吳 磊,黃凱東
(1.中山火炬職業(yè)技術學院,廣東 中山 528437;2.廣州明珞裝備股份有限公司,廣東 廣州 510530)
目前彎管柔性加工主要的加工方式有中頻感應式[1-4]、液壓脹形式[5]、熱應力式[6]、三滾輪推彎式[7-8]、激光輻射式[9-12]和無模彎曲式[13]。其中,中頻感應式、熱應力式和激光輻射式均屬于熱加工,需要消耗較多能量,不是優(yōu)選的加工形式;液壓脹形由于需要使用液壓系統(tǒng),成本較高,一般只適用于彎曲半徑較大的彎管加工;無模彎曲由于其彎管結構特點,也不適用于彎曲半徑較小的彎管加工;三滾輪推彎可通過調(diào)整模具之間的距離和旋轉角度實現(xiàn)大范圍的彎管加工,且成本較低。
有關學者對三滾輪推彎工藝進行了研究,陳學海[7]根據(jù)管材工程彎角范圍內(nèi)成形角與彎曲角、伸長量之間的線性關系,建立了材料回彈線性方程和伸長線性方程。紀永飛[8]對Q235鋼管彎曲的回彈角與彎曲角之間的回彈規(guī)律進行了研究。PLETTKE團隊進行了滾輪無模冷彎成形有限元模擬的改進研究[14]、加工設定參數(shù)的影響研究[15]、管材幾何特性的影響研究[16]、基于理論計算和有限元分析的彎管半徑計算時間優(yōu)化研究[17]。本文作者的研究團隊前期進行了3003-H24鋁管三滾輪推彎成形回彈半徑的理論計算研究[18]。雖然前期進行了3003-H24鋁管三滾輪推彎成形回彈半徑的理論計算驗證研究[18],但是理論計算公式對其他鋁合金是否適用仍有待驗證。對此,本研究針對多種常用牌號的鋁合金及同一牌號多種規(guī)格管材的三滾輪推彎進行研究,以期對前期研究得出的理論計算作出進一步分析。
三滾輪推彎工藝模型如圖1所示,調(diào)整壓模與中心圓模在管材直線段的方向上錯開一定距離,然后由壓模繞中心圓模轉動一定角度,從而形成特定的彎曲半徑,再由后端的管材推進裝置通過夾爪帶動管材向前推進,從而不斷進行彎管加工,最后將壓模退回,彎管產(chǎn)生回彈,完成加工,形成所需彎管的形狀。
圖1 三滾輪推彎工藝模型
本研究針對5052-T5和6061-T4兩種鋁合金管材進行相關理論計算和實際加工,并和前期研究[18]的3003-H24鋁合金管材進行綜合對比分析,對比方案如表1所示,對相同壁厚(外徑10 mm,壁厚0.5 mm)的鋁管,進行不同牌號鋁合金的對比,并選取其中的6061-T4鋁合金管材進行不同壁厚的對比。
表1 鋁合金管材牌號及規(guī)格參數(shù)表
分別通過理論計算和實際加工后測量的方式,得到上述鋁合金管材理論計算成形半徑及實物測量成形半徑,然后對數(shù)據(jù)進行對比分析。
采用中山市富菱斯機電設備有限公司所設計開發(fā)的SKW20-R1數(shù)控彎管機(采用設備自帶的伺服控制系統(tǒng)、位移控制精度±0.05 mm、角度控制精度±0.05°),如圖2所示,部分參數(shù)的設定可通過前期研究推導出的公式[18]進行計算,對表1所述各牌號、各規(guī)格的彎管進行實際加工。加工完成后,通過CREAFORM品牌的型號為11574的手持式自定位三維激光掃描儀(波長660 nm)對彎管的彎曲部分進行掃描,獲得其點云數(shù)據(jù)。采用逆向工程軟件Geomagic Studio 2013生成掃描后的模型打開云圖,矯正圖形位置,并對其進行截圖。然后采用Matlab R2013a進行圖像處理(RGB轉灰度圖、轉二值圖、對二值圖求補、并進行閉處理、將二值圖骨架化),計算矩陣大小,并均勻取三個坐標點,通過求三角形外接圓半徑的方法求得像素管徑,通過測量實物管徑與像素管徑得到圖像比例尺,進而求得實測回彈成形半徑。
圖2 彎管實物加工圖
彎管加工實物圖如圖3所示??梢姀澒軋A弧段的表面成形質(zhì)量良好,便于彎曲半徑的測量。對于彎管橫截面的變化,前期研究[18]已得出3003-H24鋁合金管材的最小可加工規(guī)格,彎管后其截面半徑變化不到0.02 mm ,如圖4所示。而5052-T5、6061-T4材料加工變形程度更小,故彎管半徑變化可忽略不計。通過上述設計實驗得到的實測數(shù)據(jù)如圖5和圖6所示。
圖3 彎管加工成形實物圖
圖4 彎管成形截面圖
根據(jù)前期工作[18]得出的鋁合金管材理論成形計算公式:
(1)
式中:
ρ0—理論成形半徑;
E—彈性模量;
M—彎管所需彎曲力矩;
I′—截面變形后的截面慣性矩;
1/ρ—彎曲力矩M所產(chǎn)生的彈塑性曲率;
1/ρe—彎曲力矩M所對應的彈性曲率(詳細計算過程請參考文獻[18]第三章彎管成形參數(shù)計算及其驗證,由于篇幅有限,在此不再贅述)。
由公式(1)可以得到不同牌號鋁合金及不同幾何規(guī)格的理論計算數(shù)據(jù),結果如圖5和圖6所示。
圖5 0.5 mm厚的鋁合金管材彎管加工成形半徑與理論計算成形半徑、實測成形半徑關系圖
圖6 6061-T4鋁合金不同壁厚的管材彎曲加工成形半徑與理論計算成形半徑、實測成形半徑關系圖
從圖5三種不同牌號的關系曲線可看出,理論計算與實測結果的誤差從小到大的鋁合金為3003-H24、5052-T5、6061-T4,平均誤差分別為1.5%、9.6%、17.9%。從材料軟硬性來看,3003-H24鋁合金最軟,6061-T4鋁合金最硬,5052-T5鋁合金介于前兩者之間,即3003-H24鋁合金最容易產(chǎn)生塑性變形,回彈程度最小,而6061-T4鋁合金則相反,其回彈程度最大。這從實測數(shù)據(jù)也可看出,隨著成形半徑增大,彎曲程度減小,塑性變形量減小,則回彈程度增大,理論數(shù)據(jù)與實測數(shù)據(jù)的誤差也隨著增大。因此,可得出該理論計算公式適用于易產(chǎn)生塑性變形的材料,對于不易產(chǎn)生塑性變形的材料,在彎曲半徑較小、塑性變形程度較大的情形也適用。
從圖5可看出,對于5052-T5和6061-T4鋁合金來說,理論計算公式適用加工彎曲成形半徑110 mm以內(nèi)的。
對比圖5、圖6可看出,隨著成形半徑增大,理論計算與實測結果之間的誤差增大;且隨著壁厚增大,理論計算與實測結果的誤差增大程度也在增大。因為隨著壁厚增大,材料也更易產(chǎn)生回彈,因此誤差增大。
從各種壁厚對應的成形半徑平均誤差來看,壁厚0.3 mm、0.4 mm、0.5 mm、0.75 mm和1 mm的彎管理論計算成形半徑對應的平均誤差分別為5.6%、7.7%、17.9%、27.4%和38.4%,即在壁厚0.4 mm以內(nèi),誤差較小,在10%以內(nèi),而壁厚到了0.5 mm以上,誤差則較大。
綜合上述分析,可得出該理論計算公式適用于塑性變形程度較大的加工材料,雖然有局限性,但在一定尺寸范圍內(nèi),即加工半徑小于110 mm,壁厚不大于0.4 mm,對加工成形尺寸的計算具有誤差8%以內(nèi)的準確性,可用于指導小彎曲半徑、薄壁鋁管的實際彎管生產(chǎn)。從彎管工藝的特點來看,彎曲半徑越小,壁厚越薄,加工難度越大,而采用該理論計算公式,可有效地先進行理論分析,減少生產(chǎn)試錯成本,對實際生產(chǎn)具有一定的指導意義。
1)隨著成形半徑增大,理論計算與實測結果的誤差增大。
2)隨著加工管材的壁厚增大,理論計算與實測結果的誤差程度也增大。
3)該理論計算公式適用于小彎曲半徑(小于110 mm)、薄壁件(小于0.4 mm)的鋁合金彎管加工,誤差范圍小于8%。