国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

不同NaOH/球磨復(fù)合預(yù)處理對玉米秸稈酶解效果的影響

2022-11-13 07:57:48楊雪琦韓魯佳
農(nóng)業(yè)工程學(xué)報 2022年15期
關(guān)鍵詞:木質(zhì)素產(chǎn)率纖維素

楊 潔,楊雪琦,韓魯佳

不同NaOH/球磨復(fù)合預(yù)處理對玉米秸稈酶解效果的影響

楊 潔,楊雪琦,韓魯佳※

(中國農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083)

農(nóng)作物秸稈的生物轉(zhuǎn)化是木質(zhì)纖維類生物質(zhì)能源化利用的重要手段之一。為了探究室溫條件下不同機(jī)械化學(xué)復(fù)合預(yù)處理對玉米秸稈酶解效果的影響,該研究以玉米秸稈為研究對象,以單獨(dú)NaOH處理為對照,在不同NaOH質(zhì)量分?jǐn)?shù)(0、1%、2%和3%)條件下,分別進(jìn)行了干法和濕法2種NaOH/球磨復(fù)合預(yù)處理。使用CellicCtec2(Novozymes,丹麥)進(jìn)行了不同預(yù)處理玉米秸稈72 h酶解試驗(yàn),系統(tǒng)表征了不同預(yù)處理玉米秸稈的粒徑、結(jié)晶度、表面微觀形貌、木質(zhì)纖維組成和官能團(tuán)變化,分析了不同預(yù)處理玉米秸稈理化性質(zhì)對酶解影響及其相關(guān)性。結(jié)果表明:干法和濕法NaOH/球磨復(fù)合預(yù)處理均顯著提高了玉米秸稈葡萄糖產(chǎn)率,且隨NaOH質(zhì)量分?jǐn)?shù)增加(從1%提升至3%),不同NaOH/球磨復(fù)合預(yù)處理玉米秸稈葡萄糖產(chǎn)率顯著提升(<0.01),當(dāng)NaOH質(zhì)量分?jǐn)?shù)為3%時,其葡萄糖產(chǎn)率分別達(dá)到71.0%和73.1%。無論干法和濕法NaOH/球磨復(fù)合預(yù)處理,其酶解葡萄糖產(chǎn)率均與纖維素質(zhì)量分?jǐn)?shù)和平均粒徑D50顯著正相關(guān)(<0.01),與木質(zhì)素質(zhì)量分?jǐn)?shù)顯著負(fù)相關(guān)(<0.01);干法NaOH/球磨復(fù)合預(yù)處理顯著降低了玉米秸稈的結(jié)晶度,從而一定程度增強(qiáng)改善了玉米秸稈酶解葡萄糖產(chǎn)率。該研究為深入揭示和解析玉米秸稈機(jī)械化學(xué)復(fù)合預(yù)處理作用機(jī)理提供了數(shù)據(jù)支撐。

玉米;秸稈;NaOH/球磨;復(fù)合預(yù)處理;酶解;理化性質(zhì);相關(guān)性

0 引 言

農(nóng)作物秸稈的生物轉(zhuǎn)化是木質(zhì)纖維類生物質(zhì)能源化利用的重要手段之一,對于緩解能源危機(jī)、保護(hù)環(huán)境和促進(jìn)綠色可持續(xù)發(fā)展具有重要意義[1-2]。但是,農(nóng)作物秸稈組成和結(jié)構(gòu)特異,秸稈細(xì)胞壁中木質(zhì)纖維組分空間互嵌的致密復(fù)雜高分子聚合體結(jié)構(gòu)嚴(yán)重制約著其生物轉(zhuǎn)化效率的提高。因此,為了降低農(nóng)作物秸稈的生物抗性、提高其乙醇轉(zhuǎn)化效率,預(yù)處理往往被作為纖維素乙醇生產(chǎn)的必要前處理步驟[3-5]。近年來,機(jī)械化學(xué)復(fù)合預(yù)處理因其展示出良好的改性效果和應(yīng)用潛力,得到了科研工作者的關(guān)注[6-7]。例如,Qu等[8]先將小麥秸稈分別進(jìn)行過1.00和0.50 mm篩的機(jī)械粉碎和球磨處理,用質(zhì)量分?jǐn)?shù)為1%的NaOH 溶液按固液質(zhì)量比1:50于100 ℃高溫下分別處理30、60和90 min,結(jié)果顯示:復(fù)合預(yù)處理小麥秸稈酶解葡萄糖產(chǎn)率得到不同程度的提高,其中NaOH/球磨復(fù)合預(yù)處理樣品的酶解葡萄糖產(chǎn)率顯著提高,當(dāng)處理時間為90 min時,其葡萄糖產(chǎn)率高達(dá)98.48%。Liu等[9]將玉米秸稈與NaOH溶液混合,NaOH加載量為0.06 g/g,在99 ℃條件下進(jìn)行機(jī)械研磨1 h,結(jié)果顯示:該復(fù)合預(yù)處理工藝顯著改善了酶解效果,葡萄糖產(chǎn)率最高為92.07%。上述機(jī)械化學(xué)復(fù)合預(yù)處理雖有效提高了農(nóng)作物秸稈酶解葡萄糖產(chǎn)率,但存在需要高溫加熱、設(shè)備工藝復(fù)雜的弊端。Lin等[10]在室溫條件下,研究比較了質(zhì)量濃度1%的NaOH/機(jī)械球磨復(fù)合處理玉米秸稈90 min的效果,與單獨(dú)球磨處理相比,NaOH/球磨復(fù)合預(yù)處理玉米秸稈酶解還原糖產(chǎn)率提高了110%。然而除了樣品表面形貌,該研究并未表征樣品其他理化性質(zhì)的變化。李駿寶[11]以單獨(dú)球磨和過氧化氫處理為對照,在室溫條件下,將玉米秸稈分別與質(zhì)量分?jǐn)?shù)為2.5%、5.0%和7.5%堿性過氧化氫溶液按照1∶2固液質(zhì)量比混合均勻后,置于球磨機(jī)中粉碎,并對處理后的玉米秸稈木質(zhì)纖維組成進(jìn)行了測定,但缺乏對不同樣品物理形貌結(jié)構(gòu)變化的深入探究。

為了系統(tǒng)探究室溫條件下不同機(jī)械化學(xué)復(fù)合預(yù)處理對玉米秸稈理化性質(zhì)和酶解效果的影響,本研究以單獨(dú)NaOH預(yù)處理為對照,系統(tǒng)研究比較了2種不同NaOH/球磨復(fù)合預(yù)處理工藝對玉米秸稈化學(xué)組成、微觀物理結(jié)構(gòu)和酶解葡萄糖產(chǎn)率的影響,并深入分析了不同復(fù)合預(yù)處理玉米秸稈樣品理化性質(zhì)及其葡萄糖產(chǎn)率的相關(guān)性,以期為進(jìn)一步揭示機(jī)械化學(xué)復(fù)合預(yù)處理對玉米秸稈酶解促進(jìn)效果的影響機(jī)理提供一定的理論指導(dǎo)。

1 材料與方法

1.1 玉米秸稈及試劑

試驗(yàn)所用玉米秸稈采集自中國農(nóng)業(yè)大學(xué)上莊實(shí)驗(yàn)站。玉米秸稈經(jīng)自然晾曬后切短至3~5 cm,使用RT-34高速粉碎機(jī)(泓荃制藥機(jī)械公司,中國)進(jìn)行粉碎并過1 mm篩,得到玉米秸稈粗粉碎(Coarse Milling,CM)樣品,記為CM。經(jīng)實(shí)際測定,玉米秸稈樣品木質(zhì)纖維組分的質(zhì)量分?jǐn)?shù)分別為:纖維素35.1%、半纖維素18.7%和木質(zhì)素18.9%。

氫氧化鈉(純度≥96%)購買自北京化工廠,使用前未進(jìn)一步純化。

1.2 不同NaOH/球磨復(fù)合預(yù)處理工藝

不同預(yù)處理工藝分述如下:

1)NaOH預(yù)處理:取部分CM樣品,分別與質(zhì)量分?jǐn)?shù)0、1%、2%和3%的NaOH溶液,按照前期研究優(yōu)化后的固液質(zhì)量比1∶6混合[12],反應(yīng)時間設(shè)為30 min。該處理設(shè)為對照組(Control Check, CK),所得樣品記為CK-,為NaOH質(zhì)量分?jǐn)?shù)(%)。

2)干法NaOH/球磨復(fù)合預(yù)處理(Dry NaOH/Ball Milling combined pretreatment, DBM):取部分CM樣品,使用CJM-SY-B 型振動球磨粉碎機(jī)(秦皇島太極環(huán)納米制品有限公司,中國),在實(shí)驗(yàn)室前期研究優(yōu)化的球料比(氧化鋯球與玉米秸稈原料體積比為2∶1)和填充率(氧化鋯球與球磨機(jī)罐體體積之比為35%)條件下[13],對CM樣品進(jìn)行球磨粉碎,粉碎時間為30 min,得到球磨粉碎(Ball Milling, BM)玉米秸稈,記為BM。為避免球磨過程中產(chǎn)生高溫對試驗(yàn)結(jié)果造成干擾,在球磨機(jī)罐體周圍通入循環(huán)冷卻水,使罐體溫度始終維持在25 ℃左右。取BM樣品,分別與質(zhì)量分?jǐn)?shù)為0、1%、2%和3%的NaOH溶液按固液比1∶6充分混合,反應(yīng)時間設(shè)為30 min。該預(yù)處理組記為DBM,所得樣品記為DBM-。

3)濕法NaOH/球磨復(fù)合預(yù)處理(Wet NaOH/Ball Milling combined Pretreatment, WBM):取部分CM樣品按固液比1∶6分別與質(zhì)量分?jǐn)?shù)為0、1%、2%和3% 的NaOH溶液混合,隨后置于CJM-SY-B型振動球磨粉碎機(jī)中球磨處理30 min(球料比為2∶1,填充率為35%)。該預(yù)處理組記為WBM,所得樣品記為WBM-。

不同NaOH/球磨復(fù)合預(yù)處理及其玉米秸稈樣品信息見表1。

表1 不同NaOH/球磨復(fù)合預(yù)處理(BM)及玉米秸稈樣品

預(yù)處理結(jié)束后,取部分樣品,加入去離子水?dāng)嚢瑁⒂?.8%稀鹽酸調(diào)pH值至7,然后轉(zhuǎn)移至布氏漏斗中用去離子水充分洗滌并進(jìn)行固液分離。完成后,分別取部分固體用于后續(xù)酶解試驗(yàn)以及粒度分布和表面形貌觀察;剩余固體使用真空冷凍干燥機(jī)(Alpha2-4 LD-Plus,Christ,德國)進(jìn)行冷凍干燥后,用于樣品木質(zhì)纖維組成、結(jié)晶度和官能團(tuán)的測定。

樣品固體回收率計算公式[8]如下:

式中1為預(yù)處理結(jié)束后樣品干物質(zhì)質(zhì)量,g;2為預(yù)處理前樣品干物質(zhì)質(zhì)量,g。

1.3 表征方法

1.3.1 粒徑分布測定

使用MASTERSIZER 3000激光粒度儀(Malverm,英國)對稀釋至質(zhì)量分?jǐn)?shù)為1%的固體樣品懸浮液進(jìn)行粒徑測量[14]。顆粒尺寸10、50和90分別代表樣品累計體積分?jǐn)?shù)分別達(dá)到10%、50%和90%時對應(yīng)的粒徑大小。每個樣品重復(fù)測量5次。

1.3.2 X射線衍射(X-ray Diffraction,XRD)測定

使用普析XD3系列X射線衍射儀(普析,北京)對凍干樣品進(jìn)行晶體結(jié)構(gòu)分析。測試條件為Cu靶,電壓36 kV,電流20 mA,掃描范圍2=5°~40°,掃描速度2°/min。每個樣品重復(fù)測量2次。

纖維素結(jié)晶度(Crystallinity Index, CrI)計算公式[15]如下:

式中max為衍射峰強(qiáng)度最大值;am為無定形纖維素衍射峰強(qiáng)度。

1.3.3 掃描電子顯微鏡(Scanning Electron Microscopy, SEM)觀察

取適量稀釋至質(zhì)量分?jǐn)?shù)為0.1%的預(yù)處理固體樣品懸浮液滴于碳基膠帶上,并置于60 ℃烘箱中進(jìn)行干燥后進(jìn)行噴金處理,然后使用Hitachi SU3500電子顯微鏡(Hitachi,日本)對樣品進(jìn)行表面形貌觀察[16]。

1.3.4 傅里葉變換紅外光譜(Fourier Transform Infrared Spectroscopy, FTIR)分析

將不同預(yù)處理玉米秸稈凍干樣品與烘干的溴化鉀粉末按質(zhì)量比1∶100混合均勻并研磨,在2.0 MPa壓力下保持1 min制成待測透明薄片,使用Spectrun 400光譜儀(PerkinElmer,美國)進(jìn)行光譜信息測量。掃描波數(shù)范圍為4 000~40 cm-1,分辨率為4 cm-1,掃描次數(shù)為64次[17]。每個樣品重復(fù)測量2次。

1.3.5 木質(zhì)纖維組成分析

樣品中的纖維素、半纖維素和木質(zhì)素質(zhì)量分?jǐn)?shù)測定方法及計算公式參照NREL-TP-510-42618[18],每個樣品重復(fù)測2次。

測定過程中糖類色譜條件為:色譜柱選用Bio-Rad HPX-87P(Bio-Rad,美國),柱溫為80 ℃,流動相為脫氣的超純水,流速為0.6 mL/min,每個樣品進(jìn)樣體積為20L,運(yùn)行時間為40 min,檢測器為視差折光檢測器(Hitachi L-2490,日本)。

1.4 酶解試驗(yàn)

1.4.1 酶活測定

本研究使用的纖維素酶為CellicCtec2(Novozymes,丹麥)。參照NREL/TP-510-42628標(biāo)準(zhǔn)[19],采用纖維素濾紙酶活法測定試驗(yàn)所用纖維素酶酶活。即,利用插值法,測定并計算出50 mg纖維素濾紙水解60 min產(chǎn)生2 mg葡萄糖對應(yīng)的待測酶液的稀釋倍數(shù),進(jìn)而根據(jù)下列公式[19]計算得到濾紙酶活(FPU/mL):

經(jīng)測定,本研究使用的CellicCtec2的酶活為199.70 FPU/mL。

1.4.2 酶解試驗(yàn)

酶解試驗(yàn)參照NREL/TP-510-42629 方法[20]進(jìn)行,具體步驟為:取固體樣品(0.5 g干物質(zhì))按1:20固液比加入pH值為4.8檸檬酸鈉緩沖液,并按0.08 g/L加入鹽酸四環(huán)素,酶載荷為20 FPU/g固體,在50 ℃和200 r/min水浴振蕩條件下進(jìn)行72 h酶解反應(yīng)。反應(yīng)結(jié)束后,將樣品置于沸水浴中加熱10 min使纖維素酶滅活;冷卻后取上清液,用碳酸鈣調(diào)pH值至5~6,靜置待分層后,吸取部分上清液過0.22m水系濾膜;使用高效液相色譜儀(色譜條件同1.3.5小節(jié))測定葡萄糖質(zhì)量分?jǐn)?shù),每個樣品重復(fù)測量2次。

酶解葡萄糖產(chǎn)率()計算參考NREL/TP-510-42629標(biāo)準(zhǔn)[20],公式如下:

1.5 數(shù)據(jù)統(tǒng)計及分析

試驗(yàn)結(jié)果以均值±標(biāo)準(zhǔn)差表示,對數(shù)據(jù)進(jìn)行Duncan單因素方差檢驗(yàn),檢驗(yàn)水平取0.01。方差分析和相關(guān)性分析使用SPSS20.0軟件完成,作圖使用Origin2018軟件完成。

2 結(jié)果與分析

2.1 不同預(yù)處理玉米秸稈酶解葡萄糖產(chǎn)率變化

不同預(yù)處理玉米秸稈酶解72 h后其葡萄糖產(chǎn)率如圖1所示。

由圖1可以看出:在未添加NaOH條件下,CK-0 經(jīng)酶解72 h后葡萄糖產(chǎn)率為13.1%;而球磨處理后,酶解葡萄糖產(chǎn)率得到不同程度的顯著提高(<0.01),DBM-0葡萄糖產(chǎn)率為39.8%,WBM-0葡萄糖產(chǎn)率為26.4%,干法球磨處理的效果明顯優(yōu)于濕法球磨處理。當(dāng)添加NaOH后,DBM-1%葡萄糖產(chǎn)率為48.5%,顯著高于CK-1%(19.3%),與CK-3%葡萄糖產(chǎn)率(49.3%)相當(dāng),表明NaOH/球磨復(fù)合處理中,球磨產(chǎn)生了一定的化學(xué)增強(qiáng)作用,能有效提高NaOH化學(xué)作用,使葡萄糖產(chǎn)率在較低NaOH加載水平時得到大幅提高。

注:不同小寫字母表示差異性顯著,P<0.01。下同。

不同NaOH/球磨復(fù)合預(yù)處理玉米秸稈葡萄糖產(chǎn)率隨NaOH質(zhì)量分?jǐn)?shù)增加均得到顯著提升(<0.01)。當(dāng)NaOH質(zhì)量分?jǐn)?shù)為0或1%時,對比3種預(yù)處理組的結(jié)果可知,DBM樣品葡萄糖產(chǎn)率最高。伴隨NaOH溶液質(zhì)量分?jǐn)?shù)進(jìn)一步增加,DBM和WBM組樣品的葡萄糖產(chǎn)率均持續(xù)增加,DBM-3%和WBM-3%葡萄糖產(chǎn)率分別為71.0%和73.1%,但兩者差異不顯著(>0.01)。綜上,NaOH/球磨復(fù)合處理有效提高了葡萄糖產(chǎn)率,當(dāng)NaOH質(zhì)量分?jǐn)?shù)>2%時,DBM和WBM 2種復(fù)合預(yù)處理的酶解效果差異不顯著,但比較而言,WBM預(yù)處理工藝具有處理步驟少和時間短的優(yōu)勢。

2.2 不同預(yù)處理玉米秸稈微觀結(jié)構(gòu)變化與比較

圖2所示為不同預(yù)處理玉米秸稈粒度分布和粒徑變化情況。

由圖2a可以看出,與CK組相比,DBM和WBM預(yù)處理組樣品粒度分布整體左移,表明機(jī)械化學(xué)復(fù)合預(yù)處理有效減小了樣品的整體粒度;隨著NaOH質(zhì)量分?jǐn)?shù)的增加,同類機(jī)械化學(xué)復(fù)合預(yù)處理樣品粒度分布曲線右移,粒度呈增加趨勢;DBM樣品在200m附近出現(xiàn)第2個峰,這在今后的研究中需要基于高度關(guān)注。

如圖2b所示,就平均粒徑D50而言,CK-0為233.7m,處于組織尺度(100~500m)[21],DBM-0和WBM-0分別為15.8m和38.9m,處于細(xì)胞尺度(30~50m)[21]。隨著NaOH質(zhì)量分?jǐn)?shù)的增加,DBM組平均粒徑始終處于細(xì)胞尺度范圍,DBM-3%粒徑最大為50.6m;DBM和WBM組樣品平均粒徑呈增加趨勢,且WBM組樣品的平均粒徑始終大于DBM組,這一方面與NaOH的溶脹作用有關(guān)[22],另一方面與濕法球磨處理一定程度上降低了球與樣品的直接碰撞或摩擦等作用力有關(guān)。

由圖3不同預(yù)處理玉米秸稈樣品在300倍放大條件下掃描電鏡圖可以看出:CK組秸稈樣品呈短棒狀,排列較為整齊的維管束結(jié)構(gòu)清晰,隨著NaOH質(zhì)量分?jǐn)?shù)的增加,樣品雖呈現(xiàn)一定程度的結(jié)構(gòu)坍塌,但形貌結(jié)構(gòu)依然相對完整。與CK組相比,DBM和WBM樣品明顯細(xì)碎化,表明樣品植物組織結(jié)構(gòu)遭到嚴(yán)重破壞。DBM組樣品呈破碎的短片狀或顆粒狀,WBM樣品多為細(xì)長的纖維狀結(jié)構(gòu),且長短不一的纖維呈現(xiàn)互相纏繞狀態(tài),這與前面WBM平均粒徑大于DBM平均粒徑的分析結(jié)果高度吻合。

注:D50代表樣品累計體積分?jǐn)?shù)達(dá)到50%時對應(yīng)的粒徑大小。

圖3 不同預(yù)處理玉米秸稈掃描電鏡圖像

不同預(yù)處理玉米秸稈XRD圖譜如圖4所示。這可以看出,16°和22°附近存在明顯的結(jié)晶纖維素衍射峰,表明不同預(yù)處理玉米秸稈纖維素晶型結(jié)構(gòu)沒有發(fā)生明顯改變,始終為纖維素I。

結(jié)晶度變化的數(shù)值分析結(jié)果如表2所示。由表2可以看出,CK組樣品結(jié)晶度為42.2%~45.2%,NaOH質(zhì)量分?jǐn)?shù)增加對樣品結(jié)晶度的影響不大。DBM組樣品結(jié)晶度顯著小于CK組,表明干法NaOH/球磨復(fù)合預(yù)處理有效破壞物質(zhì)細(xì)胞壁晶體結(jié)構(gòu),這與Agbor等[23]研究結(jié)果一致。隨著NaOH質(zhì)量分?jǐn)?shù)增加,DBM結(jié)晶度顯著增加,當(dāng)NaOH質(zhì)量分?jǐn)?shù)為3%時,DBM樣品結(jié)晶度增至32.7%。分析原因,球磨有效降低了玉米秸稈顆粒尺寸,增大了玉米秸稈與氫氧根離子的接觸面積,從而有利于促進(jìn)NaOH與玉米秸稈中半纖維素和木質(zhì)素等非晶態(tài)結(jié)構(gòu)的化學(xué)反應(yīng)[24],有效去除無定形區(qū)域。濕法NaOH/球磨復(fù)合預(yù)處理對玉米秸稈結(jié)晶度影響不大,推測是溶劑對球磨的機(jī)械作用產(chǎn)生了一定程度緩沖或阻礙所致。

注:0,1%,2%,3%表示NaOH質(zhì)量分?jǐn)?shù)。下同。

表2 不同預(yù)處理玉米秸稈結(jié)晶度

注:表中標(biāo)有不同小寫字母表示差異性顯著,<0.01。

Note: Different lowercase letters in the table indicate significant differences,<0.01.

2.3 不同預(yù)處理玉米秸稈木質(zhì)纖維組分變化與比較

不同預(yù)處理玉米秸稈木質(zhì)纖維組成及固體回收率變化如表3所示。CK-0的纖維素、半纖維素和木質(zhì)素質(zhì)量分?jǐn)?shù)分別為36.8%、22.3%和20.3%。經(jīng)NaOH處理后,隨NaOH質(zhì)量分?jǐn)?shù)增加,樣品中纖維素質(zhì)量分?jǐn)?shù)顯著增加,木質(zhì)素質(zhì)量分?jǐn)?shù)顯著降低(<0.01),這是NaOH破壞木質(zhì)素和半纖維素中的酯鍵和醚鍵所致;但半纖維素質(zhì)量分?jǐn)?shù)變化并不明顯,這是由于NaOH僅造成少量半纖維素溶解[25],亦即半纖維素質(zhì)量分?jǐn)?shù)并未因木質(zhì)素質(zhì)量分?jǐn)?shù)顯著降低而發(fā)生顯著變化。

由表3還可以看出,CK-0、DBM-0和WBM-0中纖維素、半纖維素和木質(zhì)素質(zhì)量分?jǐn)?shù)差異不大,這與文獻(xiàn)[26]關(guān)于機(jī)械粉碎不改變玉米秸稈化學(xué)組成的研究結(jié)果相一致。當(dāng)NaOH質(zhì)量分?jǐn)?shù)相同時,2種機(jī)械化學(xué)復(fù)合預(yù)處理樣品的纖維素質(zhì)量分?jǐn)?shù)差異不顯著(>0.01),但WBM預(yù)處理組樣品木質(zhì)素質(zhì)量分?jǐn)?shù)顯著低于DBM組樣品(<0.01),其中當(dāng)NaOH質(zhì)量分?jǐn)?shù)為3%時,WBM-3%木質(zhì)素質(zhì)量分?jǐn)?shù)最低,為14.9%。由此可見,濕法球磨更有利于促進(jìn)NaOH的滲透[27]和加快木質(zhì)素的降解。

表3 不同預(yù)處理玉米秸稈樣品木質(zhì)纖維組分及固體回收率變化

注:表中同列標(biāo)有不同小寫字母表示差異性顯著,<0.01。

Note: Different lowercase letters in the same column of the table indicate significant differences,<0.01.

不同預(yù)處理玉米秸稈樣品的FTIR圖譜如圖5所示。1 733 cm-1附近的吸收峰源自C=O伸縮振動,可能與半纖維素中乙酰基和糖醛酸酯相關(guān),也可能與木質(zhì)素中阿魏酸和對豆香酸相關(guān)[26]。1 506和1 247 cm-1處的吸收峰分別對應(yīng)C=C和C-O,主要與木質(zhì)素相關(guān)[25-28]。從圖5可以看出,隨著NaOH質(zhì)量分?jǐn)?shù)增加,1 506和1 247 cm-1處的吸光度峰值減弱,表明玉米秸稈中木質(zhì)素被不同程度去除,這與表3中木質(zhì)素質(zhì)量分?jǐn)?shù)變化規(guī)律一致。當(dāng)NaOH質(zhì)量分?jǐn)?shù)為2%或3%時,不同處理方式的玉米秸稈位于1 733 cm-1處吸收峰完全消失,表明NaOH處理有效破壞半纖維素和木質(zhì)素中的酯鍵。3 400、2 900、1 200~1 000和895 cm-1位置處吸收峰與纖維素相關(guān),表明樣品中含有較多的纖維素。

2.4 不同預(yù)處理玉米秸稈理化性質(zhì)與葡萄糖產(chǎn)率相關(guān)性分析

表4所示為不同預(yù)處理玉米秸稈理化性質(zhì)與葡萄糖產(chǎn)率的Pearson相關(guān)性分析結(jié)果。

由表4可以看出,CK、DBM和WBM樣品葡萄糖產(chǎn)率均與纖維素質(zhì)量分?jǐn)?shù)呈顯著正相關(guān)關(guān)系,這與文獻(xiàn)[11]在研究玉米秸稈球磨/堿性過氧化氫復(fù)合預(yù)處理時所得結(jié)果一致。CK、DBM和WBM樣品葡萄糖產(chǎn)率均與木質(zhì)素質(zhì)量分?jǐn)?shù)呈顯著負(fù)相關(guān)關(guān)系。Loustau-Cazalet等[29]在其玉米秸稈NaOH/振動球磨預(yù)處理的研究中指出,碳水化合物酶促水解提高的主要原因在于木質(zhì)素的去除。Yang等[30]研究表明木質(zhì)素的去除有利于纖維素酶降解玉米秸稈。木質(zhì)素和半纖維素通過共價鍵和非共價鍵與纖維素緊密結(jié)合,嚴(yán)重阻礙了纖維素對酶的可及度,影響酶解效果[31]。木質(zhì)素的去除增加了玉米秸稈的孔徑和可及性,減少酶對木質(zhì)素的非生產(chǎn)性吸附[32-33]。當(dāng)玉米秸稈木質(zhì)素質(zhì)量分?jǐn)?shù)降低時,葡萄糖產(chǎn)率得到顯著提高,兩者表現(xiàn)出極顯著的負(fù)相關(guān)關(guān)系[34]。這些均與本研究的結(jié)果高度吻合。

圖5 不同預(yù)處理玉米秸稈FTIR圖譜

表4 Pearson相關(guān)性分析結(jié)果

注: ** 表示參數(shù)之間極顯著性相關(guān)(<0.01);*表示參數(shù)之間顯著性相關(guān)(<0.05)。

Note: **Indicates extremely significant correlation between parameters (<0.01), *Indicates significant correlation between parameters (<0.05).

DBM樣品葡萄糖產(chǎn)率與其D50與結(jié)晶度呈顯著正相關(guān)關(guān)系,WBM樣品葡萄糖產(chǎn)率與粒徑呈顯著正相關(guān)關(guān)系(<0.01)。由圖1數(shù)據(jù)可知,在不添加NaOH的條件下,DBM和WBM樣品葡萄糖產(chǎn)率由13.1%(CK-0)分別提升至26.4%(WBM-0)和39.8%(DBM-0)。與此同時,WBM-0與DBM-0木質(zhì)纖維組成差異不顯著,但 DBM-0樣品平均粒徑和結(jié)晶度均最小。這與降低植物細(xì)胞壁晶體結(jié)構(gòu)和減小顆粒尺寸可有效提高酶解葡萄糖產(chǎn)率的文獻(xiàn)研究結(jié)果一致[35-36]。

3 結(jié) 論

基于室溫條件的2種不同NaOH/球磨復(fù)合預(yù)處理工藝對玉米秸稈木質(zhì)纖維組成、微觀物理結(jié)構(gòu)和酶解葡萄糖產(chǎn)率的影響及其相關(guān)性研究結(jié)果表明:

1)干法NaOH/球磨復(fù)合預(yù)處理和濕法NaOH/球磨復(fù)合預(yù)處理,均可顯著提高玉米秸稈酶解葡萄糖產(chǎn)率。

2)隨NaOH質(zhì)量分?jǐn)?shù)增加(從1%提升至3%),不同NaOH/球磨復(fù)合預(yù)處理玉米秸稈葡萄糖產(chǎn)率顯著提升(<0.01)。

3)干法NaOH/球磨復(fù)合預(yù)處理和濕法NaOH/球磨復(fù)合預(yù)處理酶解葡萄糖產(chǎn)率與其纖維素質(zhì)量分?jǐn)?shù)和平均粒徑D50呈顯著正相關(guān),與木質(zhì)素質(zhì)量分?jǐn)?shù)顯著負(fù)相關(guān)(<0.01),其中干法NaOH/球磨復(fù)合預(yù)處理顯著改變了玉米秸稈結(jié)晶度,從而一定程度增強(qiáng)改善了玉米秸稈酶解葡萄糖產(chǎn)率(<0.05)。

[1] 王久臣,戴林,田宜水,等. 中國生物質(zhì)能產(chǎn)業(yè)發(fā)展現(xiàn)狀及趨勢分析[J]. 農(nóng)業(yè)工程學(xué)報,2007,23(9):276-282.

Wang Jiuchen, Dai Lin, Tian Yishui, et al. Analysis of the development status and trends of biomass energy industry in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(9): 276-282. (in Chinese with English abstract)

[2] 張元晶,魏剛,張小冬,等. 木質(zhì)纖維素生物質(zhì)預(yù)處理技術(shù)研究現(xiàn)狀[J]. 中國農(nóng)學(xué)通報,2012,28(11):272-277.

Zhang Yuanjing, Wei Gang, Zhang Xiaodong, et al. Status in pretreatment technologies of lignocellulosic biomass[J]. China Agricultural Science Bulletin, 2012, 28(11): 272-277. (in Chinese with English abstract)

[3] Ji G Y, Xiao W H, Gao C F, et al. Mechanical fragmentation of wheat and rice straw at different scales: Energy requirement in relation to microstructure properties and enzymatic hydrolysis[J]. Energy Conversion and Management, 2018, 171: 38-47.

[4] Lorenci W A, Dalmas N C J, Porto D S V L, et al. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance-conventional processing and recent advances[J]. Bioresource Technology, 2020, 304: 122848.

[5] Bak J S, Ko J K, Han Y H, et al. Improved enzymatic hydrolysis yield of rice straw using electron beam irradiation pretreatment[J]. Bioresource Technology, 2009, 100(3): 1285-1290.

[6] Perona A, Hoyos P, Farrán á, et al. Current challenges and future perspectives in sustainable mechanochemical transformations of carbohydrates[J]. Green chemistry: An International Journal and Green Chemistry Resource: GC, 2020, 22(17): 5559-5583.

[7] Wu S K M. Mechanochemistry of cellulose[J]. Cellulose, 2019, 26(1): 215-225.

[8] Qu T J, Zhang X M, Gu X W, et al. Ball milling for biomass fractionation and pretreatment with aqueous hydroxide solutions[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(9): 7733-7742.

[9] Liu H, Pang B, Zhao Y D, et al. Comparative study of two different alkali-mechanical pretreatments of corn stover for bioethanol production[J]. Fuel, 2018, 221: 21-27.

[10] Lin Z X, Huang He, Zhang H M, et al. Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis[J]. Applied Biochemistry and Biotechnology, 2010, 162(7): 1872-1880.

[11] 李駿寶. 不同預(yù)處理對玉米秸稈酶解效果的增強(qiáng)作用及機(jī)理研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2020.

Li Junbao. Enhancing Effects and Mechanisms of Different Pretreatments on Enzymatic Hydrolysis of Corn Stover[D]. Beijing: China Agricultural University, 2020.

[12] Yang J, Gao C F, Yang X Q, et al. Effect of combined wet alkaline mechanical pretreatment on enzymatic hydrolysis of corn stover and its mechanism[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 31.

[13] Ji G Y, Gao C F, Xiao W H, et al. Mechanical fragmentation of corncob at different plant scales: Impact and mechanism on microstructure features and enzymatic hydrolysis[J]. Bioresource Technology, 2016, 205: 159-165.

[14] Gao C F, Yang J, Han L J. Systematic comparison for effects of different scale mechanical-NaOH coupling treatments on lignocellulosic components, micromorphology and cellulose crystal structure of wheat straw[J]. Bioresource Technology, 2021, 326: 124786.

[15] Lee J W, Kim J Y, Jang H M, et al. Sequential dilute acid and alkali pretreatment of corn stover: Sugar recovery efficiency and structural characterization[J]. Bioresource Technology, 2015, 182: 296-301.

[16] Gao C F, Yang J, Zhang H H, et al. Quantitative and qualitative characterization of dual scale mechanical enhancement on cellulosic and crystalline-structural variation of NaOH treated wheat straw[J]. Bioresource Technology, 2020, 312: 123535.

[17] Zhang Y J, Huang M, Su J M, et al. Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activation and metal salt for enhancing enzymatic conversion of lignocellulose[J]. Biotechnology for Biofuels, 2019, 12(1): 12.

[18] NREL/TP-510-42618, Determination of structural carbohydrates and lignin in biomass[S].

[19] NREL/TP-510-42628, Measurement of cellulase activities[S].

[20] NREL/TP-510-42629, Enzymatic Saccharification of Lignocellulosic Biomass[S].

[21] Barakat A, Monlau F, Solhy A, et al. Mechanical dissociation and fragmentation of lignocellulosic biomass: Effect of initial moisture, biochemical and structural proprieties on energy requirement[J]. Applied Energy, 2015, 142: 240-246.

[22] Chuetor S, Champreda V, Laosiripojana N. Evaluation of combined semi-humid chemo-mechanical pretreatment of lignocellulosic biomass in energy efficiency and waste generation[J]. Bioresource Technology, 2019, 292: 121966.

[23] Agbor V B, Cicek N, Sparling R, et al. Biomass pretreatment: Fundamentals toward application[J]. Biotechnology Advances, 2011, 29(6): 675-685.

[24] Li J B, Zhang H Y, Lu M S, et al. Comparison and intrinsic correlation analysis based on composition, microstructure and enzymatic hydrolysis of corn stover after different types of pretreatments[J]. Bioresource Technology, 2019, 293: 122016.

[25] Kim J S, Lee Y Y, Kim T H. A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass[J]. Bioresource Technology, 2016, 199: 42-48.

[26] Gao C F, Xiao W H, Ji G Y, et al. Regularity and mechanism of wheat straw properties change in ball milling process at cellular scale[J]. Bioresource Technology, 2017, 241: 214-219.

[27] Huang J W, Zhu Y K, Liu T Y, et al. A novel wet-mechanochemical pretreatment for the efficient enzymatic saccharification of lignocelluloses: Small dosage dilute alkali assisted ball milling[J]. Energy Conversion and Management, 2019, 194: 46-54.

[28] Zhang Y H, Ding S Y, Mielenz J R, et al. Fractionating recalcitrant lignocellulose at modest reaction conditions[J]. Biotechnology and Bioengineering, 2007, 97(2): 214-223.

[29] Loustau-Cazalet C, Sambusiti C, Buche P, et al. Innovative deconstruction of biomass induced by dry chemo-mechanical activation: Impact on enzymatic hydrolysis and energy efficiency[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2689-2697.

[30] Yang B, Wyman C E. Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose[J]. Biotechnology and Bioengineering, 2004, 86(1): 88-95.

[31] Alvira P, Tomás-Pejó E, Ballesteros M, et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review[J]. Bioresource Technology, 2010, 101(13): 4851-4861.

[32] Mussatto S I, Fernandes Marcela, Milagres A M F, et al. Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer's spent grain[J]. Enzyme and Microbial Technology, 2008, 43(2): 124-129.

[33] Taherzadeh M, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review[J]. International Journal of Molecular Sciences, 2008, 9(9): 1621-1651.

[34] Raud M, Kikas T, Sippula O, et al. Potentials and challenges in lignocellulosic biofuel production technology[J]. Renewable and Sustainable Energy Reviews, 2019, 111: 44-56.

[35] Barakat A, de V H, Rouau X. Dry fractionation process as an important step in current and future lignocellulose biorefineries: A review[J]. Bioresource Technology, 2013, 134: 362-373.

[36] Sambusiti C, Licari A, Solhy A, et al. One-pot dry chemo-mechanical deconstruction for bioethanol production from sugarcane bagasse[J]. Bioresource Technology, 2015, 181: 200-206.

Effects of different NaOH/ball milling combined pretreatments on the enzymatic hydrolysis of corn stalks

Yang Jie, Yang Xueqi, Han Lujia※

(,,100083,)

The bioconversion technique is one of the important methods for producing environmentally friendly bioenergy from lignocellulosic biomass. The objective of this study is to explore the effect of different mechanochemical combined pretreatments on the enzymatic hydrolysis of corn stalks at room temperature. In this study, corn stalk was used as biomass material, lower load of NaOH with mass fractions 0, 1%, 2%, and 3% was used in the groups of NaOH pretreatment alone, the dry NaOH/ball milling combined pretreatment and the wet NaOH/ball milling combined pretreatment, respectively. The following 72 h enzymatic hydrolysis experiments for different pretreated corn stalks were carried out by using the enzyme CellicCtec2 (Novozymes, Denmark). The particle size, crystallinity, surface micromorphology, lignocellulosic composition, and the functional group changes of the pretreated corn stalk samples were systematically characterized. The effects of the different NaOH/ball milling combined pretreatments on samples’ physicochemical properties on enzymatic hydrolysis yield and their correlations were further investigated and discussed in detail. The results showed that both dry and wet NaOH/ball milling combined pretreatment significantly improved the corn stalk glucose yield compared with NaOH pretreatment (<0.01). And with the increase of NaOH mass fraction (from 1% to 3%), the glucose yield of corn stalk with dry and wet NaOH/ball milling combined pretreatment increased clear (<0.01). When the mass fraction of NaOH was 3%, the glucose yield of the dry and wet NaOH/ball milling combined pretreatment reached 71.0% and 73.1%, respectively. The dry NaOH/ball milling combined pretreatment effectively reduced the particle size and crystallinity of the corn stalk, compared with the NaOH pretreatment. Once the NaOH mass fraction was 0, the particle size and crystallinity of the corn stalk treated by the dry NaOH/ball milling were the lowest, 15.8m and 25.9%, respectively. But, the particle size and crystallinity of the corn stalk pretreated by the wet NaOH/ball milling were higher than those of the dry NaOH/ball milling combined pretreated samples. The cellulose mass fraction of different combined pretreatment samples gradually increased, with the increase of NaOH mass fraction. There was no significant difference in the cellulose mass fraction between the two pretreatment samples under the same NaOH loading conditions. The cellulose mass fraction was up to 48.5% in the wet NaOH/ball milling combined with pretreated samples, when the NaOH mass fraction was 3%. The lignin mass fraction decreased significantly with the increase of NaOH mass fraction (<0.01). The lignin mass fraction of corn stalk with the wet NaOH/ball milling combined pretreatment was lower than that of dry ones. Once the NaOH mass fraction was 3%, the lignin mass fraction of the wet NaOH/ball milling combined pretreatment was the lowest at 14.9%. Regardless of the dry and wet NaOH/ball milling combined pretreatment, the enzymatic glucose yields were significantly positively correlated with cellulose mass fraction and average particle size50(<0.01), and significantly negatively correlated with lignin mass fraction (<0.01). The dry NaOH/ball milling combined pretreatment significantly reduced the crystallinity of the corn stalk, thereby enhancing the yield of enzymatic hydrolysis of the corn stalk to a certain extent (<0.05). This study provides data support to help further reveal the mechanism of biomass mechanochemical combined pretreatment behind.

corn; stalk; NaOH/ball milling; combined pretreatment; enzymatic hydrolysis; physical and chemical properties; correlation

10.11975/j.issn.1002-6819.2022.15.024

S216.2

A

1002-6819(2022)-15-0226-08

楊潔,楊雪琦,韓魯佳. 不同NaOH/球磨復(fù)合預(yù)處理對玉米秸稈酶解效果的影響[J]. 農(nóng)業(yè)工程學(xué)報,2022,38(15):226-233.doi:10.11975/j.issn.1002-6819.2022.15.024 http://www.tcsae.org

Yang Jie, Yang Xueqi, Han Lujia. Effects of different NaOH/ball milling combined pretreatments on the enzymatic hydrolysis of corn stalks[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2022, 38(15): 226-233. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2022.15.024 http://www.tcsae.org

2022-06-18

2022-07-30

教育部“創(chuàng)新團(tuán)隊(duì)發(fā)展計劃”(IRT1293)和國家奶牛產(chǎn)業(yè)技術(shù)體系(CARS-36)

楊潔,研究方向?yàn)槟举|(zhì)纖維類生物質(zhì)預(yù)處理酶解。Email:yjie@cau.edu.cn

韓魯佳,教授,博士生導(dǎo)師,研究方向?yàn)檗r(nóng)業(yè)生物質(zhì)資源利用。Email:hanlj@cau.edu.cn

猜你喜歡
木質(zhì)素產(chǎn)率纖維素
纖維素基多孔相變復(fù)合材料研究
纖維素氣凝膠的制備與應(yīng)用研究進(jìn)展
原料粒度對飼料級磷酸三鈣性能及產(chǎn)率的影響
云南化工(2020年11期)2021-01-14 00:50:48
超聲輔助水滑石/ZnCl2高效催化Knoevenagel縮合反應(yīng)
木質(zhì)素增強(qiáng)生物塑料的研究進(jìn)展
上海包裝(2019年8期)2019-11-11 12:16:14
一種改性木質(zhì)素基分散劑及其制備工藝
天津造紙(2016年1期)2017-01-15 14:03:29
一種新型酚化木質(zhì)素胺乳化劑的合成及其性能
ABS/木質(zhì)素復(fù)合材料動態(tài)流變行為的研究
中國塑料(2014年4期)2014-10-17 03:00:45
纖維素晶須的制備研究
Chemical Fixation of Carbon Dioxide by Zinc Halide/PPh3/n-Bu4NBrNBr
虎林市| 汝城县| 天祝| 高清| 富川| 班玛县| 马龙县| 微山县| 扬中市| 思茅市| 汾阳市| 泰安市| 贵港市| 牟定县| 精河县| 木兰县| 盐城市| 湘乡市| 延长县| 体育| 南开区| 定兴县| 龙岩市| 广州市| 登封市| 仙居县| 精河县| 宜兰县| 丹棱县| 进贤县| 藁城市| 平果县| 额济纳旗| 博乐市| 大理市| 调兵山市| 定边县| 清水县| 南汇区| 古田县| 镇江市|