常宇飛,張中杰,張 欣,趙春雷,2,李曉帆
1.河北省氣象科學(xué)研究所,河北石家莊 050021;2.河北省氣象與生態(tài)環(huán)境重點(diǎn)實(shí)驗(yàn)室,河北石家莊 050021;3.河北省氣候中心,河北石家莊 050021
華北雨季的降水是中國(guó)東部降水的重要組成部分,研究發(fā)現(xiàn),自20世紀(jì)60年代,華北降水出現(xiàn)減少趨勢(shì),特別是70年代以來(lái),華北干旱更加明顯[1],這對(duì)該地區(qū)經(jīng)濟(jì),社會(huì)生活產(chǎn)生了重大影響。充沛的水汽輸送是形成降水的源泉,水汽輸送和輻合輻散變化,是直接造成旱澇發(fā)生的重要原因。水汽輸送作為降水的必要條件,與我國(guó)華北地區(qū)的降水有著密切的關(guān)系。因此,分析華北旱澇年雨季的水汽輸送特征差異,不僅為預(yù)測(cè)華北雨季降水及旱澇災(zāi)害提供參考,而且對(duì)加深認(rèn)識(shí)我國(guó)華北雨季降水變化產(chǎn)生顯得尤為重要[2]。
本文主要使用的資料有1979—2017年華北地區(qū)236個(gè)臺(tái)站逐日降水資料;1979—2017年NCEP逐日再分析資料,時(shí)間分辨率為6 h,水平分辨率為2.5°×2.5°,變量包括1 000~300 hPa共8層上的位勢(shì)高度(h)、緯向風(fēng)(u)、經(jīng)向風(fēng)(v)和各層的比濕(q)。
主要利用拉格朗日氣流軌跡模式HYSPLIT,對(duì)華北雨季的水汽輸送軌跡進(jìn)行后向追蹤模擬。選取35°N~44°N,110°E~120°E范圍內(nèi)1°×1°格點(diǎn)作為模擬區(qū)域,模擬時(shí)間為1979—2017年間旱澇年各6年的7—8月,垂直方向上選取9 200 m、5 500 m、3 000 m、1 500 m、500 m、100 m作為模擬初始高度,模擬華北地區(qū)上空整層大氣后向追蹤10 d的三維運(yùn)動(dòng)軌跡,每6 h輸出一次空氣軌跡的位置,并插值得到相應(yīng)位置空氣塊的物理屬性(比濕、溫度、高度等),然后每隔6 h所有軌跡的模擬初始
Study on Water Vapor Transport Characteristics Differences between North China Flood and Drought Years by Lagrangian Method
CHANG Yufei et al(Hebei Provincial Institute of Meteorological Sciences, Shijiazhuang, Hebei 050021)
AbstractBased on the meteorological observation data of North China Station,the rainy season of North China’s flood and drought years during 1979—2017 are selected.The moisture transport process of the North China (NC) flood and drought years were simulated using a Lagrangian airflow trajectory model (the Hybrid Single-Particle Lagrangian Integrated Trajectory model: HYSPLIT), to determine the moisture transport characteristics and their relationship with the North China summer precipitation.The moisture transport characteristics of the flood and drought years were compared quantitatively.It was found that, in the rainy season in North China, the difference between the water vapor content of the entire atmosphere in the flood year and the drought year mainly shows a "south negative north positive" distribution pattern,and the precipitation contribution rate also has a similar distribution.Eurasia and eastern China are the main sources of water vapor in the rainy season in North China in the drought and flood years, and the contribution rate to the precipitation in the rainy season in North China is the largest, both around 30%.Among them, the northwest path from Eurasia is slightly southerly in flood years than in drought years.There is an obvious water vapor source in the Bay of Bengal-South China Sea and the northwestern Indian Ocean in the flood years.The water vapor content in flood years(26.6%) is significantly higher than that in drought years (16.6%), and its contribution rate to precipitation is also greater than that in the drought years.The location of the southwest path has no significant difference in drought and flood years.The most significant different source between drought and flood years lies in the western Pacific.The water vapor content of the western Pacific Ocean north of 30°N is significantly higher in drought years than in flood years, and the distribution of water vapor content in the western Pacific Ocean south of 30°N is the opposite.The water vapor content of the whole layer of the western Pacific Ocean in the drought years (21.9%) is significantly lower than that of the flood years (28.9%).The precipitation contribution rate of this region to the rainy season in North China is higher in drought years (12.9%) than in flood years(10.0%), that is, the region is a strong water vapor source in drought years and a weak water vapor source in flood years.In addition, the easterly water vapor transport path from the western Pacific is more southerly and easterly in flood years than in drought years.
Key wordsClimate; Moisture transport characteristics; Lagrangian method; Flood and drought years in North China點(diǎn)重新后向模擬追蹤10 d。
利用HYSPLIT模式模擬長(zhǎng)時(shí)間尺度大氣運(yùn)動(dòng)所得到的軌跡數(shù)量極大,為了更好地對(duì)水汽輸送過(guò)程進(jìn)行分析,使用“海量氣塊追蹤法”處理HYSPLIT模式輸出的大量軌跡,并通過(guò)聚類得到水汽輸送路徑;此外,還使用“區(qū)域源匯歸因法”,尋求某路徑對(duì)目標(biāo)區(qū)的降水貢獻(xiàn)。
利用HYSPLIT模式對(duì)華北雨季旱澇年空氣塊進(jìn)行后向運(yùn)動(dòng)的軌跡模擬,并結(jié)合海量氣塊追蹤法,得到華北雨季旱澇年整層空氣塊到達(dá)華南前10 d、5 d、1 d的空間分布差值圖(圖1)。陰影代表濕空氣的分布,即空氣塊個(gè)數(shù)×比濕(單位:g/kg),打點(diǎn)區(qū)代表通過(guò)95%顯著性檢驗(yàn)的區(qū)域,黃色框?yàn)槿A北范圍。從圖1可以看出,華北雨季整層大氣的水汽含量在多雨年和少雨年之差主要呈“南負(fù)北正”的分布型。
圖1 華北雨季旱澇年整層空氣塊到達(dá)華南前10 d、5 d、1 d的空間分布差值圖
將模擬輸出的所有軌跡進(jìn)行聚類,得到華北雨季旱澇年水汽輸送路徑(圖2),圖中5條箭頭代表5條水汽輸送路徑,其中紅色箭頭代表西太平洋路徑(WP),黑色箭頭代表中國(guó)東部路徑(EC),藍(lán)色箭頭代表孟加拉灣南海—路徑(BSC),綠色箭頭代表印度洋路徑(IO),灰色箭頭代表歐亞大陸路徑(EA)。
圖2 華北雨季旱澇年水汽輸送路徑
圖3給出各水汽輸送路徑攜帶的水汽含量,表1給出旱澇年各關(guān)鍵區(qū)對(duì)華北雨季降水貢獻(xiàn)率的差異。結(jié)合圖3和表1可知,歐亞大陸和中國(guó)東部在旱、澇年均為華北雨季的主要水汽源地,對(duì)華北雨季降水的貢獻(xiàn)率最大,均在30%左右,其中來(lái)自歐亞大陸的西北路徑澇年較旱年略偏南;降水偏多年孟加拉灣—南海以及西北印度洋存在一個(gè)明顯的水汽源地,其水汽含量在澇年(26.6%)顯著多于旱年(16.6%),對(duì)降水的貢獻(xiàn)率也大于降水偏少年,西南路徑的位置旱澇年無(wú)明顯差異;西太平洋旱、澇年差異最為顯著,30°N以北的西太平洋水汽含量旱年顯著多于澇年,30°N以南的西太平洋水汽含量分布情況反之,西太平洋整層水汽含量在降水偏多年(21.9%)顯著少于降水偏少年(28.9%),該區(qū)域?qū)θA北雨季的降水貢獻(xiàn)率旱年(12.9%)高于澇年(10.0%),即該地區(qū)在旱年表現(xiàn)為強(qiáng)水汽源地,在澇年表現(xiàn)為弱水汽源地,此外來(lái)自西太平洋的偏東水汽輸送路徑在澇年較旱年偏南偏東。
圖3 華北雨季旱澇年各水汽輸送路徑攜帶的水汽含量
表1 旱澇年各關(guān)鍵區(qū)對(duì)華北雨季降水貢獻(xiàn)率的差異 %
利用華北236個(gè)臺(tái)站逐日降水資料,選取了1979—2017年間的華北雨季旱、澇年份,基于拉格朗日氣流軌跡模式(HYSPLITv4.9),結(jié)合海量氣塊追蹤分析法、蒸發(fā)降水診斷法和區(qū)域源匯歸屬法對(duì)華北旱、澇年雨季的逐日水汽輸送軌跡分別進(jìn)行后向追蹤模擬,定量分析旱澇年華北雨季水汽輸送路徑及其對(duì)降水貢獻(xiàn)的差異。
(1)華北雨季整層大氣的水汽含量在澇、旱年之差主要呈“南負(fù)北正”的分布型,降水貢獻(xiàn)率也有類似分布。
(2)歐亞大陸和中國(guó)東部在旱、澇年均為華北雨季的主要水汽源地,對(duì)華北雨季降水的貢獻(xiàn)率最大,均在30%左右,其中來(lái)自歐亞大陸的西北路徑澇年較旱年略偏南。
(3)降水偏多年孟加拉灣—南海以及西北印度洋存在一個(gè)明顯的水汽源地,對(duì)降水的貢獻(xiàn)率也大于降水偏少年,西南路徑的位置旱澇年無(wú)明顯差異。
(4)西太平洋旱、澇年差異最為顯著,30°N以北的西太平洋水汽含量旱年顯著多于澇年,30°N以南的西太平洋水汽含量分布情況反之,即該地區(qū)旱年表現(xiàn)為強(qiáng)水汽源地,澇年表現(xiàn)為弱水汽源地,此外來(lái)自西太平洋的偏東水汽輸送路徑在澇年較旱年偏南偏東。
(5)后期將對(duì)造成華北旱澇年雨季水汽輸送特征差異的成因進(jìn)行進(jìn)一步分析。