逯冠政 么宗利 來琦芳 高鵬程 周 凱 朱浩擁 劉一萌 孫 真
高鹽堿環(huán)境下大口黑鱸幼魚生長性能、血液生理指標(biāo)與質(zhì)構(gòu)特征研究*
逯冠政1么宗利2①來琦芳2高鵬程2周 凱2朱浩擁3劉一萌2孫 真2
(1. 江蘇海洋大學(xué) 江蘇省海洋生物技術(shù)重點建設(shè)實驗室 江蘇 連云港 222052;2. 中國水產(chǎn)科學(xué)研究院東海水產(chǎn)研究所 農(nóng)業(yè)農(nóng)村部低洼鹽堿地水產(chǎn)養(yǎng)殖重點實驗室 中國水產(chǎn)科學(xué)研究院鹽堿水域漁業(yè)工程技術(shù)研究中心(上海) 上海 200090;3. 江蘇中洋集團股份有限公司 江蘇 南通 226000)
鹽堿水在世界范圍內(nèi)廣泛分布,高碳酸鹽堿度、高pH等是鹽堿水制約養(yǎng)殖生物生存生長的關(guān)鍵因子。作為潛在的經(jīng)濟養(yǎng)殖對象,大口黑鱸()已在部分鹽堿水域養(yǎng)殖成功,但其對鹽堿的適應(yīng)范圍尚不清楚。本文研究了高鹽堿環(huán)境下大口黑鱸生長性能,測定了大口黑鱸48 h碳酸鹽堿度半致死濃度,設(shè)置鹽水組[SW,鹽度為7.50±0.07,碳酸鹽堿度為(1.81± 0.12) mmol/L]、堿水組[AW,鹽度為0.35±0.02,碳酸鹽堿度為(9.96±0.03) mmol/L]和淡水對照組[FW,鹽度為0.13±0.01,碳酸鹽堿度為(1.82±0.11) mmol/L],對比研究大口黑鱸長期鹽堿脅迫下生長指標(biāo)、血液生理指標(biāo)、肌肉質(zhì)構(gòu)特性指標(biāo)。結(jié)果顯示,大口黑鱸48 h碳酸鹽堿度半致死濃度為(29.92± 3.90) mmol/L,能夠在鹽度10以下的水環(huán)境中安全存活;經(jīng)過105 d養(yǎng)殖實驗,F(xiàn)W、SW以及AW組存活率和終末體重?zé)o顯著性差異;3組特定生長率(SGR)表現(xiàn)為波動式變化規(guī)律,15~45 d、60~75 d時,SGR持續(xù)降低,45~60 d、75~90 d時,SGR持續(xù)增高;肥滿度FW組最高,SW組最低,AW組居中,但均小于3;在堿度為10 mmol/L的水環(huán)境中,24 h內(nèi)血氨變化表現(xiàn)為先升高后降低,最后趨于穩(wěn)定,在鹽度為7的水環(huán)境中,滲透壓維持在(319.53±29.51) mOsm/kg,淡水環(huán)境下的滲透壓維持在(300.00±16.44) mOsm/kg,均保持較好的存活率;鹽堿水養(yǎng)殖大口黑鱸在鹽水組表現(xiàn)出較好的肌肉硬度[(34.70±4.86) N],堿水組則表現(xiàn)出較好肌肉彈性[(1.06±0.10)mm]。綜上所述,大口黑鱸能夠適應(yīng)高鹽堿環(huán)境,在鹽度為7、堿度為10 mmol/L的鹽堿水中養(yǎng)殖,并且表現(xiàn)出較好的質(zhì)構(gòu)特征。
碳酸鹽堿度;鹽度;大口黑鱸;生長指標(biāo);血氨;質(zhì)構(gòu)特性
我國擁有廣袤的鹽堿地資源,面積達9.9×107hm2(賈恢先, 2003),絕大多數(shù)處于荒蕪狀態(tài)(馬晨等, 2010;王慧等, 2003)。鹽堿水具有水化學(xué)類型多樣、水質(zhì)緩沖能力差、高pH值、高碳酸鹽堿度、高離子系數(shù)和主要離子比例失衡等特點,使得大多數(shù)水生生物難以適應(yīng),水產(chǎn)養(yǎng)殖產(chǎn)量不穩(wěn)定(黎道豐等, 2000; 王慧, 2006)。近年來為開發(fā)鹽堿地養(yǎng)殖潛力,相關(guān)科研院所進行了大量研究探索,發(fā)現(xiàn)了十余種適合鹽堿水養(yǎng)殖的水產(chǎn)對象,包括凡納濱對蝦()、脊尾白蝦()、異育銀鯽()、大鱗鲃()、尼羅羅非魚()和青蛤()等,且進行了大規(guī)模的養(yǎng)殖(曾凡勇等, 2018; 李明棟等, 2021; 林聽聽等, 2012; 沈立等, 2014; 王艷玲等, 2021; 張宇婷等, 2021)。但隨著鹽堿地水產(chǎn)養(yǎng)殖產(chǎn)業(yè)的發(fā)展,現(xiàn)有養(yǎng)殖對象不能滿足各地區(qū)的需求,需要探索更多優(yōu)良養(yǎng)殖新對象。
大口黑鱸()俗名加州鱸,屬鱸形目(Perciformes)、鱸亞目(Porcoidei)、太陽魚科(Cehtrachidae)、黑鱸屬(),是一種優(yōu)質(zhì)的淡水魚類,具有適應(yīng)性強、生長快、易起捕、養(yǎng)殖周期短等優(yōu)點,加之肉質(zhì)鮮美細(xì)嫩,無肌間刺,外形美觀,受到市場與消費者的歡迎。自20世紀(jì)80年代引進后,已成為我國淡水養(yǎng)殖業(yè)的一種重要經(jīng)濟魚類(劉家照等, 1990; 譚肖英等, 2005)。大口黑鱸在甘肅、天津等部分鹽堿水域養(yǎng)殖成功(臧莉等, 2021; 來琦芳等, 2021),但其對鹽堿的適應(yīng)范圍尚不清楚。
鹽堿地水產(chǎn)養(yǎng)殖的3個主要限制性因素包括pH、鹽度和碳酸鹽堿度,均會對水生生物的生存與生長造成顯著影響。鹽度主要通過影響水生生物的滲透調(diào)節(jié),進而影響能量代謝(李希國等, 2006; 王云峰等, 2002)。水環(huán)境鹽度產(chǎn)生的滲透壓與內(nèi)環(huán)境滲透壓相近時,水生生物用于滲透調(diào)節(jié)的能量消耗較低,能夠提高水生生物的存活率,促進水生生物的生長,若環(huán)境鹽度產(chǎn)生的滲透壓遠(yuǎn)高于或低于內(nèi)環(huán)境滲透壓,水生生物無法適應(yīng)鹽度變化帶來的內(nèi)環(huán)境離子變化,則存活率和生長率會顯著下降(黃屾等, 2021; 劉濟源等, 2012)。
碳酸鹽堿度與pH對于水生生物適應(yīng)鹽堿環(huán)境的毒害作用是協(xié)同的,二者主要影響水生生物的酸堿調(diào)節(jié)與氨氮排泄(Wilkie, 1994、1996)。魚類通過鰓組織進行氣體交換,最終將體內(nèi)多余的CO2排出體外,將水中溶解的O2吸入體內(nèi)。當(dāng)水環(huán)境中碳酸鹽堿度和pH升高時,使鰓組織內(nèi)外兩側(cè)的pH梯度差增大,H+外流增多,CO2被過多地攜帶出鰓組織,魚類血漿pH升高,造成呼吸性堿中毒(Yao, 2016; Wright, 1993)。硬骨魚類體內(nèi)的蛋白質(zhì)終產(chǎn)物大多為氨,包括分子氨和離子氨,通過與鰓組織邊緣的H+結(jié)合生成易溶于水的離子氨,順著鰓組織兩側(cè)離子氨濃度梯度排出體外。當(dāng)水環(huán)境中碳酸鹽堿度與pH過高時,鰓組織兩側(cè)離子氨濃度梯度縮小甚至倒置,致使硬骨魚類氨排泄受阻,血液中的氨濃度升高,對機體產(chǎn)生毒害作用等(衣曉飛等, 2017)。
鹽度還會影響水產(chǎn)動物肌體的粗蛋白、粗脂肪、粗灰分和水分等體常規(guī)成分(柳旭東等, 2008),鯉魚(L)在鹽度為10的水環(huán)境中肌肉脂肪含量顯著降低,膠原蛋白含量顯著升高,肌纖維耐折能力增強(李小勤等, 2007)。隨著鹽度的升高,烏鱧()肌肉的咀嚼性、硬度和膠黏性均有上升的趨勢,鹽水養(yǎng)殖的烏鱧肌肉咀嚼性和硬度顯著高于對照組(李小勤等, 2008),說明鹽度可以提升魚類的肌肉質(zhì)構(gòu)特征。通過改變水環(huán)境鹽度,吉富羅非魚()的肌肉膠黏性和彈性、咀嚼性均有顯著提升(郭振等, 2014)。
為探究高鹽堿環(huán)境下大口黑鱸幼魚生長性能和適應(yīng)能力,本研究測定了大口黑鱸幼魚48 h碳酸鹽堿度半致死濃度,設(shè)置鹽水組[SW,鹽度為7.50±0.07,堿度為(1.81±0.12) mmol/L]、堿水組[AW,鹽度為0.35±0.02,堿度為(9.96±0.03) mmol/L]和淡水對照組[FW,鹽度為0.13±0.01,堿度為(1.82±0.11) mmol/L],對比研究大口黑鱸幼魚長期在鹽堿脅迫下的生長指標(biāo)、血液氨氮、血漿滲透壓、肌肉質(zhì)構(gòu)特性指標(biāo),以期為鹽堿水中大口黑鱸棚塘接力等養(yǎng)殖提供支撐。
實驗所用大口黑鱸來自江蘇南通繁育場,規(guī)格為(15.10±2.82) g、(9.02±0.13) cm的幼魚用于生長實驗,(1.84±0.70) g、(2.34±0.11) cm的幼魚用于急性毒性實驗,暫養(yǎng)容器為1000 L聚乙烯水缸,密度為500 ind./m3。日換水量為50%,養(yǎng)殖用水為曝氣24 h的過濾自來水(開能AC/KDF150-1-300)。暫養(yǎng)水溫為(22±1)℃,溶解氧為(7.0±0.5) mg/L,氨氮為(0.16± 0.02) mg/L,亞硝態(tài)氮為(0.03±0.01) mg/L。每天投喂1次,投喂量為存魚量總體重的1%,餌料為商品配合飼料(東裕豐),暫養(yǎng)15 d后開始實驗。
1.2.1 鹽度及碳酸鹽堿度對大口黑鱸的急性毒性 根據(jù)預(yù)實驗結(jié)果,鹽度梯度設(shè)置為10、12、14和16,實驗用鹽水使用海水晶(Bluesea藍(lán)海,青島)配制,使用前曝氣24 h,淡水組作為對照,每組3個重復(fù),每個重復(fù)投放16尾魚,實驗容器為水量10 L的實驗缸,每個缸中配備充氣頭進行不間斷充氣,實驗用水為曝氣24 h的過濾自來水,水溫為(23.2±1.2)℃,溶解氧為(7.0±0.5) mg/L。實驗期間停喂,每隔24 h換水80%,每天測量水體溫度、溶解氧和鹽度,每24 h統(tǒng)計一次大口黑鱸死亡數(shù)量,每8 h觀察大口黑鱸存活情況,及時將死魚撈出。
根據(jù)預(yù)實驗數(shù)據(jù)結(jié)果,堿度梯度設(shè)置為0、30 (CA30)、35 (CA35)、40 (CA40)和45 mmo/L (CA45) 5組,其中0 mmol/L為淡水對照組(FW)。每組3個重復(fù),每個重復(fù)投放20尾魚。實驗用堿水采用Na2CO3、NaHCO3按照質(zhì)量比為1∶16.1配制,每次換水時收集2 mL實驗用水測定氨氮濃度,其他實驗條件同鹽度急性毒性實驗。
1.2.2 鹽度及碳酸鹽堿度對大口黑鱸生長的影響
根據(jù)急性毒性實驗結(jié)果及常見鹽堿水鹽堿度 (胡紅浪等, 2021),以淡水組(FW)作為對照,設(shè)置鹽度為7 (SW),碳酸鹽堿度為10 mmol/L (AW)的實驗水體進行105 d生長實驗,每個實驗組設(shè)置3個重復(fù),每個重復(fù)放置30尾魚。實驗容器為水量100 L聚乙烯水缸,每個水缸配備充氣頭不間斷充氣,實驗用水為曝氣24 h的過濾自來水。實驗開始前,將大口黑鱸進行鹽堿馴化,首先轉(zhuǎn)移到鹽度為5、碳酸鹽堿度為5 mmol/L的水體中,每24 h鹽度提升1,碳酸鹽堿度提升2 mmol/L,直至?xí)吼B(yǎng)水體鹽度與碳酸鹽堿度達到實驗設(shè)置濃度。實驗用鹽水為海水晶(Bluesea藍(lán)海,青島)配制,實驗用堿水采用Na2CO3、NaHCO3按照質(zhì)量比1∶16.1配制,使用前曝氣24h。水溫為(23.2±1.2)℃,溶解氧為(7.0±0.5) mg/L,每24 h換水80%,每日測量水體溫度、pH、鹽度,換水前與換水后,收集2 mL水樣,用于檢測水體氨氮。虹吸法除去水體中的殘餌糞便,使用管徑15 mm的塑料軟管進行虹吸,將實驗缸底的糞污小心吸出,直到實驗缸剩余20 L水,用水泵將曝氣24 h實驗用水緩慢地加入實驗缸底,期間實驗魚保持平靜游泳狀態(tài),直至加水至100 L刻度線,整個過程避免接觸實驗魚。采用此換水方法可明顯減少實驗魚劇烈運動,從而避免實驗魚應(yīng)激。換水后1 h投喂存魚量總體重的1%配合飼料。每15 d實驗魚用麻醉劑MS-222麻醉后測量每尾魚的體長與體重,實驗用麻醉劑為MS-222溶液(200 mg/L),使用NaHCO3與實驗用水將麻醉劑pH與鹽度調(diào)整到與實驗水體相同水平。計算存活率(survival rate, SR)、特定生長率(specific growth rate, SGR)和肥滿度(condition factor, CF),并繪制體長體重擬合曲線,計算公式如下:
式中,為養(yǎng)殖時間,為大口黑鱸幼魚初始平均體重(g),為大口黑鱸終末平均體重,為大口黑鱸終末平均體長(cm)。
1.2.3 鹽度及碳酸鹽堿度對大口黑鱸血氣指標(biāo)的影響 實驗進行到105 d時,每個實驗組隨機選取 5尾大口黑鱸,使用MS-222魚用麻醉劑麻醉后,在尾端靜脈使用肝素鋰潤濕的注射器抽取20 μL血液,立即離心(4500 r/min, 4℃),進行滲透壓檢測;另取30尾大口黑鱸(15.10±2.82) g,進行24 h堿度脅迫,實驗條件與1.2.2中堿水組相同,對照組與淡水組相同,脅迫期間停喂,每6 h隨機抽取5尾麻醉,抽取血液,立即離心,取上清液進行血氨的測定。血氨檢測使用南京建成血氨試劑盒(A086-1-1),血漿滲透壓使用露點滲透壓儀(Vapor Pressure Osmometer-5520, 美國)測量。
1.2.4 鹽度及碳酸鹽堿度對大口黑鱸背部肌肉質(zhì)構(gòu)特性的影響 實驗進行到105 d時,每個實驗組隨機選取5尾大口黑鱸,使用MS-222魚用麻醉劑麻醉后,使用外科手術(shù)刀與剪刀取背部一側(cè)肌肉(3.01± 0.14)g,剪去肌肉外皮,取樣肌肉體積盡量相近(2.04± 0.12) cm3,取樣結(jié)束后,使用TMS-Pro質(zhì)構(gòu)儀(Food Technology Corporation, 美國)進行肌肉質(zhì)構(gòu)特性測定,測定模式為TPA模式,測試速度為30 mm/min,形變量為50%,回程距離為30 mm。
統(tǒng)計數(shù)據(jù)表示為平均值±標(biāo)準(zhǔn)差(Mean±SD)。所有數(shù)據(jù)符合正態(tài)分布,所有數(shù)據(jù)均經(jīng)過方差齊性檢驗,顯著性水平>0.05,采用單因素方差分析(one-way ANOVA)分析鹽度、碳酸鹽堿度對存活率以及特定生長率、肥滿度、質(zhì)構(gòu)特性的影響,使用LSD法進行多重比較,顯著性水平為<0.05,統(tǒng)計分析使用SPSS 25.0軟件,大口黑鱸半致死堿度使用Proc probit (SAS University Edition)進行統(tǒng)計和計算。
如圖1所示,在48 h,0~45 mmol/L堿度范圍內(nèi),隨著碳酸鹽堿度的升高,大口黑鱸的死亡率逐漸升高,對照組死亡率為0%。CA45、CA40處理組的死亡率分別達到(90.00±10.00)%和(86.67±10.40)%,顯著高于CA30組(46.67±15.27)%。大口黑鱸48 h碳酸鹽堿度半致死濃度為(29.92±3.90) mmol/L。實驗期間,淡水組和堿水組的水體氨氮維持在(42.69±7.03)~ (14.71±10.01) μmol/L范圍內(nèi)。
圖1 碳酸鹽堿度脅迫48 h大口黑鱸死亡率
FW、CA30、CA35、CA40和CA45分別表示淡水組和碳酸鹽堿度為30、35、40和45 mmol/L的實驗組;不同字母表示差異顯著(<0.05),下同。
FW, CA30, CA35, CA40, and CA45 represent fresh water group and carbonate alkalinity group of 30, 35, 40, and 45 mmol/L; Different lowercase letters indicate significant differences among each group (<0.05), the same as below.
如圖2所示,在96 h內(nèi),隨著鹽度的上升,大口黑鱸的死亡率有明顯升高。對照組死亡率為0,鹽度升至14時,大口黑鱸的死亡率為(14.58±3.60)%,顯著高于對照組(<0.05),鹽度上升至16時,死亡率達到100%,其他鹽水組死亡率為0。
2.2.1 存活率 如圖3所示,經(jīng)過105 d的鹽堿水養(yǎng)殖實驗,大口黑鱸AW組平均存活率為(73.33± 14.52)%,SW組平均存活率為(90.00±5.77)%,F(xiàn)W組平均存活率為(65.00±22.19)%,3組數(shù)據(jù)不存在顯著差異。
圖2 鹽度脅迫96 h大口黑鱸死亡率
圖3 鹽堿水養(yǎng)殖大口黑鱸105 d存活率(n=3)
2.2.2 平均體重 如表1所示,在105 d的鹽堿水養(yǎng)殖實驗中,大口黑鱸的體重呈現(xiàn)出增長的趨勢,堿水組、鹽水組與對照組的趨勢相同,終末體重淡水組>堿水組>鹽水組,但組間差異不顯著;每個統(tǒng)計周期中,鹽水組、堿水組和淡水組的體重也不存在顯著差異。
2.2.3 特定生長率 如圖4所示,特定生長率表現(xiàn)為波動式變化規(guī)律。15~45 d和60~75 d階段,SGR均表現(xiàn)為持續(xù)降低。15 d時,SW組SGR (1.68±0.05)%/d顯著高于AW組(1.23±0.25)%/d (<0.05),但與FW組(1.48±0.03)%/d不存在顯著差異;45 d時,F(xiàn)W組SGR (0.81±0.10)%/d顯著高于AW組(0.53±0.13)%/d,與SW組(0.66±0.11)%/d無顯著性差異;45~60 d和75~105 d階段,SGR呈上升趨勢。60 d時,F(xiàn)W組SGR (1.32± 0.13)%/d顯著高于AW組(0.87±0.13)%/d和SW (0.91± 0.03)%/d,SW組與AW組之間不存在顯著差異。90 d時,F(xiàn)W組SGR (1.37±0.21)%/d顯著高于AW (0.91± 0.21)%/d與SW組(0.99±0.14%)/d,SW組與AW組之間不存在顯著差異,其余時間各組之間不存在顯著差異。
表1 大口黑鱸鹽堿水養(yǎng)殖實驗平均體重
Tab.1 Average body weight of largemouth bass exposed to saline-alkaline water for 105 d (g)
2.2.4 體長體重擬合曲線 如圖5所示,體長體重擬合曲線值A(chǔ)W組 2.2.5 肥滿度 如圖6所示,大口黑鱸鹽堿水養(yǎng)殖實驗肥滿度變化趨勢與特定生長率相似,在數(shù)值上呈現(xiàn)波動式變化;105 d實驗結(jié)束時,AW組肥滿度為2.28±0.07,SW組為2.17±0.03,F(xiàn)W組為2.41±0.08,F(xiàn)W組顯著高于SW組,與AW組沒有顯著差異,AW組與SW組不存在顯著差異;結(jié)合數(shù)據(jù)來看,淡水環(huán)境下飼養(yǎng)的大口黑鱸肥滿程度較高,鹽水環(huán)境下大口黑鱸肥滿度較低。 圖4 大口黑鱸鹽堿水養(yǎng)殖實驗體重特定生長率 圖5 大口黑鱸鹽堿水養(yǎng)殖實驗體長體重擬合曲線 2.3.1 鹽堿脅迫對大口黑鱸血漿滲透壓的影響 如圖7所示,養(yǎng)殖105 d的大口黑鱸SW組血漿滲透壓為(319.53±29.51) mOsm/kg,F(xiàn)W組為(300.00± 16.44) mOsm/kg,AW組為(302.00±26.21) mOsm/kg,SW組血漿滲透壓顯著高于FW組,與AW組之間不存在顯著差異,F(xiàn)W組與AW組之間不存在顯著差異。 2.3.2 24 h堿水組大口黑鱸血液氨氮濃度變化 如圖8所示,在24 h內(nèi),在碳酸鹽堿度為10 mmol/L的水環(huán)境中,大口黑鱸血氨濃度呈現(xiàn)先升高后降低最后穩(wěn)定的趨勢,在18 h時血氨濃度達到最高(387.79± 140.21) μmol/L。淡水組保持較低水平,最低為6 h時(128.16±45.28) μmol/L,最高為18 h時198.82 μmol/L。堿水組血氨濃度在6、12、18和24 h時均顯著高于對照組。 如表2所示,SW組背部肌肉硬度顯著高于FW組與AW組(<0.05)。FW組與SW組背部肌肉黏附性顯著高于AW組(<0.05)。SW組背部肌肉黏附伸長度顯著高于FW組與AW組(<0.05)。SW組背部肌肉彈性顯著低于FW組與AW組(<0.05)。SW背部肌肉膠黏性顯著高于AW(<0.05)。FW背部肌肉咀嚼性顯著高于SW組(<0.05)。 圖6 大口黑鱸鹽堿水養(yǎng)殖實驗肥滿度 圖7 鹽度與碳酸鹽堿度對大口黑鱸血漿滲透壓的影響 圖8 堿度脅迫下大口黑鱸24 h血氨濃度變化 本研究中,大口黑鱸在碳酸鹽堿度為10 mmol/L、鹽度為7的水環(huán)境中養(yǎng)殖成活率達到73%~90%,體重增長方式與淡水組類似呈現(xiàn)波動式差異,最終平均體重與淡水組不存在顯著差異,表現(xiàn)出較好的生長性能,但在15~45 d、60~75 d期間出現(xiàn)特定生長率低于淡水組的現(xiàn)象,這與鹽度和碳酸鹽堿度影響魚類代謝 耗能相關(guān)。養(yǎng)殖水環(huán)境中的鹽度與碳酸鹽堿度能夠影響魚類的滲透調(diào)節(jié)與氨氮代謝等生理過程,使得魚類用于滲透調(diào)節(jié)和氨氮代謝的能量需求升高,與淡水環(huán)境相比,魚類可用于生長的能量減少。大部分淡水魚類在較高鹽度的水體中表現(xiàn)出生長受到抑制的現(xiàn)象,比如歐亞鱸魚(L.)可以在鹽度0~4的水環(huán)境中獲得最佳的生長率和存活率,當(dāng)養(yǎng)殖環(huán)境鹽度超過4以后,會對歐亞鱸魚的生長率和存活率產(chǎn)生顯著影響,水環(huán)境鹽度為10時,歐亞鱸魚的存活率、生長率降低至50% (Overton, 2008);鹽度在0.3~3之間提升,可提高鯉魚幼魚和卵的成活率和生長率,但在鹽度14時,鯉魚幼魚出現(xiàn)成活率下降,生長率降低的情況(Lam, 1985)。高堿脅迫下魚類通常表現(xiàn)為養(yǎng)殖成活率低、生長速度慢,比如大鱗鲃幼魚特定生長率與餌料轉(zhuǎn)化率在碳酸鹽堿度高于25.10 mmol/L的水環(huán)境中顯著下降,堿度升高至39.80 mmol/L時,大鱗鲃幼魚生長受到抑制(黨云飛等, 2013);咸??ɡ佐~()的增重率在碳酸鹽堿度為32.20 mmol/L的水環(huán)境受到抑制,60 d后死亡率達到5%,堿度上升至44.98 mmol/L,12 d死亡率達100%(藺玉華等, 2004);雜交鱘(♀♂)在水環(huán)境中的死亡率與堿度呈正相關(guān),水環(huán)境堿度越低,雜交鱘死亡率越低,堿度升高至16.67 mmol/L時,死亡率達到87.4%(王念民等, 2022)。本實驗鹽度接近大口黑鱸血漿滲透壓,且鹽水環(huán)境與淡水環(huán)境相比更不易出現(xiàn)病害,大口黑鱸表現(xiàn)出較好的生長性能。本實驗發(fā)現(xiàn)的鹽堿水養(yǎng)殖大口黑鱸波動式生長性能,為養(yǎng)殖策略的制定提供了依據(jù)。 表2 鹽度和碳酸鹽堿度對大口黑鱸背部肌肉質(zhì)構(gòu)特征的影響 Tab.2 The texture characteristics of the back muscles of largemouth bass exposed to saline-alkaline water for 105 d 注:同列數(shù)據(jù)肩標(biāo)字母不同表示組間差異顯著(<0.05)。 Note: Different superscripts letters in each column indicate significant difference among each group (<0.05). 經(jīng)過105 d的鹽度、堿度水環(huán)境脅迫,大口黑鱸表現(xiàn)出較強的鹽堿耐受性,鹽水組血漿滲透壓與淡水組相比有顯著的上升,為(319.53±29.51) mOsm/kg,但上升幅度較小,僅為淡水組的6.3%;堿水組在24 h內(nèi)的血氨變化趨勢為先升高再降低,最后趨于穩(wěn)定,且高于淡水組,結(jié)合存活率和生長率表現(xiàn)來看,大口黑鱸已經(jīng)適應(yīng)了這些環(huán)境變化。鹽度升高會直接導(dǎo)致魚類滲透調(diào)節(jié)與離子調(diào)節(jié)失衡,淡水魚類通常通過改變血漿滲透壓等途徑來適應(yīng)水環(huán)境鹽度的升高(Evans, 2010)。在96 h,鹽度為10的鹽脅迫實驗中,尼羅羅非魚血清滲透壓穩(wěn)定在380 mOsm/kg附近,高于淡水組的312 mOsm/kg (趙麗慧等, 2014);在14 d、鹽度為10的鹽度脅迫實驗中,日本鰻鱺()血清滲透壓穩(wěn)定在340 mOsm/kg附近,與等滲點滲透壓329.1 mOsm/kg接近(夏保密等, 2016);史氏鱘()在鹽度10的水環(huán)境中,滲透壓定在290 mOsm/kg左右,高于淡水組的262 mOsm/kg (趙峰等, 2006)。 碳酸鹽堿度的升高帶來的pH值升高會抑制魚類的酸堿調(diào)節(jié)和氨氮排泄(Randall, 1989; Whittamore, 2012);氨氮排泄受到抑制時,表現(xiàn)為血氨持續(xù)升高,到達臨界值后會對魚體產(chǎn)生嚴(yán)重的毒害作用(Michael, 1996),某些魚類能夠調(diào)節(jié)氨排泄減少毒害作用,比如在高堿脅迫下青海湖裸鯉()氨氮排泄率起初受到抑制,但在96 h內(nèi)經(jīng)過重建氨分壓梯度恢復(fù)對氨的排泄(衣曉飛等, 2017)。在本研究中,大口黑鱸血漿氨氮濃度變化說明碳酸鹽堿度與pH的變化影響了大口黑鱸的正常氨排泄過程,使得氨排泄效率下降,但其血氨濃度在24 h內(nèi)恢復(fù),表現(xiàn)一定的氨排泄調(diào)控能力。 血漿滲透壓與血漿氨氮濃度變化說明,在本實驗設(shè)定鹽堿環(huán)境的脅迫下,大口黑鱸可調(diào)節(jié)離子調(diào)控和氨氮排泄,進而適應(yīng)鹽堿環(huán)境。這2個血液生理指標(biāo)為判斷魚類對鹽堿環(huán)境的適應(yīng)程度,篩選耐鹽堿品種提供理論依據(jù)。 在本研究中,鹽度與碳酸鹽堿度對大口黑鱸肌肉質(zhì)構(gòu)的影響表現(xiàn)為鹽水組硬度、黏附性、膠黏性高于淡水組,堿水組彈性高于鹽水組、與淡水組無差別。質(zhì)構(gòu)是指由食品成分和組織結(jié)構(gòu)決定的機械學(xué)或流變學(xué)性質(zhì),包括硬度、膠黏性、內(nèi)聚性、咀嚼性、彈性,是評價肉類鮮度與感官品質(zhì)的關(guān)鍵指標(biāo)(劉婧懿等, 2020)。李小勤等(2008)研究發(fā)現(xiàn),當(dāng)鹽度從0逐步上升值10時,烏鱧肌肉的咀嚼性、硬度出現(xiàn)先下降后上升的趨勢,鹽度為10時,肌肉的咀嚼性均高于對照組。通過改變水體鹽度,發(fā)現(xiàn)隨著鹽度的提升,吉富羅非魚的咀嚼性有上升的趨勢,硬度也會隨著鹽度的上升而上升,處理時間延長,硬度提升越明顯 (郭振等, 2014)。斑節(jié)對蝦()的肌肉硬度、咀嚼性隨養(yǎng)殖水環(huán)境的鹽度上升呈現(xiàn)出增高趨勢,硬度和咀嚼性在各組間均達到極顯著差異水平(周偉等, 2018)。本研究結(jié)果說明,鹽堿水養(yǎng)殖大口黑鱸表現(xiàn)出較好的質(zhì)構(gòu)特征,進而提高其經(jīng)濟價值,為評價鹽堿水養(yǎng)殖對象品質(zhì)提供參考。 經(jīng)過105 d的鹽堿水養(yǎng)殖實驗,大口黑鱸在鹽堿水中表現(xiàn)出較好的生長性能,淡水組、堿水組和鹽水組存活率無顯著差異,3組終末平均體重?zé)o顯著差異,特定生長率在105 d中表現(xiàn)為波動式變化,肥滿度淡水組最高,鹽水組最低,堿水組居中,但均小于3。 大口黑鱸具有較強的鹽堿耐受性,在堿水環(huán)境中,24 h內(nèi)血氨變化表現(xiàn)為先升高后降低,最后趨于穩(wěn)定;在鹽水環(huán)境中,滲透壓表現(xiàn)為小幅度上升,最終維持在(319.53±29.51) mOsm/kg。 鹽堿水養(yǎng)殖大口黑鱸具有更好的質(zhì)構(gòu)特征,在鹽水組表現(xiàn)出較好肌肉硬度(34.70±4.86) N,堿水組表現(xiàn)出較好肌肉彈性(1.06±0.10) mm。 DANG Y F, XU W, GENG L W,. Effects of NaCl and NaHCO3on growth and gill microstructure in juvenileJournal of Fishery Sciences of China, 2013, 20(3): 577–584 [黨云飛, 徐偉, 耿龍武, 等. NaCl鹽度和NaHCO3堿度對大鱗鲃幼魚生長及鰓組織特征的影響. 中國水產(chǎn)科學(xué), 2013, 20(3): 577–584] EVANS D H. A brief history of fish osmoregulation: The central role of the Mt. Desert Island Biological Laboratory. Frontiers in Physiology, 2010, 1(13): 1–10 GUO Z, LIANG Y J, YANG G. The effects of salinity changes on the nutritional value and flavor of GIFT's muscle. Freshwater Fisheries, 2014, 44(4): 77–82 [郭振, 梁擁軍, 楊廣. 改變水體鹽度對吉富羅非魚肌肉營養(yǎng)和呈味的影響. 淡水漁業(yè), 2014, 44(4): 77–82] HU H L, LAI Q F, YAO Z L,. Green technology and model of saline-alkaline aquaculture. Beijing: China Agriculture Press, 2021, 1–111 [胡紅浪, 來琦芳, 么宗利, 等. 鹽堿水綠色養(yǎng)殖技術(shù)模式. 北京:中國農(nóng)業(yè)出版社, 2021, 1–111] HUANG S, LI C Z, LI Z X,. Effects of different salinity on growth and osmotic regulation gene expression of. Fisheries Science, 2021, doi: 10.16378/j.cnki. 1003–1111.21077 [黃屾, 李長忠, 李梓瑄, 等. 鹽度對青海湖裸鯉生長及滲透調(diào)節(jié)基因的影響. 水產(chǎn)科學(xué), 2021, doi: 10.16378/j.cnki.1003–1111.21077] JIA H X. Soil salinization control and sustainable agriculture in north-west endoland region of China. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(6): 1063–1068 [賈恢先. 中國西北內(nèi)陸鹽漬化防治與可持續(xù)農(nóng)業(yè)的研究. 西北植物學(xué)報, 2003, 23(6): 1063–1068] LAI Q F, YAO Z L, GAO P C,. Saline-alkaline water environment and farming species. Beijing: China Agriculture Press, 2021, 1–40 [來琦芳, 么宗利, 高鵬程, 等. 鹽堿水環(huán)境與增養(yǎng)殖種類. 北京. 中國農(nóng)業(yè)出版社, 2021, 1–40] LAM T J, SHARMA R. Effects of salinity and thyroxine on larval survival, growth and development in the carp,. Aquaculture, 1985, 44(3): 201–212 LI D F, CAI Q H. Comparison of fish flora in waters with different salinity and the growth of main commercial fishes. Acta Hydrobiologica Sinica, 2000, 24(5): 493–501 [黎道豐, 蔡慶華. 不同鹽堿度水體的魚類區(qū)系結(jié)構(gòu)及主要經(jīng)濟魚類生長的比較. 水生生物學(xué)報, 2000, 24(5): 493–501] LI M D, LI J T, SHI K P,. Estimation of heritability and genetic correlation of saline-alkali tolerance inProgress in Fishery Sciences, 2021, 42(1): 117–123 [李明棟, 李吉濤, 史鯤鵬, 等. 脊尾白蝦耐鹽堿性狀遺傳力和遺傳相關(guān)的估計. 漁業(yè)科學(xué)進展, 2021, 42(1): 117–123] LI X G, LI J E, OU Y J. Effects of salinity on digestive enzyme activity and diurnal variation of digestive enzyme activity of young yellowfin black porgy. Marine Fisheries Research, 2006, 27(1): 40–45 [李希國, 李加兒, 區(qū)又君. 鹽度對黃鰭鯛幼魚消化酶活性的影響及消化酶活性的晝夜變化. 海洋水產(chǎn)研究, 2006, 27(1): 40–45] LI X Q, LI X X, LENG X J,. Effect of different salinities on growth and flesh quality of. Journal of Fisheries of China, 2007, 31(3): 343–348 [李小勤, 李星星, 冷向軍, 等. 鹽度對草魚生長和肌肉品質(zhì)的影響. 水產(chǎn)學(xué)報, 2007, 31(3): 343–348] LI X Q, LIU X M, LENG X J,. Effect of salinity on growth and flesh quality of snakehead. Oceanologia et Limnologia Sinica, 2008, 39(5): 505–510 [李小勤, 劉賢敏, 冷向軍, 等. 鹽度對烏鱧()生長和肌肉品質(zhì)的影響. 海洋與湖沼, 2008, 39(5): 505–510] LIN T T, LAI Q F, LU J X,. Toxic effects of several saline- alkali factors onMarine Fishery, 2012, 34(2): 183–188 [林聽聽, 來琦芳, 陸建學(xué), 等. 幾種鹽堿因子對青蛤的致毒效應(yīng). 海洋漁業(yè), 2012, 34(2): 183–188] LIN Y H, GENG L W, LU J X,. Studies on tolerance ofto salinity and alkalinity. Journal of Jilin Agricultural University, 2004, 26(5): 561–565 [藺玉華, 耿龍武, 盧金星, 等. 咸??ɡ着c對鹽堿耐受性研究. 吉林農(nóng)業(yè)大學(xué)學(xué)報, 2004, 26(5): 561–565] LIU J Y, YAO Z L, LAI Q F,. Effects of saline-alkali stress on the oxygen consumption and plasma osmolality and ion concentrations of. Chinese Journal of Ecology, 2012, 31(3): 664–669 [劉濟源, 么宗利, 來琦芳, 等. 鹽堿脅迫對青海湖裸鯉耗氧率、血漿滲透濃度和離子濃度的影響. 生態(tài)學(xué)雜志, 2012, 31(3): 664–669] LIU J Y, ZHAO Q C, CHENG S F,. Research progress on the influencing factors and determination methods of fish muscle texture. Journal of Food Safety and Quality, 2020, 11(9): 3035–3043 [劉婧懿, 趙前程, 程少峰, 等. 魚肉質(zhì)構(gòu)的影響因素及測定方法研究進展. 食品安全質(zhì)量檢測學(xué)報, 2020, 11(9): 3035–3043] LIU J Z, XIAN C B, YE X,. Artificial reproduction and embryonic development of largemouth bass. Freshwater Fisheries, 1990(1): 15–16 [劉家照, 冼熾彬, 葉星, 等. 大口黑鱸人工繁殖和胚胎發(fā)育. 淡水漁業(yè), 1990(1): 15–16] LIU X D, ZHANG L M, WANG J Y,. The influence of salinity on the body composition and tissue structure of aquatic animals. Animals Breeding and Feed, 2008(9): 60–64 [柳旭東, 張利民, 王際英, 等. 鹽度對水產(chǎn)動物體組成與組織結(jié)構(gòu)的影響. 養(yǎng)殖與飼料, 2008(9): 60–64] MA C, MA F Y, LIU T X,. Research progress on improvement and utilization technology of saline-alkali land. World Forestry Research, 2010, 23(2): 28–32 [馬晨, 馬履一, 劉太祥, 等. 鹽堿地改良利用技術(shù)研究進展. 世界林業(yè)研究, 2010, 23(2): 28–32] MICHAEL P W, CHRIS M W. The adaptations of fish to extremely alkaline environments. Comparative Biochemistry and Physiology, Part B Biochemistry and Molecular Biology, 1996, 113(4): 665–673 OVERTON J L, BAYLEY M, PAULSEN H,Salinity tolerance of cultured Eurasian perch,L.: Effects on growth and on survival as a function of temperature. Aquaculture, 2008, 277(3): 282–286 RANDALL D J, WOOD C M, PERRY S F,. Urea excretion as a strategy for survival in a fish living in a very alkaline environment. Nature, 1989, 337(6203): 165–166 SHEN L, HAO Z R, ZHOU K,. Tolerability studies ofto salinity and carbonate alkalinity. Marine Fisheries, 2014, 36(5): 445–452 [沈立, 郝卓然, 周凱, 等. 異育銀鯽“中科三號”對鹽度和碳酸鹽堿度的耐受性. 海洋漁業(yè), 2014, 36(5): 445–452] TAN X Y, LIU Y J, TIAN L X,. The effects of dietary carbohydrate levels on the growth, nutrient composition of juvenile largemouth bass. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2005, 44(z1): 258–263 [譚肖英, 劉永堅, 田麗霞, 等. 飼料中碳水化合物水平對大口黑鱸生長、魚體營養(yǎng)成分組成的影響. 中山大學(xué)學(xué)報(自然科學(xué)版), 2005, 44(z1): 258–263] WANG H, LAI Q F, FANG W H. The influence of saline- alkaline water resources on fishery development in Yundong area of Cangzhou. Hebei Fisheries, 2003(5): 16–18 [王慧, 來琦芳, 房文紅. 滄州運東地區(qū)鹽堿水資源對開展?jié)O業(yè)的影響. 河北漁業(yè), 2003(5): 16–18] WANG H. One hundred technical questions and answers about aquaculture in saline-alkaline land (Ⅰ). Hebei Fisheries, 2006(2): 27–28 [王慧. 鹽堿地水產(chǎn)養(yǎng)殖技術(shù)100問(一). 河北漁業(yè), 2006(2): 27–28] WANG N M, YANG H L, FENG C J,. Effects of different carbonate alkalinity on survival, growth and biochemical indexes in serum of three-month-old hybrid sturgeon (♀×♂). Journal of Shanghai Ocean University, 2022, doi: 10.12024/jsou.20210603495 [王念民, 楊合霖, 豐超杰, 等. 碳酸鹽堿度對3月齡雜交鱘(♀♂)生長與血清生化指標(biāo)的影響. 上海海洋大學(xué)學(xué)報, 2022, doi: 10.12024/ jsou.20210603495] WANG Y F, ZHU X H. A review on impact of salinity on patterns of fish ecophysiology. Studia Marina Sinica, 2002(44): 151–158 [王云峰, 朱鑫華. 鹽度對魚類生態(tài)生理學(xué)特征的影響. 海洋科學(xué)集刊, 2002(44): 151–158] WANG Y L, ZHAO Y, CHEN M,. Study on carbonate alkalinity tolerance of Nile tilapia. South China Fisheries Science, 2021, 17(5): 71–78 [王艷玲, 趙巖, 陳銘, 等. 尼羅羅非魚對碳酸鹽堿度耐受性研究. 南方水產(chǎn)科學(xué), 2021, 17(5): 71–78] WHITTAMORE J M. Osmoregulation and epithelial water transport: Lessons from the intestine of marine teleost fish. Journal of Comparative Physiology B Biochemical Systems and Environmental Physiology, 2012, 182(1): 1–39 WILKIE M P, WOOD C M. The adaptations of fish to extremely alkaline environments. Comparative Biochemistry and Physiology, Part B Comparative Biochemistry, 1996, 113(4): 665–673 WILKIE M P, WRIGHT P A, IWAMA G K,. The physiological adaptations of the Lahontan cutthroat trout () following transfer from well water to the highly alkaline waters of Pyramid Lake, Nevada (pH 9.4). Physiological Zoology, 1994, 67(2): 355– 380 WRIGHT P A, IWAMA G K, WOOD C M. Ammonia and urea excretion in Lahontan cutthroat trout () adapted to the highly alkaline Pyramid Lake (pH 9.4). Journal of Experimental Biology, 1993, 175: 153–172 XIA B M, HOU J L, ZHAO F,. Effect of salinity on osmoregulation of. Chinese Journal of Ecology, 2016, 35(8): 2182–2188 [夏保密, 侯俊利, 趙峰, 等. 鹽度對日本鰻鱺()滲透壓調(diào)節(jié)的影響. 生態(tài)學(xué)雜志, 2016, 35(8): 2182–2188] YAO Z L, GUO W F, LAI Q F,.decreases cytosolic carbonic anhydrase expression to compensate for respiratory alkalosis and osmoregulation in the saline-alkaline Lake Qinghai. Journal of Comparative Physiology B Biochemical Systems and Environmental Physiology, 2016, 186(1): 83–59 YI X F, LAI Q F, SHI J Q,. Nitrogenous waste excretion and gene expression of nitrogen transporter inin high alkaline environment. Journal of Fishery Sciences of China, 2017, 24(4): 681–689 [衣曉飛, 來琦芳, 史建全, 等. 高堿環(huán)境下青海湖裸鯉氮廢物排泄及相關(guān)基因的表達規(guī)律. 中國水產(chǎn)科學(xué), 2017, 24(4): 681–689] ZANG L, ZHENG Y K, ZHONG W H,Key points of aquaculture technology in saline-alkaline water ponds in Tianjin. China Fisheries, 2021(3): 91–92 [臧莉, 鄭艷坤, 鐘文慧, 等. 天津地區(qū)鹽堿水池塘水產(chǎn)養(yǎng)殖技術(shù)要點. 中國水產(chǎn), 2021(3): 91–92] ZENG F Y, LUO K, LUAN S,. Analysis of growth and survival among different families ofin the chloride typed alkaline water. Journal of Fishery Sciences of China, 2018, 25(2): 308–315 [曾凡勇, 羅坤, 欒生, 等. 凡納濱對蝦在氯化物型鹽堿水養(yǎng)殖環(huán)境下不同家系間生長、存活性能分析. 中國水產(chǎn)科學(xué), 2018, 25(2): 308–315] ZENG F Y, LUO K, LUAN S,. The influence of salinity acclimation on activity of Na+/K+-ATPase in branchial epithelium concentration of ions and osmolarity in serum of. Journal of Fisheries of China, 2006, 30(4): 444–449 [趙峰, 莊平, 章龍珍, 等. 鹽度馴化對史氏鱘鰓Na+/K+–ATP酶活力、血清滲透壓及離子濃度的影響. 水產(chǎn)學(xué)報, 2006, 30(4): 444–449] ZHANG Y T, YANG J, GENG L W,. Effect of NaHCO3alkalinity on oxidative stress of. Periodical of Ocean University of China (Natural Science), 2021, 51(11): 32–39 [張宇婷, 楊建, 耿龍武, 等. NaHCO3堿度脅迫對大鱗鲃氧化應(yīng)激水平的影響. 中國海洋大學(xué)學(xué)報(自然科學(xué)版), 2021, 51(11): 32–39] ZHAO L H, ZHAO J L, THAMMARATSUNTORN J,. Effects of salinity-alkalinity on serum osmolality, ion concentration and mRNA expression of ion transport enzymes of. Journal of Fisheries of China, 2014, 38(10): 1696–1704 [趙麗慧, 趙金良, Thammaratsuntorn Jeerawat, 等. 鹽堿脅迫對尼羅羅非魚血清滲透壓、離子濃度及離子轉(zhuǎn)運酶基因表達的影響. 水產(chǎn)學(xué)報, 2014, 38(10): 1696–1704] ZHOU W, WANG Y, SUN X L,. Effect of stocking salinity on muscle quality of. Food Research and Development, 2018, 39(22): 7–14 [周偉, 王洋, 孫學(xué)亮, 等. 養(yǎng)殖鹽度對斑節(jié)對蝦肌肉品質(zhì)的影響. 食品研究與開發(fā), 2018, 39(22): 7–14] Growth Performance, Blood Parameters, and Texture Characteristics of Juvenile Largemouth Bass () Exposed to Highly Saline-Alkaline Water LU Guanzheng1, YAO Zongli2①, LAI Qifang2, GAO Pengcheng2, ZHOU Kai2, ZHU Haoyong3, LIU Yimeng2, SUN Zhen2 (1. Jiangsu Ocean University, Jiangsu Provincial Key Laboratory of Marine Biotechnology, Lianyungang, Jiangsu 222052, China;2. East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Saline-Alkaline Aquaculture, Ministry of Agriculture and Rural Affairs, Saline-Alkaline Water Fisheries Engineering Technology Research Center (Shanghai), Shanghai 200090, China; 3. Jiangsu Zhongyang Group Co., Ltd, Nantong, Jiangsu 226000, China) The total saline-alkaline land area in China is approximately 99.1 million hectares, distributed throughout northern China, coastal areas, and areas along the bank of the Yellow River. About 45.9 million hectares of saline-alkaline water areas are distributed around these lands, most of which are athalassic saline water characterized by high pH and high carbonate alkalinity concentrations with various types of ion imbalances. The co-effect of high pH and high carbonate alkalinity would directly lead to the respiratory alkalosis of aquatic organisms. High pH affects the excretion of ammonia, resulting in increased blood ammonia and acid-base imbalance. High ionic coefficient affects the osmotic regulation and breaks the ion balance in aquatic organisms. Thus, saline-alkaline water has not been fully used because of its stressful environmental characteristic. Currently, the lack of suitable objects for the saline-alkaline aquaculture restricts the development of the aquaculture industry on saline-alkaline land.Largemouth bass () is a potential economic target that has been successfully farmed in some saline-alkaline waters. However, largemouth bass's tolerance range and response mechanism to saline-alkaline water are still unclear. This study evaluated the growth performance of juvenilelargemouth bass in a saline-alkaline environment to propose excellent farming species for saline-alkaline aquaculture. First, the juvenilelargemouth bass response to 48 h carbonate alkalinity and 96 h semi-lethal salinity was determined. Hereafter, the saltwater group [SW, salinity of 7.50±0.07, and carbonate alkalinity of (1.81±0.12) mmol/L], alkaline water group [AW, salinity of 0.35±0.02, and carbonate alkalinity of (9.96±0.03) mmol/L], and freshwater control group [FW, salinity of 0.13±0.01, and carbonate alkalinity of (1.82±0.11) mmol/L] were set to comparatively study the growth parameters, physiology parameters, and muscle texture characteristic indexes of largemouth bass under long-term saline-alkaline stress. For the growth experiment, largemouth basses were acclimated to and reared in FW, SW, and AW conditions for 105 days. Triplicate of 30 individuals each were set for each condition using an experimental plastic tank with 100 L of water. Each fish's body length and weight were measured every 15 days after being anesthetized with MS-222. For the physiology parameters study, five largemouth basses were randomly selected from each group at the end of the growth experiment. The fish were anesthetized with MS-222 to draw 20 μL of blood from the tail vein using a syringe moistened with lithium heparin, which was immediately centrifugated to measure osmolality. Another 30 largemouth basses were taken and subjected to 24 h carbonate alkalinity stress. The experimental conditions were the same as AW group, and the control group was the same as FW group. During the stress period, feeding was stopped, and blood was drawn from five randomly selected fish every 6 h and centrifuged immediately to determine blood ammonia (blood ammonia kit A086-1-1 by Nanjing Jiancheng). Plasma osmolality was measured using an osmometer (Wescor Vapro 5520 Vapor Pressure Osmometer, USA). For the muscle texture characteristic index study, five largemouth basses were randomly selected from each group at the end of the growth experiment. After being anesthetized with MS-222, the muscles on the fish's backside (3.01±0.14) g were taken by using a surgical scalpel and scissors, the muscles' outer skin was cut off, and the sampled muscle sizes were standardized to (2.04±0.12) cm3. After sampling, the TMS-Pro texture analyzer (Food Technology Corporation, USA) was used to measure the muscle texture characteristics, employing the TPA mode, test speed of 30 mm/min, deformation amount of 50%, and return distance of 30 mm.The results showed that in the 48 h carbonate alkalinity group, the semi-lethal concentration was (29.92±3.90) mmol/L, while the fish could survive safely in water with salinity below 10 mmol/L. After 105 days of farming, there are no significant differences in the survival rate and final weight among different groups, in which the specific growth rate (SGR) showed a regular variation. During 15~45 days and 60~75 days, SGR decreased continuously, while it increased during 45~60 days and 75~90 days. The condition factors of the largemouth bass were less than 3 in all groups, with an increase from FW to AW and from AW to SW groups. In the AW group, the blood ammonia within 24 h showed an increase, then a decreased, and finally stabilized. In the SW group, the osmolality was (319.53±29.51) mOsm/kg, lower than the (300.00±16.44) mOsm/kg observed for the FW group. Largemouth bass raised in saline-alkaline water had better texture characteristics. Largemouth bass raised in SW group had a higher muscle hardness of (34.70±4.86) N, while a higher springiness of (1.06±0.10)mm was observed in the AW group.In summary, the largemouth bass could adapt to the relatively high saline-alkaline environment and be cultured in typical saline-alkaline water with pH from 8.84 to 8.89, carbonate alkalinity from 9.89 to 10.31 mmol/L, salinity from 6.68to 7.21, showing good muscle quality characteristics with high muscle hardness and springiness.The success of largemouth bass in saline-alkaline water aquaculture has provided an opportunity to promote the aquaculture of this fish in a saline-alkaline stressful environment, providing the theoretical basis for the mechanisms involved in this adaptation process. Our study will broaden the scope of aquaculture in saline-alkaline water, improving the economic benefits and providing the basic parameters for the quality evaluation of fish in saline-alkaline fisheries. Carbonate alkalinity; Salinity; Largemouth bass; Growth index; Blood ammonia; Texture characteristics YAO Zongli, E-mail: yaozl@ecsf.ac.cn 10.19663/j.issn2095-9869.20220112002 *國家重點研發(fā)計劃(2019YFD0900404)和中央級公益性科研院所基本科研業(yè)務(wù)費專項(2020TD52; 2021XT04)共同資助 [This work was supported by National Key Research Program (2019YFD0900404), and Special Scientific Research Funds for Central Non-Profit Institute (2020TD52; 2021XT04)]. 逯冠政,E-mail: gzstable16@163.com 么宗利,研究員,Email: yaozl@ecsf.ac.cn 2022-01-12, 2022-03-22 S965.99 A 2095-9869(2022)04-0001-11 http://www.yykxjz.cn/ 逯冠政, 么宗利, 來琦芳, 高鵬程, 周凱, 朱浩擁, 劉一萌, 孫真. 高鹽堿環(huán)境下大口黑鱸幼魚生長性能、血液生理指標(biāo)與質(zhì)構(gòu)特征研究. 漁業(yè)科學(xué)進展, 2022, 43(4): 01–11 LU G Z, YAO Z L, LAI Q F, GAO P C, ZHOU K, ZHU H Y, LIU Y M, SUN Z. Growth performance, blood parameters and texture characteristics of juvenile largemouth bass () exposed to highly saline-alkaline water. Progress in Fishery Sciences, 2022, 43(4): 01–11 (編輯 陳 輝)2.3 鹽堿脅迫對大口黑鱸血漿滲透壓和血氨的影響
2.4 鹽度及碳酸鹽堿度對大口黑鱸背部肌肉質(zhì)構(gòu)特性的影響
3 討論
3.1 鹽堿脅迫對大口黑鱸生長性能的影響
3.2 鹽堿脅迫對大口黑鱸生理指標(biāo)的影響
3.3 鹽堿脅迫對大口黑鱸質(zhì)構(gòu)特征的影響
4 結(jié)論