*高薔 畢文岳
(1.山東理工大學(xué)分析測試中心 山東 255000 2.山東嘉岳新材料有限公司 山東 255000)
表面張力是冶金熔渣重要的物理化學(xué)性質(zhì)之一。煉鋼過程中的爐渣泡沫化現(xiàn)象、連鑄過程中保護渣卷渣、鋼渣在結(jié)晶器彎月面處發(fā)生界面化學(xué)反應(yīng)、保護渣吸收鋼中上浮的非金屬夾雜物等冶金現(xiàn)象與熔渣的表面張力性能密切相關(guān)[1-3]。因此,熔渣表面張力的測量和預(yù)測對于考察熔渣表面張力的演變行為、改善熔渣冶金性能具有重要意義。目前,關(guān)于高溫冶金熔渣表面張力的預(yù)測主要是依據(jù)Butler方程建立熔渣表面張力計算模型[4-7]。Arutyunyan等[6]和Nakamoto等[7]依據(jù)Butler方程建立了熔渣表面張力熱力學(xué)計算模型,通過此模型估算了CaO-Al2O3、CaO-SiO2-Na2O、CaO-SiO2-Al2O3和CaO-SiO2-B2O3等簡單的二元和三元熔渣表面張力,但是對于多元熔渣體系,由于多元熔渣結(jié)構(gòu)復(fù)雜,熔體中各種離子的存在形式以及分布函數(shù)尚不清晰,造成在模型計算的過程中缺乏一些重要的參數(shù)。因此,表面張力計算模型在實際冶金熔渣體系中受到一定限制,而對于多元熔渣表面張力的數(shù)據(jù)獲取往往采用實驗測定的方法。
實驗測定液體表面張力的方法主要有毛細管上升法、差分最大氣泡壓力法、Wilhelmy盤法、懸滴法、滴體積法、拉筒法和靜滴法等[8-11]。其中,毛細管上升法、懸滴法和Wilhelmy盤法適用于中低溫液體表面張力的測定;差分最大氣泡壓力法和滴體積法操作過程中對實驗設(shè)備要求苛刻,在高溫下不易對熔渣表面張力進行測定;拉筒法和靜滴法均是測定高溫熔體表面張力較為適用的方法,但由于高溫下冶金熔渣的組成以及成分性質(zhì)不同,使得高溫熔渣表面張力的測定變得復(fù)雜,因此需根據(jù)高溫熔渣的組成情況而定。
連鑄結(jié)晶器保護渣主要以CaO和SiO2為基料,包含堿金屬氧化物(Na2O/K2O)和氟化物(CaF2)等氧化物的混合物。保護渣是提高連鑄坯質(zhì)量的重要材料,這主要取決于保護渣的物理化學(xué)性能,其中表面張力會影響彎月面的形狀以及液態(tài)保護渣與凝固坯殼之間的附著力,并進一步影響保護渣的流動速率和渣膜厚度。因此,本文以連鑄結(jié)晶器保護渣為考察對象,分別運用拉筒法和靜滴法測定保護渣表面張力,在測定過程中分析這兩種實驗方法的應(yīng)用特點,并考察保護渣表面張力隨溫度變化的演變行為,從而為提高熔渣表面張力數(shù)值精確度、控制熔渣冶金性能、解析復(fù)雜的冶金現(xiàn)象提供一些數(shù)據(jù)和測定技術(shù)支撐。
參照工業(yè)生產(chǎn)用結(jié)晶器保護渣的組成和成分,選擇CaOSiO2-Na2O-CaF2渣為實驗渣,CaO/SiO2質(zhì)量分數(shù)比為1.0,Na2O和CaF2的質(zhì)量分數(shù)分別為15%和20%,如表1所示。采用分析純試劑CaO、SiO2、Na2CO3和CaF2配制實驗樣品,其中Na2O的用量由Na2CO3折算而成。實驗前,將CaO、SiO2、Na2CO3和CaF2試劑在800℃下焙燒2h,以除去水分及其他雜質(zhì)。
表1 CaO-SiO2-Na2O-CaF2熔渣組成(質(zhì)量分數(shù)/%)
拉筒法是利用一個垂直中空的圓筒帶起液體所產(chǎn)生的拉力與液體表面張力的平衡關(guān)系來計算表面張力[12],如式(1)所示:
式中,σ—熔渣表面張力;mmax—拉起液體的最大質(zhì)量,在液體即將脫離圓筒的瞬間,即液體對拉筒的拉力與表面張力平衡時,拉力達到最大;g—重力加速度;R—圓筒的半徑;C—校正參數(shù),在測量熔體表面張力之前,在室溫中需通過測量已知表面張力數(shù)值的純物質(zhì)(如純凈水)來獲取校正參數(shù)值,且要多次測量直到參數(shù)值達到穩(wěn)定。在高溫下測定熔體表面張力,需選擇材質(zhì)合適的圓筒。圓筒所采用的材質(zhì)熔點必須高于熔體;為了提高實驗測量的精確度,需選擇低熱膨脹性的圓筒,保證在高溫下圓筒不發(fā)生變形;圓筒與熔體之間要有一定的潤濕性,保證在拉筒的過程中能夠帶起熔體,同時還要避免熔體與圓筒之間發(fā)生化學(xué)反應(yīng)。在本實驗中,圓筒的材質(zhì)為金屬鉬,為了降低鉬的熱膨脹性,采用質(zhì)量分數(shù)為99.999%的高純鉬。另外,圓筒的尺寸也是影響熔體表面張力數(shù)值精確度的重要因素之一。采用尺寸過大的圓筒,會延長達到圓筒與熔體熱平衡的時間;采用尺寸過小的圓筒,在高溫和通氣的條件下易受到熱氣流的影響。在本實驗中,圓筒的半徑為6.5mm。
采用拉筒法測定熔渣表面張力需借助高溫熔體物性綜合測定儀。該設(shè)備主要包括高溫爐、電子天平(精度為0.001g)和溫度控制及數(shù)據(jù)采集系統(tǒng)。熔渣表面張力測定過程如下:將分析純試劑CaO、SiO2、Na2CO3和CaF2按照成分配比分別進行稱重并充分混合均勻;將混合試劑放入高純石墨坩堝(質(zhì)量分數(shù)為99.99%);將高純石墨坩堝放入到高溫爐的恒溫區(qū)內(nèi);常溫下多次測量純凈水的表面張力值,數(shù)值達到穩(wěn)定后,將數(shù)值代入到式(1)中獲取校正參數(shù)值C;通入保護性氣體高純氬氣(防止石墨坩堝和石墨套筒被氧化);以5℃·min-1的升溫速率進行升溫,升至設(shè)定溫度后保溫1h;待渣樣充分熔化后,放入一個垂直中空的鉬圓筒,將鉬圓筒與熔渣液面水平接觸,60s后將拉筒平穩(wěn)且緩慢地拉離熔渣表面;讀取帶起液體的重量最大值,并根據(jù)式(1)計算熔渣的表面張力。熔渣實驗結(jié)果如圖1所示。
靜滴法是根據(jù)在水平墊片上自然形成的液滴形狀(如圖2所示)以及Young-Laplace方程來計算表面張力[13],式(2)即為靜滴法根據(jù)液滴外形計算表面張力的基本方程:
式中,ρl,ρg—液相和氣相的密度;z—以液滴頂點O為原點時液滴表面上任意一點Q的垂直坐標;x—以O(shè)點為原點的液滴表面上Q點的水平坐標;R1—液滴曲面Q點處的曲率半徑;R0—液滴頂點O處的曲率半徑;φ—Q點處的曲率半徑與z坐標軸之間的夾角。
運用靜滴法的基本方程獲取高溫熔體表面張力的過程如下:通過高溫實驗獲取熔體液滴輪廓的幾何圖形;利用圖像處理技術(shù)將高溫實驗獲取的液滴輪廓圖形進行處理和提取,如圖3(a)所示,得到一組離散的實驗數(shù)據(jù);依據(jù)靜滴法基本方程式(2),利用提取的液滴輪廓圖形實驗數(shù)據(jù)建立一個連續(xù)的液滴邊緣輪廓曲線函數(shù);采用曲線擬合方法使得曲線方程能夠在最大程度上與實驗數(shù)據(jù)相吻合[14],獲得一條最接近實驗數(shù)據(jù)的理想曲線,如圖3(b)所示,并通過此理想曲線方程求得表面張力值。
在采用靜滴法測定表面張力前,需制備預(yù)熔渣。所需試劑同上節(jié)中拉筒法測定表面張力實驗一致,即分析純試劑CaO、SiO2、Na2CO3和CaF2。將稱量好的化學(xué)試劑放入高純石墨坩堝內(nèi),并放入高溫淬火爐恒溫區(qū)域中;操作溫度控制程序進行升溫,為保證上節(jié)中拉筒法表面張力測定過程中保護渣成分與該實驗所制備的保護渣成分一致,該實驗升溫速率與拉筒法測定表面張力的升溫速率一致,即為5℃·min-1,升溫至設(shè)定溫度同樣保溫1h,使渣樣充分熔化;待實驗渣完全熔化后,使渣樣迅速墜入冰水混合物中淬冷,干燥并研磨至74μm以下。
該實驗需借助高溫熔體界面性質(zhì)測定儀,該測量儀主要由液滴圖像拍攝系統(tǒng)(包含高速相機,其安裝在高溫爐爐管的一端,以便觀察和拍攝熔體的整個熔化過程)、高溫爐和控溫系統(tǒng)(在高溫爐中剛玉爐管外部和內(nèi)部基板底下均安裝了B型熱電偶,其精度在±1℃)以及氣體凈化系統(tǒng)(防止熔體和基板被氧化)所組成。
實驗渣表面張力測定的實驗過程如下:將預(yù)熔渣壓成直徑4mm×高10mm的圓柱體;將圓柱體試樣放在高純石墨基板(質(zhì)量分數(shù)為99.99%)上,然后將基板放在水平試樣支架上;在冷態(tài)下將試樣支架放入爐膛的恒溫區(qū)內(nèi);為了保持液滴形狀的規(guī)則性和對稱性,調(diào)整石墨基板的水平度,以保證其上沿表面在水平線上;封閉爐管;抽真空,待爐內(nèi)真空度在10~2Pa以下時向爐內(nèi)通入高純氬氣;以5℃·min-1升溫速率升至設(shè)定溫度然后保溫0.5h;在從試樣開始熔化至保溫時間結(jié)束整個過程中,采用高速相機對樣品輪廓的變化進行拍攝,并對樣品輪廓圖片進行圖片數(shù)據(jù)處理;運用表面張力計算程序?qū)嶒炘砻鎻埩M行計算。熔渣實驗結(jié)果如圖1所示。
在本實驗中,對于CaO-SiO2-Na2O-CaF2渣,采用拉筒法和靜滴法分別測得的表面張力結(jié)果如圖1所示。從圖中可看出,無論采用靜滴法還是拉筒法,測定的熔渣表面張力數(shù)值均隨著溫度的升高而下降。熔渣表面張力隨溫度上升而下降這一變化趨勢在Vaisburd[15]、Oliveira[16]和Dudek[17]等對CaO-Al2O3-SiO2、CaO-Al2O3和精煉渣表面張力的研究中也有體現(xiàn)。根據(jù)愛因斯坦方程[18],如式(3)所示,升高溫度可使平均位移x-增加,即分子的無規(guī)則熱運動就越劇烈,致使分子間距離變大。分子間距離增大,分子間相互作用力隨之減小,進而熔體表面張力減小[19-20]。
分別將拉筒法和靜滴法測得的結(jié)晶器保護渣表面張力數(shù)據(jù)進行線性擬合可得:
另外,從圖1還可看出采用靜滴法測得的表面張力數(shù)值明顯高于拉筒法測得的表面張力數(shù)值。將預(yù)熔渣和靜滴法測定后的樣品分別進行X-射線熒光光譜分析(XRF),結(jié)果如表2所示。從表中可看出,靜滴法測定后的樣品中Na2O和CaF2的含量明顯低于預(yù)熔渣。這是由于Na2O和CaF2均是易揮發(fā)成分,兩者生成的NaF(即反應(yīng)方程Na2O+CaF2=CaO+2NaF)亦是易揮發(fā)成分[21],由此造成靜滴法測定保護渣表面張力過程中Na2O、CaF2和NaF的再次揮發(fā),熔渣化學(xué)成分的二次變化導(dǎo)致熔渣表面張力的變化。
熔體表面張力與熔渣結(jié)構(gòu)的聚合程度密切相關(guān)[22-23]。連鑄結(jié)晶器保護渣屬于硅酸鹽,硅酸鹽熔體中含有不同聚合程度的硅氧陰離子團。熔渣結(jié)構(gòu)的聚合程度用符號“NBO/TSi”表示,其計算公式如式(4)所示。NBO/TSi值越小,說明熔體聚合程度越高。將預(yù)熔渣和靜滴法測定后的渣樣成分分別帶入到式(6)中,計算結(jié)果如表2所示。從表中可以看出,靜滴法測定后渣樣的NBO/TSi值小于預(yù)熔渣的NBO/TSi值,說明靜滴法測定后的渣樣熔體結(jié)構(gòu)聚合程度高于預(yù)熔渣熔體結(jié)構(gòu)聚合程度。這是由于F-能降低熔渣結(jié)構(gòu)的聚合程度,將高聚合程度的硅氧陰離子團逐漸解聚成低聚合程度的硅氧陰離子,同時Na2O電解出O2-,O2-的出現(xiàn)亦可降低熔體的聚合程度,反應(yīng)式見(7)~(9):
表2 CaO-SiO2-Na2O-CaF2熔渣組成(質(zhì)量分數(shù)/%)
從熔渣離子結(jié)構(gòu)理論分析認為:Na2O和CaF2能降低保護渣熔體結(jié)構(gòu)的聚合程度,因此F-和Na+均是變網(wǎng)離子。Sukenaga等[24-25]認為變網(wǎng)離子的靜電勢越大,熔渣表面張力越大。F-和Na+的靜電勢小于O2-的靜電勢,靜電勢較小的F-和Na+被排斥到熔渣表面,使得熔渣單位表面上的質(zhì)點數(shù)增加,從而降低了熔渣的表面張力。因此在靜滴法測定表面張力的過程中,F(xiàn)-和Na+的二次揮發(fā),使得靜滴法測定后的渣樣表面張力明顯高于拉筒法測得的表面張力數(shù)值。
從實驗操作上看,采用拉筒法獲取表面張力,不需要熔體密度值,不需要預(yù)熔實驗,但是在測定的過程中無法保證氣氛的無氧化,因此不宜用拉筒法測定易氧化熔體的表面張力。靜滴法雖所需試樣較少,不需用標準物質(zhì)校正,并且氣氛可控,但需保證預(yù)熔樣品成分穩(wěn)定。
本文參照工業(yè)生產(chǎn)用連鑄結(jié)晶器保護渣的組成和成分,選擇了CaO-SiO2-Na2O-CaF2渣(CaO/SiO2質(zhì)量分數(shù)比為1.0,Na2O和CaF2的質(zhì)量分數(shù)分別為15%和20%)為考察對象,分別采用拉筒法和靜滴法測定了1350℃、1370℃、1390℃和1410℃下CaO-SiO2-Na2O-CaF2保護渣的表面張力。實驗結(jié)果發(fā)現(xiàn)拉筒法和靜滴法測定的熔渣表面張力隨溫度的演變行為一致,均隨著溫度的升高而下降;同一溫度下采用靜滴法測得的表面張力數(shù)值高于拉筒法測得的表面張力數(shù)值,這是由于CaO-SiO2-Na2O-CaF2渣中含有揮發(fā)成分Na2O和CaF2,靜滴法測定表面張力過程中Na2O和CaF2的二次揮發(fā)使得表面張力數(shù)值升高。