玄東平 胡曉會(huì) 南華
摘要: 通過在[1,∞)4上引入一個(gè)實(shí)函數(shù)類Φ,給出在乘積度量空間上滿足Φ-隱式條件的兩個(gè)映射的唯一公共不動(dòng)點(diǎn)存在性定理,并給出若干個(gè)(公共)不動(dòng)點(diǎn)定理. 所得結(jié)論推廣并改進(jìn)了現(xiàn)有公共不動(dòng)點(diǎn)定理 (特別是乘積度量空間上的Banach-Chateajia型公共不動(dòng)點(diǎn)定理). 最后,用兩個(gè)實(shí)例驗(yàn)證了所得結(jié)論的正確性.
關(guān)鍵詞: 乘積度量空間; 函數(shù)類Φ; 隱式條件; 公共不動(dòng)點(diǎn)
中圖分類號(hào): O177.3; O189.11 ?文獻(xiàn)標(biāo)志碼: A ?文章編號(hào): 1671-5489(2023)02-0310-07
Existence and Uniqueness of Common Fixed Points for a Class ofMappings Satisfying Implicit Compression Conditionson Multiplicative Metric Spaces
XUAN Dongping,HU Xiaohui,NAN Hua
(College of Science,Yanbian University,Yanji 133002,Jilin Province,China)
Abstract: By introducing a real function class Φ on [1,∞)4,we gave the existence theorems of unique common fixed point for two mappings satisfying the Φ
-implicit condition on multiplicative metric spaces,and gave some (common) fixed point theorems. The conclusions generalized and improved the existing commo
n fixed point theorems (in particular,the Banach-Chateajia type common fixed point theorems on multiplicative metric spaces). Finally,two examples were
used to verify the correctness of the conclusions.
Keywords: multiplicative metric space; function class Φ; implicit condition; common fixed point
收稿日期: 2022-05-31.
第一作者簡(jiǎn)介: 玄東平(1997—),女,朝鮮族,碩士研究生,從事不動(dòng)點(diǎn)理論和應(yīng)用泛函分析的研究,E-mail: 1169621586@qq.com.
通信作者簡(jiǎn)介: 南 華(1972—),女,朝鮮族,博士,副教授,從事不動(dòng)點(diǎn)理論和應(yīng)用泛函分析的研究,E-mail: nanhua@ybu.edu.cn.
基金項(xiàng)目: 國(guó)家自然科學(xué)基金(批準(zhǔn)號(hào): 11961073)和吉林省教育廳科學(xué)研究項(xiàng)目(批準(zhǔn)號(hào): JJKH20180891KJ).
1 引言與預(yù)備知識(shí)
Banach壓縮原理[1],即Banach不動(dòng)點(diǎn)定理,是不動(dòng)點(diǎn)理論中最基本、 最簡(jiǎn)單形式的定理,在數(shù)學(xué)及其他領(lǐng)域應(yīng)用廣泛,因此Banach不動(dòng)點(diǎn)定理在各類不同的廣義度量空間上得到了推廣和改進(jìn). Bashirov等[2]引入了乘積度量空間的概念,并給出一些基本性質(zhì); Bashirov等[3]和Florack等[4]在乘積度量空間上進(jìn)一步研究了其他相關(guān)性質(zhì).
參考文獻(xiàn)
[1] BANACH S. Sur Les Opérations Dans Les
Ensembles Abstraist et Leur Application Aux quations Inégrales [J]. Fund Math,1922,3: 138-181.
[2] BASHIROV A E,KURPINAR E M,ZYAPICI A.
Multiplicative Calculus and Its Applications [J]. J Math Anal Appl,2008,337(1): 36-48.
[3] BASHIROV A E,MISIRLI E,TANDODU Y,et al.
On Modeling with Multiplicative Differential Equations [J]. Appl Math J Chinese Univ Ser B,2011,26(4): 425-438.
[4] FLORACK L,VAN ASSEN H.? Multiplicative Calculus in Biomedical Image Analysis [J]. J Math Imaging Vision,2012,42(1): 64-75.
[5] ZAVSAR M,CEVIKEL A C.? Fixed Points of Multiplicative Contraction Mappings on Multiplicative Metric
Spaces [EB/OL]. (2012-05-23)[2022-02-03]. https://arxiv.org/abs/1205.5131.
[6] HE X J,SONG M M,CHEN D P. Common Fixed Points for
Weak Commutative Mappings on a Multiplicative Metric Space [J/OL]. Fixed Point Theory Appl,(2014-02-21)[2022-01-20]. doi: 10.1186/1687-1812-2014-48.
[7] GU F,CHO Y J. Common Fixed Point Results for Four M
aps Satisfying -Contractive Condition in Multiplicative Metric Spaces [J/OL
]. Fixed Point Theory Appl,(2015-09-17)[2021-12-15]. doi: 10.1186/s13663-015-0412-4.
[8] 姜云,谷峰. 乘積度量空間中滿足-型壓縮條件的四個(gè)映象
的公共不動(dòng)點(diǎn)定理 [J]. 純粹數(shù)學(xué)與應(yīng)用數(shù)學(xué),2017,33(2): 185-196. (JIANG Y,GU
F. Common Fixed Points Theorems for Four Maps Satisfying -Type Contractive C
ondition in Multiplicative Metric Spaces [J]. Pure and Applied Mathematics,2017,33(2): 185-196.)
[9] PIAO Y J. Unique Common Fixed Points for Four Non-continuous Mappings Satisfying ψ-Implicit Contractive Condition on Non-compl
ete Multiplicative Metric Spaces [J]. Adv Fixed Point Theory,2019,9(2): 135-145.
[10] 樸勇杰. 乘積度量空間上滿足σ(γ)-壓縮條件的映射的唯一不動(dòng)點(diǎn) [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版),2021,59(3): 469-474.
(PIAO Y J. Unique Fixed Points for Mappings with σ(γ)-Contractive Conditi
ons on Multiplicative Metric Spaces [J]. Journal of Jilin University (Science Edition),2021,59(3): 469-474.)
[11] 樸勇杰. 乘積度量空間上一類隱式壓縮映射的唯一不動(dòng)點(diǎn) [J]. 吉林大學(xué)學(xué)報(bào)(理學(xué)版),2022,60(1): 59-63.
(PIAO Y J. Unique Fixed Point for a Class of Implicit Contractive Mappings on Mu
ltiplicative Metric Spaces [J]. Journal of Jilin University (Science Edition),2022,60(1): 59-63.)
(責(zé)任編輯: 李 琦)