李勤儉 (安徽省池州市第一中學(xué) 247000)
在高中數(shù)學(xué)教學(xué)中,教師有意識(shí)地引導(dǎo)學(xué)生進(jìn)行思考,從數(shù)學(xué)角度發(fā)現(xiàn)和提出問(wèn)題、分析和解決問(wèn)題,不僅是新課程標(biāo)準(zhǔn)的要求,也能高效地提高學(xué)生自主學(xué)習(xí)的能力.本文從一個(gè)正弦定理推證過(guò)程中得到的三角不等式入手,探討如何在解題教學(xué)中提升學(xué)生的“四能”.
不等式①的左邊看起來(lái)比較正常,但右邊就讓人難以接受.看到π,聯(lián)想到幾何意義,所以從圓入手也算自然;①式是代數(shù)式,理應(yīng)有代數(shù)證法,那么作為三角函數(shù)式,可以從三角變換角度去解決;同時(shí),從式子的結(jié)構(gòu)出發(fā),可以看成是余弦函數(shù)相關(guān)問(wèn)題,所以從函數(shù)角度分析應(yīng)該也能解決問(wèn)題.
在圖1中,圓O是△ABC的外接圓.下面分△ABC是銳角三角形、直角三角形和鈍角三角形三種情形證明.
圖1 圖2
證明(1)當(dāng)△ABC是銳角三角形時(shí),如 圖2,連結(jié)BO,AO并延長(zhǎng)分別交圓O于點(diǎn)E,F(xiàn),再連結(jié)BF,FC,CE,EA,則BF=2RcosC,FC=2RcosB,BD=2RcosA.
(3)當(dāng)△ABC是鈍角三角形時(shí),不妨設(shè)C>90°,此時(shí)可將圖2中的點(diǎn)D與點(diǎn)C對(duì)換,轉(zhuǎn)化為情形(1),得證.
幾何證法直觀、好理解,但不容易想到.我們?cè)賴L試用代數(shù)證法.
先證cosA+cosB+cosC>1 ②.
因?yàn)閏osA+cosB+cosC
為了證④式,先證下式:
另一方面,在⑤式中,有如下變形:
由②④可得①式得證.
由此還可以順帶得①式的加強(qiáng)式:
琴生不等式(Jensen Inequality):
函數(shù)f(x)是定義在開(kāi)區(qū)間(a,b)上的凸函數(shù).設(shè)λ1,λ2,…,λn是n個(gè)正實(shí)數(shù),且λ1+λ2+…+λn=1,x1,x2,…,xn是開(kāi)區(qū)間(a,b)上任意n個(gè)點(diǎn),則下面不等式成立:f(λ1x1+λ2x2+…+λnxn)≥λ1f(x1)+λ2f(x2)+…+λnf(xn).這個(gè)不等式稱為琴生不等式.(注意:對(duì)于凹函數(shù)(下凸函數(shù)),上式中的“≥”變?yōu)椤啊堋?
一個(gè)問(wèn)題從提出到解決,并不是思維過(guò)程的結(jié)束,而往往是新問(wèn)題的開(kāi)始.①式是針對(duì)余弦函數(shù)而言的,那么對(duì)于正弦函數(shù)、正切函數(shù),相應(yīng)的結(jié)論是什么?又如何證明?
經(jīng)過(guò)探討分析得到
當(dāng)△ABC是銳角三角形時(shí),
在學(xué)習(xí)數(shù)學(xué)的過(guò)程中,發(fā)現(xiàn)問(wèn)題往往比證明結(jié)論更重要.《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017年版)》提出了“四能”[2],因此教師需要適時(shí)、適度地引導(dǎo)學(xué)生發(fā)現(xiàn)、提出一些數(shù)學(xué)問(wèn)題,進(jìn)而分析和解決問(wèn)題,促進(jìn)學(xué)生數(shù)學(xué)水平的提高.
(1)引導(dǎo)學(xué)生學(xué)會(huì)提出問(wèn)題的方法應(yīng)成為教學(xué)中的一個(gè)重要內(nèi)容.本文由余弦函數(shù)的一個(gè)優(yōu)美的不等關(guān)系,運(yùn)用合情推理的方法拓展到了與正弦和正切函數(shù)相關(guān)的性質(zhì).如何引導(dǎo)學(xué)生學(xué)會(huì)提出問(wèn)題,也許比幫助學(xué)生解決問(wèn)題更有意義.
(2)對(duì)一個(gè)問(wèn)題的解決進(jìn)行多角度思考是數(shù)學(xué)探究的基本思路.文中對(duì)不等式①的證法進(jìn)行了多角度的思考,得到了很好的思維體驗(yàn).這意味著教師在教學(xué)過(guò)程中如何進(jìn)行多角度的思考,以及如何引導(dǎo)學(xué)生多角度思考是值得探索的一個(gè)課題.
(3)要在解決問(wèn)題的過(guò)程中進(jìn)行邏輯推理等核心素養(yǎng)的培養(yǎng).本文在探討的過(guò)程中,包含了很多較深刻的分析與推理,使得學(xué)生在過(guò)程中學(xué)習(xí),在過(guò)程中提高.
(4)探究無(wú)止境.文中通過(guò)探究得到了八個(gè)關(guān)系式,它們的應(yīng)用又可作為新的探討課題.
在這一探討的旅程中,學(xué)生得到了很好的思維能力的訓(xùn)練,以及分析問(wèn)題和解決問(wèn)題的能力訓(xùn)練,體會(huì)到數(shù)學(xué)的嚴(yán)謹(jǐn)美、和諧美,提高了學(xué)習(xí)數(shù)學(xué)的興趣.這不正是新課程理念所要求的嗎?