Hu Z,Sheng J,Chen J,et al.Enhanced Li-ion conductivity in Ge-doped Li0.33La0.56TiO3perovskite solid electrolytes for all-solid-state Li-ion batteries[J].New Journal of Chemistry,2018,42(11):9 074-9 079.
[24] Mazza D,Ronchetti S,O Bohnké,et al.Modeling Li-ion conductivity in fast ionic conductor La2/3xLi3xTiO3[J].Solid State Ionics,2002,149(1-2):81-88.
[25] Tatsumisago M,Hayashi A.Sulfide glass-ceramic electrolytes for all-solid-state lithium and sodium batteries[J].International Journal of Applied Glass Science,2014,5(3):226-235.
【責(zé)任編輯:蔣亞儒】