張金磊,孫福芹,劉朋燕
具有Holling Ⅳ型功能反應(yīng)函數(shù)的Leslie型捕食-被捕食系統(tǒng)的焦點(diǎn)量
張金磊,孫福芹,劉朋燕
(天津職業(yè)技術(shù)師范大學(xué) 理學(xué)院,天津 300222)
研究具有 Holling type Ⅳ型功能反應(yīng)函數(shù)的Leslie型捕食-被捕食系統(tǒng).通過參數(shù)變換等數(shù)學(xué)方法化簡所研究的數(shù)學(xué)模型,并應(yīng)用形式級數(shù)法對該系統(tǒng)的平衡點(diǎn)類型進(jìn)行判定,從而確定細(xì)焦點(diǎn)的階數(shù).為了更好地提高研究的準(zhǔn)確性,采用MatLab等數(shù)學(xué)軟件對研究的系統(tǒng)進(jìn)行輔助計算,結(jié)合計算結(jié)果進(jìn)行理論分析,進(jìn)一步推出研究的平衡點(diǎn)是一個不穩(wěn)定的二重細(xì)焦點(diǎn).
Leslie型捕食-被捕食系統(tǒng);細(xì)焦點(diǎn)階數(shù);形式級數(shù)法;功能反應(yīng)函數(shù)
本文主要討論具有Holling IV型功能反應(yīng)函數(shù)的Leslie型捕食-被捕食系統(tǒng)模型[1],其主要形式為
式中
通過利用數(shù)學(xué)軟件進(jìn)行復(fù)雜計算,可以得出系統(tǒng)(8)的一階李雅普諾夫量等于零.
利用形式級數(shù)法求系統(tǒng)(8)在原點(diǎn)的二階李雅普諾夫量[8].令
沿系統(tǒng)的解求全導(dǎo)數(shù)[9],得
設(shè)
同理,可通過數(shù)學(xué)軟件計算得出
式中:
所以,進(jìn)一步推出
依據(jù)上文的方法可得
從而在極坐標(biāo)變換下,方程(15)變?yōu)?/p>
利用數(shù)學(xué)軟件計算可得[12]
[1] Huang Jicai,Ruan Cui,Song Jing.Bifurcations in a predator-prey system of Leslie type with generalized Holling type III functional response[J].Journal of Differential Equation,2014,257:1722-1723.
[2] Dai Yanfei,Zhao Yulin,Sang Bo.Foucit cycles in a predator–prey system of Leslie type with generalized Holling type III functional response[J].Nonlinear Analysis:Real World Applications,2019,50:218-219.
[3] LiYilong,Xiao Dongmei.Bifurcations of a predator-prey system of Holling and Leslie types[J].Chaos Solitons and Fractals, 2007,34:607-608.
[4] DaiYanfei,Zhao Yulin.Hopf cyclicity and global dynamics for a predator-prey system of Leslie type with simplified Holling type IV functional response[J].International Journal of Bifurcation and Chaos,2018,28(13):6-7.
[5] SuJuan.Identifying weak focus of order 3 in a Leslie-Gower prey-predator model with prey harvesting[J].Advances in Difference Equations,2019,363:4-9.
[6] Han Mao′an.Bifurcation Theory of Limit Cycles[M].北京:科技出版社,2017:20-21.
[7] 黃繼才.具有Holling Type-IV 功能反應(yīng)函數(shù)的捕食與被捕食系統(tǒng)的定位分析[D].武漢:華中師范大學(xué),2002.
[8] 馬知恩,周義倉,李承治.常微分方程定性與穩(wěn)定性方法[M].北京:科學(xué)出版社,2015:148-149.
[9] 劉浩.MATLAB R2018a完全自學(xué)一本通[M].北京:電子工業(yè)出版社,2018:55-59.
[10] Freddy D,Jaume L.Qualitative Theory of Planar Differential Systems[M].Berlin:Springer-Verlag,2006:129-149.
[11] 何青,王麗芬.Maple教程[M].北京:科學(xué)出版社,2015:53-65.
[12] 鐘益林,彭樂群,劉炳文.常微分方程及其Maple,MATLAB求解[M].北京:清華大學(xué)出版社,2007:19-25.
Focal value of Leslie predator-prey system with Holling type Ⅳ functional response function
ZHANG Jinlei,SUN Fuqin,LIU Pengyan
(School of Science,Tianjin University of Technology and Education,Tianjin 300222,China)
The Leslie predator-prey system with Holling type Ⅳ functional response function is studied.The mathematical model is simplified by mathematical methods such as parameter transformation,and then the type of equilibrium point of the system is determined by formal series method,so as to determine the order of weak focus.In order to better improve the accuracy of the research,Matlab and other mathematical software are used to assist the calculation of the research system.Combined with the theoretical analysis of the calculation results,it is further deduced that the research equilibrium pointis an unstable weak focus with multiplicity two.
Leslie predator-prey system;order of weak focus;formal series method;functional response function
1007-9831(2022)11-0016-06
O175
A
10.3969/j.issn.1007-9831.2022.11.003
2022-03-12
天津市教委科研計劃項(xiàng)目(2021KJ007)
張金磊(1994-),男,河南焦作人,在讀碩士研究生,從事偏微分方程及生物數(shù)學(xué)研究.E-mail:13462816430@163.com
孫福芹(1970-),男,山東單縣人,教授,博士,從事偏微分方程及生物數(shù)學(xué)研究. E-mail:sfqwell@163.com