秦 楨 李吉濤 李明棟 王佳佳 葛倩倩 劉 萍 李 健
鹽堿水環(huán)境對脊尾白蝦基因組DNA甲基化的影響*
秦 楨1,2李吉濤2①李明棟2王佳佳2葛倩倩2劉 萍2李 健2
(1. 上海海洋大學(xué) 水產(chǎn)科學(xué)國家級實驗教學(xué)示范中心 上海 201306;2. 中國水產(chǎn)科學(xué)研究院黃海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部海洋漁業(yè)可持續(xù)發(fā)展重點實驗室 青島海洋科學(xué)與技術(shù)試點國家實驗室海洋漁業(yè)科學(xué)與食物產(chǎn)出過程功能實驗室 山東 青島 266071)
為探討鹽堿水環(huán)境對脊尾白蝦()基因組DNA甲基化的影響,本研究利用MethylRAD-Seq技術(shù)探究了長期鹽堿水養(yǎng)殖組(SAS)和正常海水養(yǎng)殖對照組(SW)脊尾白蝦鰓組織中的DNA甲基化水平,并對關(guān)鍵通路和基因進(jìn)行了差異表達(dá)分析。結(jié)果顯示,脊尾白蝦鰓組織基因組中CG和CWG位點(W=A或T)分別檢測到2347003和416176處甲基化,甲基化普遍存在于基因組的基因間區(qū)和內(nèi)含子區(qū)域,共篩選到8805個(8189個CG-DMSs和616個CWG-DMSs)差異甲基化位點,鹽堿水環(huán)境下DNA甲基化水平略有增強(qiáng)。通過KEGG富集分析發(fā)現(xiàn),DMS所在差異表達(dá)基因顯著富集在HIF-1信號通路和剪接體通路,通路中、和等關(guān)鍵基因在脊尾白蝦鹽堿水環(huán)境適應(yīng)中可能發(fā)揮著重要作用;對SW和SAS組差異甲基化基因(DMG)進(jìn)行篩選,得到158個CG-DMGs和94個CWG-DMGs,其中,富集到脂質(zhì)代謝和囊泡介導(dǎo)的轉(zhuǎn)運(yùn)通路中的DMG最多;此外,有一些DNA甲基化位點與基因表達(dá)呈負(fù)相關(guān),表明DNA甲基化與基因調(diào)控之間存在復(fù)雜的聯(lián)系,大部分基因組DNA甲基化對基因表達(dá)有正調(diào)控效應(yīng)。本研究結(jié)果首次分析了在鹽堿水環(huán)境下脊尾白蝦鰓組織的DNA甲基化水平特征,為解析甲殼類鹽堿水環(huán)境適應(yīng)機(jī)制提供了基礎(chǔ)信息。
脊尾白蝦;鹽堿水環(huán)境;DNA甲基化;差異表達(dá)基因
受氣候、地形等自然和人為因素的影響,全球土壤和水的鹽漬化程度正在增加(常玉梅等, 2021)。據(jù)研究推測,這些地區(qū)在未來將日趨擴(kuò)大,嚴(yán)重威脅水產(chǎn)養(yǎng)殖的發(fā)展空間(張建峰, 2008)。目前,已有大量研究集中在鹽堿地管理和鹽堿水對水生動物(包括甲殼類)的毒性影響(Arooj, 2021; Chen, 2020; Conrado, 2017; 楊富億等, 2004)。為促進(jìn)鹽堿地水產(chǎn)養(yǎng)殖的發(fā)展,對一些適應(yīng)性較強(qiáng)的品種開展了鹽堿地池塘養(yǎng)殖,例如耐鹽堿魚類、廣鹽性魚類和蝦蟹類等,目前應(yīng)用于鹽堿水規(guī)?;B(yǎng)殖的品種包括羅非魚()、梭鱸()和凡納濱對蝦()等(徐文龍等, 2021; 來琦芳等, 2021)。對魚類耐鹽堿機(jī)制的研究主要集中在生理和分子調(diào)控機(jī)制(滲透壓調(diào)節(jié)、氨氮代謝、激素調(diào)節(jié)等)方面,而對甲殼動物耐鹽堿的研究則主要集中在對堿度脅迫的耐受能力及其生理變化(常玉梅等, 2021)。然而,目前對甲殼類動物耐鹽堿的分子機(jī)制尚不清楚。
越來越多的證據(jù)表明,表觀遺傳學(xué)調(diào)控機(jī)制在生物對環(huán)境脅迫后的適應(yīng)性調(diào)控過程中占據(jù)著至關(guān)重要的地位(Xu, 2020; Han, 2021)。研究發(fā)現(xiàn),生物體可以通過DNA甲基化調(diào)節(jié)當(dāng)代和后代的環(huán)境適應(yīng)能力,比如對低氧、低鹽、鹽堿等環(huán)境脅迫的適應(yīng)(Wang, 2021; 王會等, 2017; 環(huán)朋朋等, 2019; Su, 2020)。在甲殼動物中,有學(xué)者開展關(guān)于DNA甲基化對其生長發(fā)育、防御生物和非生物脅迫(包括熱應(yīng)激、鹽度、重金屬等)的影響。例如,薛蓓等(2017)研究了脊尾白蝦() 4個生長發(fā)育階段線粒體基因組的甲基化水平,發(fā)現(xiàn)脊尾白蝦通過甲基化調(diào)節(jié)能量代謝影響機(jī)體的生長發(fā)育進(jìn)程。熱應(yīng)激下,鹵蟲()和海鞘()的胞嘧啶甲基化導(dǎo)致基因的差異表達(dá)(Norouzitallab, 2014; Hawes, 2018)。Lovett等(2001)研究發(fā)現(xiàn),甲基法尼酯(methyl farnesoate)能夠調(diào)節(jié)岸蟹()機(jī)體滲透壓,使其適應(yīng)鹽度變化很大的河口環(huán)境。年齡、取樣地點、水溫、禁食和鎘暴露均能顯著影響淡水鉤蝦()基因組胞嘧啶的甲基化水平(Cribiu, 2018)。
脊尾白蝦俗稱海水小白蝦、白米蝦,是我國東部沿海廣溫廣鹽的重要中小型經(jīng)濟(jì)蝦類,以黃、渤海產(chǎn)量最高,年產(chǎn)量數(shù)千噸(Ge, 2015; Fan, 2020)。近年來,脊尾白蝦養(yǎng)殖業(yè)迅速擴(kuò)大,成為促進(jìn)我國沿海漁業(yè)經(jīng)濟(jì)發(fā)展的重要品種(柳飛等, 2016; 李明棟等, 2021)。在濱海鹽堿水試養(yǎng)脊尾白蝦過程中,發(fā)現(xiàn)脊尾白蝦雖然能夠正常生存,但其生長及繁殖能力在高碳酸鹽堿度下明顯降低(Ge, 2019; 柳飛等, 2016)。開展脊尾白蝦鹽堿適應(yīng)機(jī)制解析,對耐鹽堿良種培育和鹽堿水養(yǎng)殖具有重要意義。本研究利用河北滄州養(yǎng)殖基地脊尾白蝦耐鹽堿品系和山東日照試驗基地脊尾白蝦“黃育1號”作為研究對象,利用高效、低成本全基因組DNA甲基化檢測技術(shù)(MethylRAD-Seq)對脊尾白蝦鰓組織DNA甲基化水平進(jìn)行分析,篩選與鹽堿脅迫相關(guān)的關(guān)鍵基因和重要甲基化位點,旨在為解析脊尾白蝦適應(yīng)鹽堿水環(huán)境的分子機(jī)制提供基礎(chǔ)數(shù)據(jù),為甲殼類鹽堿適應(yīng)機(jī)制研究提供參考。
本研究用脊尾白蝦“黃育1號”養(yǎng)殖于山東省日照海辰水產(chǎn)有限公司正常海水中(鹽度25、pH 8.2、碳酸鹽堿度2.0~3.0 mmol/L),脊尾白蝦耐鹽堿品系養(yǎng)殖于河北滄州濱海型鹽堿水中(鹽度15~20、pH 8.3~9.2、碳酸鹽堿度3.5~8.0 mmol/L)。根據(jù)實驗?zāi)康?,正常海水養(yǎng)殖對照組(SW)取自日照養(yǎng)殖的“黃育1號”健康成蝦,長期鹽堿水養(yǎng)殖組(SAS)為2019年“黃育1號”引入河北滄州濱海型鹽堿水選育3代的成蝦個體。實驗用脊尾白蝦體長為(5.65±0.50) cm,體重為(1.52±0.38) g,隨機(jī)選取體質(zhì)健康、活力良好的個體。進(jìn)行實驗前3 d停止喂食,待蝦狀態(tài)穩(wěn)定后解剖其鰓組織于–80℃下保存。SW和SAS組分別取6個生物平行,每個平行3份鰓組織,各組織樣品分別標(biāo)記為SW1~3和SAS1~3,用于后期DNA和總RNA提取。
采用TIANamp Marine Animals DNA Kit (TIANGEN)提取DNA,利用核酸定量儀(Thermo, NanoDrop 2000)和1%瓊脂糖檢測DNA質(zhì)量、濃度和完整性。利用修飾依賴性內(nèi)切酶EI 5U于37℃酶切4 h消化基因組DNA,按照10 μL酶切產(chǎn)物與0.80 μL特異性接頭、1 μL 10×T4ligase buffer、1 μL 10 mmol/L ATP和2 μL T4DNA ligase (400 U/μL)的比例混合,加超純水使總體積為20 μL。4℃連接6~8 h,連接產(chǎn)物經(jīng)特異性引物反應(yīng)擴(kuò)增,反應(yīng)條件:98℃初始變性30 s,98℃ 20個循環(huán)變性5 s,60℃退火20 s,72℃片段延伸10 s。每個樣品平行擴(kuò)增3管,用于后續(xù)回收目的片段。取3 μL PCR產(chǎn)物用8%聚丙烯酰胺凝膠進(jìn)行非變性電泳檢查。然后按照制造商說明將PCR產(chǎn)物用SteadyPure Agarose Gel DNA Purification Kit (Accurate Biotechnology Co., Ltd)進(jìn)行切膠回收。利用QIAquick PCR Purification Kit和Qubit對PCR產(chǎn)物進(jìn)行純化和定量,基于MethylRAD技術(shù)構(gòu)建標(biāo)簽文庫,由上海歐易生物醫(yī)學(xué)科技有限公司采用Illumina SE sequencing (50 bp)測序平臺進(jìn)行文庫測序。
1.3.1 原始數(shù)據(jù)的質(zhì)控 利用Illumina測序平臺得到的原始圖像數(shù)據(jù)文件經(jīng)堿基識別轉(zhuǎn)化為原始測序序列(raw reads)。在組裝之前,通過預(yù)處理(隨機(jī)截取103%的數(shù)據(jù),去除距5′或3′端13~17 bp的片段、有待檢測酶切位點的片段和低質(zhì)量片段)對原始數(shù)據(jù)進(jìn)行過濾與質(zhì)控,得到各樣品的高質(zhì)量的有效數(shù)據(jù)(clean reads),進(jìn)行后續(xù)的數(shù)據(jù)分析。
1.3.2 甲基化位點水平的定量 以本課題組前期組裝的脊尾白蝦全基因組序列為參考基因組(數(shù)據(jù)尚未發(fā)表),使用Bowtie 2軟件(V2.3.4.1)對clean reads進(jìn)行比對,參數(shù)設(shè)置為:--no-unal。比對完成后,去除能夠同時比對到參考序列的多個位置的reads,采用RPM (reads per million)為單位對甲基化位點水平進(jìn)行定量,計算公式為位點甲基化水平定量值=位點覆蓋reads數(shù)/文庫高質(zhì)量reads×1000000。根據(jù)比對結(jié)果,統(tǒng)計CG位點(CmCGG、GmCGG、CmCGA、AmCGG、CmCGC、CmCGT、TmCGG和GmCGC)和CWG位點(mCAG和mCTG)的數(shù)目、電子酶切位點數(shù)目及reads深度,從而描繪整條染色體上2種位點的分布情況。
通過修飾依賴型核酸內(nèi)切酶(EI酶和PI酶)進(jìn)行電子酶切,識別C5-甲基化胞嘧啶(5-mC)和C5-羥甲基化胞嘧啶(5-hmC),得到一個30 bp (28~ 37 bp)左右的酶切片段。圖1為EI酶和PI酶的酶切位點示意圖。對于mCG位點,只選擇EI酶的CmCGG位點和PI酶的8種比較穩(wěn)定的CG位點進(jìn)行下游數(shù)據(jù)分析(Boers, 2018);對于mCHG (H代表簡并堿基A、C、T)位點,EI酶和PI酶都采用mCAG和mCTG結(jié)果,用CWG表示(W代表簡并堿基A、T)。
圖1 LpnPI酶和FspEI酶的酶切位點
1.3.3 甲基化位點注釋及分布 根據(jù)甲基化位點的位置信息,使用SnpEff軟件(V 4.1g)位點進(jìn)行注釋,給出每個位點所在的基因元件以及位點注釋的詳細(xì)信息,利用bedtools軟件(V 2.25.0)統(tǒng)計各個樣品中不同基因元件中甲基化位點的分布情況,進(jìn)一步選取基因轉(zhuǎn)錄起始位置(TSS)上下游各2 kb區(qū)段,轉(zhuǎn)錄終止位置(TTS)上下游各2 kb區(qū)段及基因體(genebody),將分布在不同區(qū)域的每個基因的序列均分為多個窗口,統(tǒng)計每個窗口的RPM值,將所有基因相同窗口的RPM值取平均,作為該窗口的RPM值,描述測序reads在上述區(qū)段的分布趨勢。
1.3.4 甲基化位點的差異分析 將各個樣本的base mean值作為測序深度的表達(dá)量估算值,利用DESeq包(V 1.36.0)對測序深度進(jìn)行標(biāo)準(zhǔn)化處理,計算差異倍數(shù),并采用負(fù)二項分布檢驗對reads數(shù)進(jìn)行差異顯著性檢驗,以此來篩選差異甲基化位點(DMS)。默認(rèn)<0.05且差異倍數(shù)(fold change)大于2為篩選差異的條件。使用bedtools軟件對各個比較組中不同基因元件中甲基化位點的分布情況進(jìn)行統(tǒng)計。記錄DMS的分布,并統(tǒng)計DMS在不同基因功能元件上的分布。統(tǒng)計DMS的甲基化水平,用以描述DMS所在基因的甲基化水平,獲得DMS所在差異表達(dá)基因(DEG)。根據(jù)GO (Gene Ontology, http://www. geneontology.org/)和KEGG (Kyoto Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/)數(shù)據(jù)庫進(jìn)行GO和KEGG pathway功能和富集分析。< 0.05的GO term被認(rèn)為是顯著富集,Benjamini- Hochberg多重檢驗校正所有值以獲得FDR。
1.3.5 基因水平的甲基化差異分析 以某一基因內(nèi)的所有甲基化位點水平之和代表該基因的甲基化水平,對SW和SAS兩組樣品進(jìn)行組間比較。同樣計算差異倍數(shù),利用負(fù)二項分布檢驗的方式對基因進(jìn)行差異顯著性檢驗,最終根據(jù)差異倍數(shù)及差異顯著性檢驗結(jié)果來篩選差異甲基化基因(DMG)。由DMG組成基因集,根據(jù)GO和KEGG數(shù)據(jù)庫進(jìn)行GO和KEGG pathway功能和富集分析。
1.3.6 通過qRT-PCR驗證差異甲基化基因和差異表達(dá)基因 利用TRIzol試劑(Invitrogen)提取鰓組織樣本的總RNA,經(jīng)核酸定量儀(Thermo, NanoDrop 2000)和1%瓊脂糖凝膠電泳檢測RNA的濃度和質(zhì)量。按照HiScriptⅡ Q Select RT SuperMix for qPCR (Vazyme)說明書進(jìn)行RNA反轉(zhuǎn)錄,合成cDNA。以cDNA為模板進(jìn)行引物的驗證和后續(xù)2組脊尾白蝦鰓組織的甲基化特征分析。為了驗證由MethylRAD-seq確定的脊尾白蝦鰓組織中DMS相關(guān)的DEG,選取顯著富集的KEGG通路相關(guān)的12個DEGs進(jìn)行了qRT-PCR分析。用于qRT-PCR分析的mRNAs引物見表1。以18S為內(nèi)參,引物序列如下:5′-TATACGCTA GTGGAGCTGGAA-3′和3′-GGGGAGGTAGTGACGA AAAAT-5′ (李美玉等, 2012; Wang, 2015)。在7500 fast Real-Time PCR系統(tǒng)(Applied Biosystems)中,使用SYBR Green PCR Master Mix (Life Technologies)進(jìn)行qRT-PCR。取每個時間點的3個轉(zhuǎn)錄組樣本進(jìn)行qRT-PCR,每個生物重復(fù)進(jìn)行3個技術(shù)重復(fù)。使用CT方法(2?ΔΔCt)計算目的基因的相對表達(dá)量(Tapia, 2017)。
表1 用于qRT-PCR分析的mRNA引物
Tab.1 Primers of mRNAs used for the qRT-PCR analysis
對SAS和SW的6個樣本進(jìn)行MethylRAD測序和數(shù)據(jù)統(tǒng)計,測序結(jié)果顯示,平均每個樣本獲得184 868 782條原始數(shù)據(jù)。對完成過濾質(zhì)控的CG和CWG位點進(jìn)行酶切,共獲得55 642 471條有效數(shù)據(jù),占總reads的35.04%~37.49%。統(tǒng)計每條scaffold上各種酶切位點的數(shù)目,每組有效數(shù)據(jù)平均88.71%可比對到脊尾白蝦的參考基因組,共有22 633 946條有效數(shù)據(jù)在參考基因組上有唯一比對位置,具體測序信息見表2。
根據(jù)參考基因組比對結(jié)果,統(tǒng)計6個樣品篩選到的甲基化位點數(shù)目及平均測序深度,在SW組的3個樣品中平均發(fā)現(xiàn)377 441和64 655個CG和CWG型DNA甲基化位點,平均甲基化位點覆蓋深度分別為7.990和5.203 (表3)。在SAS中共發(fā)現(xiàn)404 893個和74 071個CG和CWG型DNA甲基化位點,平均甲基化覆蓋率分別為7.986和5.183,每個樣本DNA甲基化位點(CG位點和CWG位點)的測序覆蓋深度見表3。此外,與SW相比,SAS中CG處的DNA甲基化水平增加了0.05%,CWG處的DNA甲基化也增加了0.38%。這些結(jié)果表明,對于脊尾白蝦鰓組織來說,mCG二核苷酸的胞嘧啶上發(fā)生突變是甲基化的主要表現(xiàn)形式,同時鹽堿脅迫下,脊尾白蝦鰓組織基因組的甲基化水平有所升高。
表2 MethylRAD文庫測序數(shù)據(jù)統(tǒng)計
Tab.2 Statistics of sequencing data of MethylRAD library
根據(jù)甲基化位點的位置信息,對位點進(jìn)行注釋,發(fā)現(xiàn)這些DNA甲基化位點主要分布在5′端的核酸區(qū)、外顯子、基因區(qū)、基因間區(qū)、內(nèi)含子、剪接位點、3′端的核酸區(qū)域,CG型甲基化位點在不同功能元件上的分布數(shù)量均顯著多于CWG型,但CG和CWG兩種類型位點的分布趨勢基本一致,基因間區(qū)中分布的甲基化位點比例最高,其次是內(nèi)含子區(qū)??傊?,鹽堿脅迫導(dǎo)致基因組功能組成元件中CG和CWG位點分布具有重疊變化(圖2)。統(tǒng)計reads在轉(zhuǎn)錄起始位置(TSS)上下游各2 kb區(qū)段,轉(zhuǎn)錄終止位置(TTS)上下游各2 kb區(qū)段和基因體的分布趨勢,結(jié)果發(fā)現(xiàn)各個樣品之間的DNA甲基化水平趨勢是相似的,DNA甲基化位點多分布在基因體,DNA甲基化位點分布曲線在TSS的下游序列和TTS的上游序列甲基化標(biāo)簽頻率明顯高于其他序列(圖3)。
測序深度信息進(jìn)行標(biāo)準(zhǔn)化處理后,分別篩選到8189個和616個CG型差異甲基化位點(CG-DMSs)和CWG型差異甲基化位點(CWG-DMSs) (圖4)。CG-DMS和CWG-DMS大多數(shù)分布在基因間區(qū)和內(nèi)含子區(qū),DMS在不同功能元件上的分布詳情見圖5A和B??梢钥闯鯟G-DMS的數(shù)目顯著多于CWG-DMS,基因間區(qū)和內(nèi)含子區(qū)篩選到的DMS占較大比例。
對DMS所在的差異表達(dá)基因(DEG)進(jìn)行GO功能富集分析,分析了CG和CWG甲基化水平中DEG最顯著豐富的前30條GO terms。分析基于篩選3個類別中具有2個以上不同表達(dá)位點相關(guān)基因的GO條目,根據(jù)每個條目對應(yīng)的–lg10從大到小排序10個,分為生物過程、細(xì)胞成分和分子功能。在CG-DEG中,最顯著富集的GO term包括RNA剪接(RNA splicing)、剪接體復(fù)合體(spliceosomal complex)和ATP依賴的5′-3′DNA解旋酶活性(ATP-dependent 5′-3′ DNA helicase activity) (圖6A)。CWG-DEG的GO富集分析結(jié)果表明,生物過程、細(xì)胞成分和分子功能中最顯著富集的GO term分別是上皮細(xì)胞遷移,開放性氣管系統(tǒng)(epithelial cell migration, open tracheal system)、中心體(centrosome)和蛋白質(zhì)絲氨酸/蘇氨酸激酶活性(protein serine/threonine kinase activity)(圖6B)。
表3 甲基化位點數(shù)據(jù)及其深度統(tǒng)計
Tab.3 Statistics of methylation site data and depth
圖2 甲基化位點在不同基因功能元件上的分布
A:CG位點的分布;B:CWG位點的分布
A: Distribution of CG methylation site; B: Distribution of CWG methylation site
圖3 甲基化位點在TSS、TTS和Genebody的分布
A:CG位點在TSS的分布;B:CG位點在TTS的分布;C:CG位點在TSS、TTS和Genebody的分布;D:CWG位點在TSS的分布;E:CWG位點在TTS的分布;F:CWG位點在TSS、TTS和Genebody的分布
A: Distribution of CG sites in TSS; B: Distribution of CG sites in TTS; C: Distribution of CG sites in TSS, TTS, and Genebody; D: Distribution of CWG sites in TSS; E: Distribution of CWG sites in TTS; F: Distribution of CG sites in TSS, TTS, and Genebody
圖4 差異甲基化位點統(tǒng)計
KEGG通路分析用于篩查DEG在CG和CWG甲基化水平上的生物學(xué)通路和信號轉(zhuǎn)導(dǎo)。圖7顯示了CG-DMG富集到的前20個KEGG通路。結(jié)果顯示,CG-DMG在HIF-1信號通路(HIF-1 signaling pathway)、剪接體(spliceosome)、孕酮介導(dǎo)的卵母細(xì)胞成熟(progesterone-mediated oocyte maturation)、卵母細(xì)胞減數(shù)分裂(oocyte meiosis)和細(xì)胞周期(cell cycle)通路顯著富集(圖7A)。下調(diào)DEG在富集剪接體通路,而上調(diào)DEG在HIF-1信號通路、孕酮介導(dǎo)的卵母細(xì)胞成熟、卵母細(xì)胞減數(shù)分裂、細(xì)胞周期和cAMP信號通路(cAMP signaling pathway)顯著富集(圖7B, C)。HIF脯氨酰羥化酶()、己糖激酶()、絲氨酸/蘇氨酸蛋白激酶mTOR樣()和溶質(zhì)載體家族2 (促進(jìn)葡萄糖轉(zhuǎn)運(yùn)蛋白)成員1 ()在HIF-1信號通路中顯著富集上調(diào)表達(dá)(表4)。細(xì)胞分裂周期5樣蛋白()、U1小核核糖核蛋白()、前mRNA處理因子()、剪接因子()、WW結(jié)構(gòu)域結(jié)合蛋白()基因參與剪接體途徑且顯著下調(diào)表達(dá)(表4)。
圖5 差異甲基化位點在不同基因功能元件上的分布
A:CG位點的分布;B:CWG位點的分布
A: Distribution of CG methylation site; B: Distribution of CWG methylation site
圖6 CG和CWG以及上調(diào)和下調(diào)差異甲基化位點所在基因的前30個GO功能條形圖
A:CG位點DEG的GO分類前30;B:CWG位點DEG的GO分類前30
A: The top 30 GO classification of the DEGs at the CG site; B: The top 30 GO classification of the DEGs at the CWG site
圖7 CG差異甲基化位點所在基因的前20條KEGG富集分析
A:CG差異甲基化位點的KEGG富集分析top 20;B:下調(diào)表達(dá)CG差異甲基化位點的KEGG富集分析top 20;C:上調(diào)表達(dá)CG差異甲基化位點的KEGG富集分析top 20
A: The top 20 KEGG enrichment analyses of the CG-DEG; B: The top 20 KEGG enrichment analyses of down-regulated expression of CG-DEG; C: The top 20 KEGG enrichment analyses of up-regulated expression of CG-DEG
表4 HIF-1信號通路和剪切體通路中差異表達(dá)基因
Tab.4 Differentially expressed genes of HIF-1 signaling pathway and spliceosome
對不同比較組間的差異表達(dá)甲基化位點所在基因進(jìn)行統(tǒng)計,差異甲基化基因數(shù)目見圖8。CG位點共注釋到12892個表達(dá)甲基化基因,其中篩選到158個CG型差異甲基化基因(CG-DMGs),包括77個(48.73%)上調(diào)表達(dá)和81個(51.27%)下調(diào)表達(dá);CWG位點注釋到8666個甲基化基因,其中94個顯著差異表達(dá),上調(diào)基因33個(35.11%),下調(diào)基因61個(64.89%)。與DMS表達(dá)相同,下調(diào)表達(dá)基因多于上調(diào)表達(dá)。
圖8 組間差異甲基化基因火山圖
A:CG型差異甲基化基因分布;B:CWG型差異甲基化基因分布
A: Distribution of CG-DMG; B: Distribution of CWG-DMG
通過對差異甲基化基因進(jìn)行GO功能富集,對基因的功能進(jìn)行描述。GO富集分析前30如圖9所示:CG-DMG在肌肉組織發(fā)育(muscle organ development)過程顯著富集(圖9A);CWG-DMG在囊泡介導(dǎo)的轉(zhuǎn)運(yùn)(vesicle-mediated transport)、細(xì)胞膜(membrane)和鐵離子結(jié)合(zinc ion binding)等離子轉(zhuǎn)運(yùn)過程中顯著富集(圖9B)。
CG-DMG共富集到39條顯著富集KEGG通路(0.05),可分為5類,包括cellular processes (4條)、environmental information processing (6條)、genetic information processing (2條)、metabolism (16條)和organismal systems (11條)(圖9C)。發(fā)現(xiàn)41%的相關(guān)基因與代謝過程(16條)相關(guān),其中脂質(zhì)代謝通路(6個)中富集到的基因數(shù)目最多(圖9C)。CWG-DMG富集到21條KEGG通路,與CG型不同的是,CWG型缺少genetic information processing條目,大部分基因與生物過程(6條)相關(guān),但信號轉(zhuǎn)導(dǎo)通路(4個)中富集到的基因數(shù)目最多(圖9D)。
對2組DMS和DMG進(jìn)行比對分析,196個CG- DMSs對應(yīng)到125個CG-DMGs上,36個CWG-DMSs比對到34個CWG-DMGs (表5)?;蚝图谆稽c表達(dá)大部分呈正相關(guān),但有一少部分位點與基因呈負(fù)相關(guān)。共13個CG-DMSs與對應(yīng)的9個CG-DMGs呈負(fù)相關(guān),其中,有8個CG-DMSs高甲基化而基因表達(dá)下調(diào),5個CG-DMSs低甲基化而基因表達(dá)上調(diào),只有2個CWG-DMSs與對應(yīng)的2個CWG-DMGs呈負(fù)相關(guān),均是高甲基化而基因下調(diào)表達(dá)(表6)。對所篩選到的負(fù)相關(guān)的甲基化位點所在功能元件進(jìn)行統(tǒng)計,發(fā)現(xiàn)CG-DMS和CWG-DMS絕大比例分布在基因間區(qū),僅有1個CG-DMS分布在內(nèi)含子區(qū),具體詳情見表6。
為了驗證MethylRAD-seq檢測到的DMS所在DEG的甲基化水平變化及其在鹽堿環(huán)境下基因表達(dá)水平之間的相關(guān)性,利用qRT-PCR分析評估了與HIF-1信號通路、剪接體、孕酮介導(dǎo)的卵母細(xì)胞成熟、卵母細(xì)胞減數(shù)分裂和細(xì)胞周期通路相關(guān)的12個DEGs。結(jié)果顯示,這些基因存在顯著差異表達(dá):、、、、和上調(diào)表達(dá);、、、、和下調(diào)表達(dá)。長期鹽堿水養(yǎng)殖環(huán)境使脊尾白蝦鰓組織中這些基因的DNA甲基化狀態(tài)發(fā)生顯著變化 (圖10)。
圖9 差異甲基化基因的GO功能和KEGG通路富集
A:CG型差異甲基化基因的GO分類;B:CWG型差異甲基化基因的GO分類;C:CG型差異甲基化基因的KEGG富集通路;D:CWG型差異甲基化基因的KEGG富集通路
A: GO functional classification of CG-DMG; B: GO functional classification of CWG-DMG; C: KEGG pathway enrichment of CG-DMG; D: KEGG pathway enrichment of CWG-DMG
表5 差異甲基化位點映射到差異甲基化基因的數(shù)量統(tǒng)計
Tab.5 Quantitative statistics of differential methylation sites mapped to differential methylation genes
表6 差異甲基化位點與差異甲基化基因呈負(fù)相關(guān)的基因
Tab.6 Genes with negative correlation between differential methylation sites and differential methylation genes
圖10 KEGG富集途徑中差異表達(dá)基因的qRT-PCR結(jié)果
DNA甲基化對真核生物生長發(fā)育至關(guān)重要,包括調(diào)節(jié)配子的形成、早期胚胎發(fā)育、細(xì)胞分化、衰老和致癌等關(guān)鍵過程(Varriale, 2006; 蔡影等, 2018)。無脊椎動物的整體基因組胞嘧啶甲基化水平較低,甲殼類動物和昆蟲相比其他無脊椎動物如軟體動物的胞嘧啶甲基化水平更低(Gavery, 2013)。本研究中,通過對正常海水養(yǎng)殖和長期鹽堿水養(yǎng)殖的脊尾白蝦鰓組織構(gòu)建DNA甲基化文庫,利用MethylRAD測序,發(fā)現(xiàn)了一些可能與脊尾白蝦鰓組織響應(yīng)鹽堿脅迫的差異甲基化位點及其相關(guān)基因和差異甲基化基因。結(jié)果顯示,SAS組鰓組織基因組中CG和CWG位點略有增加,表明鹽堿水環(huán)境誘導(dǎo)脊尾白蝦鰓組織基因組中DNA甲基化升高,通過激活或抑制某些通路的表達(dá)來適應(yīng)鹽堿環(huán)境,在脊尾白蝦適應(yīng)外界環(huán)境的變化中發(fā)揮著非常重要的作用。環(huán)境變化總能引起水生生物DNA甲基化的變化,研究發(fā)現(xiàn),水環(huán)境中化合物和溫度等外界環(huán)境變化能夠引起斑馬魚()和仿刺參() DNA甲基化水平升高(陳宏姍等, 2016; Yang, 2020)。隨著環(huán)境條件的變化,水生生物DNA甲基化的水平可能出現(xiàn)趨勢性變化,例如,隨著干露脅迫時間的增長,太平洋牡蠣()基因組甲基化水平呈現(xiàn)先增高后降低的趨勢;斑馬魚ZF4細(xì)胞在短期低溫培養(yǎng)時基因組DNA甲基化水平明顯增高,但長期低溫培養(yǎng)后DNA甲基化水平反而下降(張鑫等, 2017; 侯艷雯等, 2019)。也有研究表明,高溫脅迫使得仿刺參、蝦夷扇貝()和近江牡蠣() CG平均甲基化水平顯著降低(溫爭爭等, 2021; 吳彪等, 2016; 王翠麗等, 2019)。之前的研究發(fā)現(xiàn),CG位點在各種物種中顯示出較高水平,范圍從蝦夷扇貝約89.5%到仿刺參約91% (呂佳, 2013; 李玉強(qiáng)等, 2018)。除CG外,CWG甲基化在基因內(nèi)并不常見,但在基因組的基因間和內(nèi)含子區(qū)域中更為豐富(Lister, 2009)。本研究中,甲基化位點水平相對定量結(jié)果顯示,脊尾白蝦CG型甲基化與其他海洋無脊椎動物類似,是甲基化主要的表現(xiàn)形式。
DNA甲基化水平根據(jù)基因組功能元件的不同而變化,且在基因組的基因間區(qū)和內(nèi)含子區(qū)域中更為豐富。研究表明,DNA甲基化的分布主要分布在基因間、外顯子、內(nèi)含子、下游和上游區(qū)域(Saha, 2020; Li, 2021)。此外,大量研究發(fā)現(xiàn),脊椎動物甲基化位點主要在啟動子區(qū)(promoter)分布,啟動子區(qū)CG型甲基化水平?jīng)Q定轉(zhuǎn)錄水平結(jié)果(Xu, 1999; Yoder, 1997; Jiang, 2019; 齊云峰等, 2019)。但海洋無脊椎動物香港巨牡蠣()、仿刺參等甲基化位點在基因間區(qū)和內(nèi)含子區(qū)中更豐富(Rajan, 2021; 李玉強(qiáng)等, 2018;李欣容, 2022)。這與本研究中CG和CWG位點在不同功能元件中的分布結(jié)果相一致。同樣,本研究中,基因體的甲基化水平高于TSS和TTS。DNA甲基化會形成不易去除的局部異染色質(zhì)化狀態(tài),表明基因體具有相對穩(wěn)定的染色體結(jié)構(gòu),抑制轉(zhuǎn)錄水平的進(jìn)行?;騿幼訁^(qū)通常位于TSS的上游,負(fù)責(zé)基因的表達(dá)調(diào)控(Jiang, 2019)。在人()體組織中的研究表明,TSS下游區(qū)域的甲基化是基因表達(dá)的高度信息。本研究中,甲基化水平高峰期明顯處于TSS區(qū)下游,進(jìn)一步推測脊尾白蝦基因間區(qū)CG型甲基化水平的高低可能影響基因在轉(zhuǎn)錄水平的表達(dá),并且對轉(zhuǎn)錄水平抑制表達(dá)有著重要作用。在位點水平上對DEG進(jìn)行GO分析發(fā)現(xiàn),這些基因主要分為3類GO terms,包括生物過程、細(xì)胞成分和分子功能。這些功能包括RNA剪接、DNA重組轉(zhuǎn)錄調(diào)控和DNA模板,表明鹽堿脅迫誘導(dǎo)的甲基化變異抗性基因(Ackah, 2022)。進(jìn)一步對DEG進(jìn)行KEGG途徑富集分析表明,HIF-1信號通路、孕酮介導(dǎo)的卵母細(xì)胞成熟、卵母細(xì)胞減數(shù)分裂、細(xì)胞周期和剪接體途徑在脊尾白蝦鰓組織的鹽堿脅迫響應(yīng)中起關(guān)鍵作用。
鰓是水生動物氧氣運(yùn)輸、滲透壓調(diào)節(jié)、離子轉(zhuǎn)運(yùn)、酸堿調(diào)節(jié)等的主要組織,環(huán)境因子如鹽度、pH、低氧等均可能造成鰓組織損傷,從而影響呼吸和離子轉(zhuǎn)運(yùn)等功能(Nikinm, 2014)。缺氧誘導(dǎo)因子1(HIF-1)是一種堿性螺旋–環(huán)–螺旋–PAS結(jié)構(gòu)域轉(zhuǎn)錄因子,能夠調(diào)控機(jī)體對環(huán)境適應(yīng)性應(yīng)答(楊夢思等, 2016)。另外,HIF-1可增強(qiáng)氧氣供給并介導(dǎo)低氧適應(yīng)性反應(yīng)。以往的研究發(fā)現(xiàn),脊尾白蝦在低溶氧環(huán)境下易誘導(dǎo)HIF產(chǎn)生,從而刺激血液氧的供應(yīng)能力(曹梅等, 2021)。高鹽堿脅迫會改變機(jī)體的滲透壓和酸堿平衡,機(jī)體不僅能通過離子調(diào)控、應(yīng)激蛋白合成等維持,也會產(chǎn)生自我調(diào)節(jié)機(jī)制適應(yīng)環(huán)境脅迫(王楠等, 2015)。在高鹽脅迫下,水生生物同樣易產(chǎn)生氧化應(yīng)激及滲透壓失衡,Bal等(2021)觀察到高鹽水環(huán)境中印度囊鰓鯰()血紅蛋白含量顯著下降,耗氧率升高。在高堿度下,水環(huán)境無法維持羅非魚機(jī)體中足夠的溶解氧水平,最終導(dǎo)致死亡,若能保持水中充足氧含量,在高堿度下生物死亡率不會增加(Colt, 2013)。本研究發(fā)現(xiàn),、、和在HIF-1信號通路中顯著富集上調(diào)表達(dá)。作為一種轉(zhuǎn)移酶,能夠催化葡萄糖的磷酸化,這是葡萄糖代謝的第一步,并能抑制ADP (Majewski, 2004)。mTOR屬于磷脂酰肌醇3-激酶相關(guān)激酶蛋白家族,能夠促進(jìn)物質(zhì)代謝,參與細(xì)胞凋亡、生長、增殖和運(yùn)動,調(diào)節(jié)蛋白質(zhì)合成和轉(zhuǎn)錄(Sarbassov, 2005)。同時,qRT-PCR結(jié)果顯示,基因的表達(dá)水平同甲基化水平均顯著上調(diào),這意味著、、mTOR和可通過保持高甲基化水平促進(jìn)其相應(yīng)靶基因表達(dá)以響應(yīng)鹽堿脅迫。
剪接體是由大量蛋白質(zhì)和小核RNA組成的大型核糖核蛋白復(fù)合物,主要存在于真核細(xì)胞的細(xì)胞核中,是一種在轉(zhuǎn)錄后的初級轉(zhuǎn)錄物(Marondedze, 2020)。本研究中,、、、和參與剪接體途徑并且顯著下調(diào)表達(dá),這意味著鹽堿脅迫減少了RNA過程和蛋白質(zhì)合成通路。進(jìn)一步表明,鹽堿脅迫可能通過減少RNA的合成,降低鰓組織的代謝速率以及參與RNA剪接的基因的甲基化狀態(tài)來抑制RNA剪接??傊?,這些結(jié)果表明,DNA甲基化可能調(diào)節(jié)了以上基因以響應(yīng)鹽堿脅迫。我們推測脊尾白蝦由于長期生活在鹽堿環(huán)境,DNA甲基化水平變化在響應(yīng)鹽堿脅迫中發(fā)揮重要作用,鹽堿脅迫致使HIF-1信號途徑增強(qiáng),同時抑制了剪接體的表達(dá),從而進(jìn)化出獨特的生存機(jī)制。
基因水平的GO和KEGG富集結(jié)果表明,鹽堿脅迫不僅影響細(xì)胞的生長發(fā)育,還與離子轉(zhuǎn)運(yùn)有關(guān),表明脊尾白蝦對鹽堿有較強(qiáng)的適應(yīng)性。同時,本研究發(fā)現(xiàn)一些差異甲基化基因在一些信號通路中富集。離子轉(zhuǎn)運(yùn)相關(guān)基因在許多生理功能和細(xì)胞過程中影響不同的滲透調(diào)節(jié)(Cao, 2019; Si, 2019; Zimmer, 2021)。另外,水生動物對外部非生物環(huán)境的適應(yīng)不僅有內(nèi)在的調(diào)節(jié),而且取決于能量的支持(Song, 2021; Su, 2020; Root, 2021)。脊尾白蝦因長期鹽堿脅迫而導(dǎo)致脂質(zhì)過氧化和生理代謝的變化,本研究中能量代謝通路和脂質(zhì)代謝通路顯著富集,推測脊尾白蝦通過調(diào)節(jié)鰓組織DNA甲基化水平對能量代謝通路和脂質(zhì)代謝通路的影響適應(yīng)鹽堿水環(huán)境。
解整合素金屬蛋白酶17 (ADAM17 protein, ADAM17)是一種跨膜金屬蛋白酶,能夠參與多種蛋白質(zhì)胞外域脫落,具有黏附和蛋白水解特性,參與細(xì)胞分子、生長因子受體及表皮生長因子受體過程,在膜結(jié)合型蛋白的翻譯后修飾中發(fā)揮關(guān)鍵作用(王超男等, 2016; Li, 2015)。鹽堿脅迫后ADAM17可能通過低甲基化促進(jìn)膜結(jié)合型蛋白的翻譯后修飾,促進(jìn)質(zhì)膜對胞內(nèi)環(huán)境的維持。類纖維囊蛋白(fibrocystin- L-like, FPC-L)是一個單次跨膜的受體樣蛋白,含有一個潛在蛋白激酶C磷酸化位點,胞外區(qū)存在被高度糖基化的可能(連培文等, 2011)。鹽堿脅迫下脊尾白蝦鰓組織中FPC-L可能發(fā)生糖基化,對翻譯后蛋白進(jìn)行了修飾,從而適應(yīng)鹽堿環(huán)境。細(xì)胞色素P450 (cytochrome P450 2L1-like, CYP450)主要分布在內(nèi)質(zhì)網(wǎng)和線粒體內(nèi)膜上,能夠參與環(huán)境化合物在內(nèi)的外源性物質(zhì)(在類固醇/甾醇)的代謝(Ventura, 2017)。鹽堿水環(huán)境中,CYP450可能誘導(dǎo)脊尾白蝦鰓組織細(xì)胞凋亡,內(nèi)質(zhì)網(wǎng)和線粒體相關(guān)的凋亡途徑可能發(fā)揮了重要的作用。本研究中,我們發(fā)現(xiàn)ADAM17、FPC-L和CYP450呈現(xiàn)出低甲基化狀態(tài)。然而,對應(yīng)的差異甲基化基因卻顯示表達(dá)水平在鹽堿環(huán)境下顯著升高,這表明DNA甲基化可能通過激活蛋白激素和防御化合物來誘導(dǎo)脊尾白蝦中ADAM17、FPC-L和CYP450的調(diào)節(jié)以適應(yīng)鹽堿水環(huán)境。
本研究通過對正常海水養(yǎng)殖和長期鹽堿水養(yǎng)殖脊尾白蝦的甲基化水平比對分析發(fā)現(xiàn),鹽堿水環(huán)境下DNA甲基化水平略有增強(qiáng),甲基化位點豐富呈現(xiàn)在基因間區(qū)和內(nèi)含子區(qū)域并且在TSS區(qū)下游出現(xiàn)甲基化水平高峰期。分析了脊尾白蝦鰓組織在2種養(yǎng)殖水環(huán)境中位點和基因水平的富集通路及組間DMS和DMG的表達(dá)情況,提示和基因共同參與的HIF-1信號通路和和基因共同參與的剪接體通路可能在脊尾白蝦鹽堿水環(huán)境適應(yīng)中發(fā)揮重要作用。進(jìn)一步研究參與HIF-1信號通路和剪接體通路的基因表達(dá)情況,為揭示脊尾白蝦鹽堿水環(huán)境適應(yīng)機(jī)制提供新的見解。位點水平和基因表達(dá)呈負(fù)相關(guān)的ADAM17、FPC-L和CYP450可作為后期解析脊尾白蝦鹽堿水環(huán)境下表觀調(diào)控的重點研究對象。因此,該研究將為揭示鹽堿水環(huán)境對脊尾白蝦的影響提供新的理論依據(jù)。
ACKAH M, GUO L, LI S,DNA methylation changes and its associated genes in mulberry (L.) Yu-711 response to drought stress using MethylRAD sequencing. Plants (Basel), 2022, 11(2): 190
AROOJ F, SADDAM H, SADAM H,Differential morphophysiological, biochemical, and molecular responses of maize hybrids to salinity and alkalinity stresses. Agronomy, 2021, 11(6): 1150
BAL A, PATI S G, PANDA F,. Low salinity induced challenges in the hardy fish: Future prospective of aquaculture in near coastal zones. Aquaculture, 2021, 543(8): 737007
BOERS R, BOERS J, HOON B D,Genome-wide DNA methylation profiling using the methylation-dependent restriction enzyme. Genome Research, 2018, 28(1): 88–99
CAI Y, MENG X L, LIU P,Molecular cloning of the DNA methyltransferase-2 gene and its expression during embryonic, larval, and gonadal development in the swimming crab. Journal of Fishery Sciences of China, 2018, 25(5): 928–935 [蔡影, 孟憲亮, 劉萍, 等. 三疣梭子蟹甲基轉(zhuǎn)移酶2基因克隆及在胚胎、幼體和性腺發(fā)育過程中的表達(dá)分析. 中國水產(chǎn)科學(xué), 2018, 25(5): 928–935]
CAO J, SHI F. Comparative analysis of the aquaporin gene family in 12 fish species. Animals (Basel), 2019, 9(5): 233
CAO M, WANG X Q, QIN C X,Transcriptome analysis ofsubjected to hypoxic stress. Progress in Fishery Sciences, 2021, 42(2): 112–123 [曹梅, 王興強(qiáng), 秦傳新, 等. 脊尾白蝦對低氧響應(yīng)的轉(zhuǎn)錄組學(xué)分析. 漁業(yè)科學(xué)進(jìn)展, 2021, 42(2): 112–123]
CHANG Y M, LIANG L Q. Advances of research of physiological and molecular mechanisms related to alkali- saline adaptation for fish species inhabiting alkali-saline water. Journal of Fisheries of China, 2021, 45(5): 798–812 [常玉梅, 梁利群. 耐鹽堿魚類的生理和分子機(jī)制研究進(jìn)展. 水產(chǎn)學(xué)報, 2021, 45(5): 798–812]
CHEN H S, SHENG L X, BIAN H F. Investigation of the effects of developmental toxicity and genomic DNA methylation upon naphthalene exposure in zebrafish (). Journal of Northeast Normal University (Natural Science), 2016, 48(3): 167–173 [陳宏姍, 盛連喜, 邊紅楓. 化合物萘對斑馬魚發(fā)育毒性及基因組DNA甲基化影響的研究. 東北師大學(xué)報(自然科學(xué)版), 2016, 48(3): 167–173]
CHEN M M, ZHANG S R, WU L P,Organic fertilization improves the availability and adsorptive capacity of phosphorus in saline-alkaline soils. Journal of Soil Science and Plant Nutrition, 2020, 21(1): 487–496
COLT J, KROEGER E. Impact of aeration and alkalinity on the water quality and product quality of transported tilapia: A simulation study. Aquacultural Engineering, 2013, 55(1): 46–58
CONRADO G V, JANET H BEffects of alkalinity and total hardness on growth and survival of postlarvae freshwater prawns,(De Man 1879). Aquaculture, 2017, 473: 521–527
CRIBIU P, CHAUMOT A, GEFFARD O,Natural variability and modulation by environmental stressors of global genomic cytosine methylation levels in a freshwater crustacean,. Aquatic Toxicology, 2018, 205: 11–18
FAN Z, PENG F, LI J,Effects of α-ketoglutarate on growth performance, antioxidant capacity and ammonia metabolization against chronic carbonate alkalinity stress in Songpu mirror carp (Songpu). Aquaculture Research, 2020, 51(5): 29–40
GAVERY M R, ROBERTS S B. Predominant intragenic methylation is associated with gene expression characteristics in a bivalve mollusc. PeerJ, 2013, 1: e215
GE Q Q, LI J T, WANG J J,Characterization, functional analysis, and expression levels of three carbonic anhydrases in response to pH and saline-alkaline stresses in the ridgetail white prawn. Cell Stress Chaperones, 2019, 24(3): 503–515
GE Q Q, LIANG J P, LI J T,Molecular cloning and expression analysis of Relish gene from the ridgetail white prawn. Fisheries Science, 2015, 81(4): 699–711
HAN J, HU Y, QI Y,High temperature induced masculinization of zebrafish by down-regulation ofandvia DNA methylation. Journal of Environmental Sciences, 2021, 107(9): 160–170
HAWES N A, TREMBLAY L A, POCHON X,Effects of temperature and salinity stress on DNA methylation in a highly invasive marine invertebrate, the colonial ascidian. PeerJ, 2018, 6: e5003
HOU Y W, LIU W, JIANG P L,. Effect of cold stress on genomic DNA methylation in zebrafish ZF4 cells. Journal of Fishery Sciences of China, 2019, 26(2): 271–279 [侯艷雯, 劉瑋, 姜蓬壘, 等. 低溫對斑馬魚ZF4細(xì)胞基因組DNA甲基化水平的影響. 中國水產(chǎn)科學(xué), 2019, 26(2): 271–279]
HUAN P P, Lü J J, SUN D F,The cloning of the PtDNMT1 gene ofand its expression analysis in low salinity adaptation. Progress in Fishery Sciences, 2019, 40(1): 92–100 [環(huán)朋朋, 呂建建, 孫東方, 等. 三疣梭子蟹PtDNMT1基因的克隆及其在低鹽適應(yīng)中的表達(dá)分析. 漁業(yè)科學(xué)進(jìn)展, 2019, 40(1): 92– 100]
JIANG Y, LI J, REN F,PM2.5-induced extensive DNA methylation changes in the heart of zebrafish embryos and the protective effect of folic acid. Environmental Pollution, 2019, 255(3): 113331
LAI Q F, YAO Z L, GAO P C,. Saline-alkaline water environment and suitable culture species. Beijing: China Agriculture Press, 2021 [來琦芳, 么宗利, 高鵬程, 等. 鹽堿水環(huán)境與增養(yǎng)殖種類. 北京: 中國農(nóng)業(yè)出版社, 2021]
LI M D, LI J T, SHI K P,Estimation of heritability and genetic correlation of saline-alkali tolerance in. Progress in Fishery Sciences, 2021, 42(1): 117–123 [李明棟, 李吉濤, 史鯤鵬, 等. 脊尾白蝦耐鹽堿性狀遺傳力和遺傳相關(guān)的估計. 漁業(yè)科學(xué)進(jìn)展, 2021, 42(1): 117–123]
LI M Y, LI J, LIU P,Cloning and expression analysis of ferritin gene in. Oceanologia et Limnologia Sinica, 2012, 43(2): 306–312 [李美玉, 李健, 劉萍, 等. 脊尾白蝦() ferritin基因克隆及表達(dá)分析. 海洋與湖沼, 2012, 43(2): 306–312]
LI Q, XIE J, HE L,Identification of ADAM10 and ADAM17 with potential roles in the spermatogenesis of the Chinese mitten crab,. Gene, 2015, 562(1): 117–127
LI X R, LIAO M J, LI B,Genomic DNA methylation levels and transcriptome differences ofin response toinfection and their association analysis. Progress in Fishery Sciences, 2022, 43(3): 176–185 [李欣容, 廖梅杰, 李彬, 等. 刺參響應(yīng)燦爛弧菌侵染的基因組DNA甲基化水平和轉(zhuǎn)錄組差異及其關(guān)聯(lián)分析. 漁業(yè)科學(xué)進(jìn)展, 2022, 43(3): 176–185]
LI Y Q, WANG R J, LI Y L,Genome-wide profiling of DNA methylation inbased on MethylRAD-Seq. Periodical of Ocean University of China (Natural Science), 2018, 48(9): 41–50 [李玉強(qiáng), 王睿甲, 李語麗, 等. 基于MethylRAD-Seq技術(shù)對仿刺參DNA甲基化圖譜的研究. 中國海洋大學(xué)學(xué)報(自然科學(xué)版), 2018, 48(9): 41–50]
LI Z Q, TANG M Q, LUO D J,Integrated methylome and transcriptome analyses reveal the molecular mechanism by which DNA methylation regulates kenaf flowering. Frontiers in Plant Science, 2021, 12: 709030
LIAN P W, FU Y L, LI A,Preparation and characterization of a polyclonal antibody against human Fibrocystin-L. Chinese Journal of Cellular and Molecular Immunology, 2011, 27(1): 78–81 [連培文, 付玉龍, 李奧, 等. 新基因PKHDL71產(chǎn)物Fibrocystin-L的抗體制備及其亞細(xì)胞定位的初步研究. 細(xì)胞與分子免疫學(xué)雜志, 2011, 27(1): 78–81]
LISTER R, PELIZZOLA M, DOWEN R H,Human DNA methylomes at base resolution show widespread epigenomic differences. Nature, 2009, 462(7271): 315–322
LIU F, LI J, LI J T,Effects of carbonate alkalinity stress on the survival, growth, reproduction, and immune enzyme activities of. Journal of Fishery Sciences of China, 2016, 23(5): 1137–1147 [柳飛, 李健, 李吉濤, 等. 碳酸鹽堿度對脊尾白蝦生存、生長、繁殖及免疫酶活性的影響. 中國水產(chǎn)科學(xué), 2016, 23(5): 1137– 1147]
LOVETT D L, VERZI M P, CLIFFORD P D,Hemolymph levels of methyl farnesoate increase in response to osmotic stress in the green crab,. Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology, 2001, 128(2): 299–306
Lü J. Establishment of an efficient and cost-effective method for genome-wide DNA methylation profiling (MethylRAD-Seq) and its application in marine bivalves. Master′s Thesis of Ocean University of China, 2013 [呂佳. 高效低成本全基因組DNA甲基化檢測技術(shù)(MethylRAD-Seq)的建立及其在海洋貝類中的應(yīng)用. 中國海洋大學(xué)碩士研究生學(xué)位論文, 2013]
MAJEWSKI N, NOGUEIRA V, ROBEY R B,Akt inhibits apoptosis downstream of BID cleavage via a glucose- dependent mechanism involving mitochondrial hexokinases. Molecular and Cellular Biology, 2004, 24(2): 730–740
MARONDEDZE C, THOMAS L, LILLEY K S,Drought stress causes specific changes to the spliceosome and stress granule components. Frontiers in Molecular Biosciences, 2020, 6: 163
NIKINM A M. Chapter 15 – Interactions between natural environmental factors and toxicity. An Introduction to Aquatic Toxicology, 2014: 173–184
NOROUZITALLAB P, BARUAH K, VANDEGEHUCHTE M,Environmental heat stress induces epigenetic transgenerational inheritance of robustness in parthenogeneticmodel. FASEB Journal, 2014, 28(8): 3552–3563
QI Y F, WANG R J, JIN T C,Analyzing distribution patterns of epigenetic factor among different genome regions. Journal of Northeast Normal University (Natural Science), 2019, 51(1): 108–112 [齊云峰, 王仁俊, 金太成, 等. 表觀遺傳因子在不同基因組區(qū)域的分布模式研究. 東北師大學(xué)報(自然科學(xué)版), 2019, 51(1): 108–112]
RAJAN K C, YUAN M, YU Z,. Oyster biomineralisation under ocean acidification: From genes to shell. Global Change Biology, 2021, 27(16): 3779–3797
ROOT L, CAMPO A, MACNIVEN L,Nonlinear effects of environmental salinity on the gill transcriptome versus proteome ofmodulate epithelial cell turnover. Genomics, 2021, 113(5): 3235–3249
SAHA D, NORVIL A B, LANMAN N A,Simplified MethylRAD sequencing to detect changes in DNA methylation at enhancer elements in differentiating embryonic stem cells. Epigenomes, 2020, 4(4): 24
SARBASSOV D D, ALI S M, SABATINI D M. Growing roles for the mTOR pathway. Current Opinion in Cell Biology, 2005, 17(6): 596–603
SI L J, PAN L Q, ZHANG X,Evidence that dopamine is involved in neuroendocrine regulation, gill intracellular signaling pathways and ion regulation in. Journal of Experimental Biology, 2019, 222(15): jeb204073
SONG L, ZHAO Y, SONG YEffects of saline-alkaline water on growth performance, nutritional processing, and immunity in Nile tilapia (). Aquaculture, 2021, 544: 737036
SU H H, MA D M, ZHU H W,Transcriptomic response to three osmotic stresses in gills of hybrid tilapia (female ×hornorum male). BMC Genomics, 2020, 21(1): 110
TAPIA D, EISSLER Y, ESPINOZA J C,Inter-laboratory ring trial to evaluate real-time reverse transcription polymerase chain reaction methods used for detection of infectious pancreatic necrosis virus in Chile. Electronic Journal of Biotechnology, 2017, 28: 20–26
VARRIALE A, BERNARDI G. DNA methylation and body temperature in fishes. Gene, 2006, 385: 111–121
VENTURA T, BOSE U, FITZGIBBON Q P,CYP450s analysis across spiny lobster metamorphosis identifies a long sought missing link in crustacean development. Journal of Steroid Biochemistry and Molecular Biology, 2017, 171: 262–269
WANG C L. Influence of high temperature stress on Hsp90 expression and CpG methylation in. Guangxi Sciences, 2019, 26(4): 424–429 [王翠麗. 高溫脅迫對近江牡蠣Hsp90表達(dá)及CpG甲基化的影響. 廣西科學(xué), 2019, 26(4): 424–429]
WANG C N, DONG J, SHAO N S. Role of ADAM17 in transmembrane protein shedding. Journal of Medical Molecular Biology, 2016, 13(6): 345–349 [王超男, 董潔, 邵寧生. ADAM17在膜蛋白胞外結(jié)構(gòu)域剪切機(jī)制中的作用. 醫(yī)學(xué)分子生物學(xué)雜志, 2016, 13(6): 345–349]
WANG H, ZHONG J C, CHAI Z X,Advances of research on interactions between hypoxia and epigenetics. Journal of Southwest Minzu University, 2017, 43(6): 557–561 [王會, 鐘金城, 柴志欣, 等.低氧與表觀遺傳學(xué)互作的研究進(jìn)展. 西南民族大學(xué)學(xué)報, 2017, 43(6): 557–561]
WANG N, CHANG Y M, TANG R,Screening microsatellite markers associated with alkaline tolerance in. Journal of Fishery Sciences of China, 2015, 22(6): 1105–1114 [王楠, 常玉梅, 唐然, 等. 瓦氏雅羅魚耐堿性狀相關(guān)分子標(biāo)記的篩選. 中國水產(chǎn)科學(xué), 2015, 22(6): 1105–1114]
WANG S, LV J, ZHANG L L,MethylRAD: A simple and scalable method for genome-wide DNA methylation profiling using methylation-dependent restriction enzymes. Open Biology, 2015, 5: 150130
WANG X X, LI A, WANG W,Direct and heritable effects of natural tidal environments on DNA methylation in Pacific oysters (). Environmental Research, 2021, 197: 111058
WEN Z Z, ZUO S, CHEN M,. DNA methylation level of genomic DNA of. Progress in Fishery Sciences, 2021, 42(3): 46–54 [溫爭爭, 左閃, 陳夢, 等. 刺參基因組DNA甲基化水平及模式對溫度變化的響應(yīng). 漁業(yè)科學(xué)進(jìn)展, 2021, 42(3): 46–54]
WU B, YANG A G, SUN X J,. Effects of acute temperature stress on genome-wide DNA methylation profiles in. Progress in Fishery Sciences, 2016, 37(5): 140–146 [吳彪, 楊愛國, 孫秀俊, 等. 急性溫度脅迫對蝦夷扇貝基因組DNA甲基化的影響. 漁業(yè)科學(xué)進(jìn)展, 2016, 37(5): 140–146]
XU G L, BESTOR T H, BOURC'HIS D,Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature, 1999, 402(6758): 187–191
XU W L, WANG H Q, LI Y H. Distribution and aquaculture application of saline alkali water at home and abroad. China Fisheries, 2021(7): 50–53 [徐文龍, 汪惠慶, 李月紅. 國內(nèi)外鹽堿水域分布及水產(chǎn)養(yǎng)殖應(yīng)用. 中國水產(chǎn), 2021(7): 50–53]
XU Y H, XU Y C, HOGSTRAND C,Waterborne copper exposure up-regulated lipid deposition through the methylation of GRP78 and PGC1alpha of grass carp. Ecotoxicology and Environmental Safety, 2020, 205: 111089
XUE B, ZHANG B, LI Z H,Methylation profile in mitochondrial genome of ridgetail white prawnin response to different developmental stages. Fisheries Science, 2017, 36(5): 628–633 [薛蓓, 張培, 李志輝, 等. 脊尾白蝦不同發(fā)育期線粒體基因組甲基化特征分析. 水產(chǎn)科學(xué), 2017, 36(5): 628–633]
YANG F Y, SUN L M, YANG X Q. Toxicity of carbonate alkalinity tojuveniles. Fisheries Science, 2004, 23(9): 3–6 [楊富億, 孫麗敏, 楊欣喬. 碳酸鹽堿度對南美白對蝦幼蝦的毒性作用. 水產(chǎn)科學(xué), 2004, 23(9): 3–6]
YANG M S, ZHOU N, WANG Z G,Research progress on the role of transcription factor HIF-1α and its signal pathway in the pathogenesis. Biotechnology Bulletin, 2016, 32(8): 8–13 [楊夢思, 周娜, 王志鋼, 等. 轉(zhuǎn)錄因子HIF-1α及其信號通路在疾病發(fā)生中的作用研究進(jìn)展. 生物技術(shù)通報, 2016, 32(8): 8–13]
YANG Y, ZHENG Y, SUN L,. Genome-wide DNA methylation signatures of sea cucumberduring environmental induced aestivation. Genes, 2020, 11(9): 1020
YODER J A, WALSH C P, BESTOR T H. Cytosine methylation and the ecology of intragenomic parasites. Trends in Genetics, 1997, 13(8): 335–340
ZHANG J F. Discussion on ecological rehabilitation of salt-affected soils. Research of Soil and Water Conservation, 2008, 4: 74–78 [張建鋒. 鹽堿地的生態(tài)修復(fù)研究. 水土保持研究, 2008, 4: 74–78]
ZHANG X, LI Q, YU H,. Effects of air exposure on genomic DNA methylation in the Pacific oyster (). Journal of Fishery Sciences of China, 2017, 24(4): 690–697 [張鑫, 李琪, 于紅, 等. 干露脅迫對太平洋牡蠣基因組DNA甲基化的影響. 中國水產(chǎn)科學(xué), 2017, 24(4): 690–697]
ZIMMER A M, MANDIC M, HONG M Y,Use of a carbonic anhydrase Ca17a knockout to investigate mechanisms of ion uptake in zebrafish (). American Journal of Physiology-Renal Physiology, 2021, 320(1): R55–R68
Effects of Saline-Alkaline Water Environment on DNA Methylation of
QIN Zhen1,2, LI Jitao2①, LI Mingdong2, WANG Jiajia2, GE Qianqian2, LIU Ping2, LI Jian2
(1. National Experimental Teaching Demonstration Center of Aquatic Science, Shanghai Ocean University, Shanghai 201306, China; 2. Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, Shandong 266071, China)
The global levels of soil and water salinization and alkalinization are increasing with the influence of climate and topography changes, as well as other natural and human factors. Saline-alkaline water (SAW) all over the world has specific characteristics such as high alkalinity, high pH, and complex water quality types, which inhibits the survival and culture of common aquatic animals. The ridgetail white prawnis an economically important marine shrimp with many advantages, such as widely environmental adaptability, rapid growth, and good reproductive capability. It is potentially suitable for large-scale culture in SAW; however, its adaptability to this environment remains unclear. Exploring theadaptability mechanism to SAW will help to guide culture management for marine crustaceans. In this study, the DNA methylomes of thegill tissue cultured in SAW and normal seawater (SW) were analyzed and the impact on gene regulation was investigated by MethylRAD sequencing. The results showed 2 347 003 and 416 176 methylations at the CG and CWG sites (W = A or T), respectively. Comparing the SAW and SW groups, the CG and CWG loci in the SAW group increased slightly, indicating that SAW induced more DNA methylation in the gill cells that activated or inhibited pathways and played a crucial role in the environmental changes adaption. Methylation was prevalent in the exon, intron, splice site, and upstream and downstream regions of thegill genes, as well as in the intergenic regions. DNA methylation sites were mostly distributed in the Genebody. The DNA methylation distribution curve peaked in the downstream sequence of the transcription start site and upstream sequence of the transcription termination site. The methylation label frequency was significantly higher in these regions in relation to other sequences. A total of 8805 differential methylation sites (DMSs) were screened, including 8189 CG DMSs and 616 CWG DMSs. Obviously, the CG DMS was significantly higher than the CWG DMS. The intergenic and intron regions accounted for a large proportion of the DMS observed. Overall, the DMS showed a higher trend in the genic downstream regions of the gene relative to upstream regions. The Gene Ontology (GO) enrichment analysis of the differentially expressed genes (DEGs) based on the DMS showed enrichment of genes involved in the "development, heterochrony, and protein disables isomerase activity," which played a role in the CG level down-regulation. In addition, "incubation involved in sorocarp development" and "nucleus and double-stranded RNA binding" were molecular functions up-regulated by the CG methylations. The down-regulated genes with CWG methylation were enriched for the "regulation of transcription and DNA template" process, while the up-regulated genes were enriched for the "epithelial cell migration and open trail” system. These two processes were induced incultured in saline-alkali water. The key genes in the HIF-1 signal and spliceosome pathways, such as,, and, play an important role in response to saline-alkaline stress; therefore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis based on DMS of the DEG was performed. In addition, 158 CG methylated genes (MGs) were detected in DEGs from shrimps exposed to SAW, among which 77 and 81 were up- and down-regulated, respectively. Moreover, 94 CWG MGs were differentially expressed, from which 33 and 61 were up- and down-regulated, respectively. GO enrichment analysis of the CG MGs showed significant enrichment of the "muscle organ development" process; CWG MGs were significantly enriched for the "vesicle-m transport" and "membrane mediated zinc binding plasma transport" processes. This indicated thatwas damaged by the saline-alkaline environment, but the shrimp may adapt to this stress by adjusting the ion balance. The KEGG enrichment analysis indicated that lipid metabolism and signal transduction pathways may play crucial roles in thegill tissue response to saline-alkaline stress. Moreover, changes in lipid peroxidation and physiological metabolism may be caused by long-term saline-alkaline stress. The energy metabolism pathway was significantly enriched and many different genes in the lipid metabolism pathway were expressed in the stressed. Therefore, it was speculated that the changes in DNA methylation level might play an important role in response to saline-alkaline stress. Overall, the results showed that a series ofphysiological activities related to environmental adaptation was activated by SAW. In addition, a small number of methylated loci were negatively correlated with gene expressions, which indicated a complex relationship between DNA methylation and gene regulation. Although,, andshowed hypomethylation, the corresponding differentially MGs showed a significantly increased expression level in a saline-alkaline environment. Therefore, genomic DNA methylation may promote gene expression under saline-alkaline stress, including the,, andgenes. This study analyzed the DNA methylation levels in gill tissue ofcultured with SAW and provided information that will further elucidate the molecular mechanisms involved in crustacean adaptation to saline-alkaline environment.
; Saline-alkaline water environment; DNA methylation; Differentially expressed gene
LI Jitao, E-mail: lijt@ysfri.ac.cn
10.19663/j.issn2095-9869.20220310001
S917.4
A
2095-9869(2022)04-0033-18
*國家重點研發(fā)計劃課題(2019YFD0900404-03)、國家自然科學(xué)基金項目(32072974)、財政部和農(nóng)業(yè)農(nóng)村部: 國家現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系和中國水產(chǎn)科學(xué)研究院基本科研業(yè)務(wù)費項目(2020TD46)共同資助 [This work was supported by National Key Research and Development Program of China (2019YFD0900404-03), National Natural Science Foundation of China (32072974), China Agriculture Research System of MOF and MARA, and Central Public-Interest Scientific Institution Basal Research Fund, CAFS (2020TD46)]. 秦 楨,E-mail: 1285946211@qq.com
李吉濤,研究員,E-mail: lijt@ysfri.ac.cn
2022-03-10,
2022-04-07
http://www.yykxjz.cn/
秦楨, 李吉濤, 李明棟, 王佳佳, 葛倩倩, 劉萍, 李健. 鹽堿水環(huán)境對脊尾白蝦基因組DNA甲基化的影響. 漁業(yè)科學(xué)進(jìn)展, 2022, 43(4): 33–50
QIN Z, LI J T, LI M D, WANG J J, GE Q Q, LIU P, LI J. Effects of saline-alkaline water environment on DNA methylation of. Progress in Fishery Sciences, 2022, 43(4): 33–50
(編輯 馮小花)