呂朝龍,李志剛,魏瑋,李小杰,劉曉亞
UV固化有機(jī)硅改性聚氨酯易清潔涂層的制備及性能研究
呂朝龍,李志剛,魏瑋,李小杰,劉曉亞
(江南大學(xué) 化學(xué)與材料工程學(xué)院,江蘇 無錫 214122)
研究聚二甲基硅氧烷(PDMS)相對(duì)分子質(zhì)量、官能度及添加量對(duì)紫外光(UV)固化聚氨酯丙烯酸酯易清潔涂層防污性能的影響。以聚乙二醇(PEG)、異佛爾酮二異氰酸酯(IPDI)、羥基封端的PDMS和季戊四醇三丙烯酸酯(PETA)為原料,采用一鍋法制備了有機(jī)硅改性聚氨酯丙烯酸酯易清潔樹脂,并UV固化得到易清潔涂層。添加5 000相對(duì)分子質(zhì)量PDMS(PDMS–5000)的涂層比添加1 000相對(duì)分子質(zhì)量PDMS(PDMS–1000)的涂層具有更高的接觸角、更低的滑動(dòng)角、更好的油性記號(hào)筆筆跡收縮效果和耐磨性能,但涂層透過率明顯降低;添加雙羥基封端的PDMS(PDMS–B)的涂層比添加單羥基封端的PDMS(PDMS–A)的涂層具有更好的油性記號(hào)筆筆跡收縮效果和耐磨性能。隨著涂層中PDMS的添加量從0.5%提高到2.0%,防污性能逐漸提高。同時(shí)根據(jù)XPS分析可知,當(dāng)涂層中PDMS的添加量提高到2%時(shí),涂層表面的Si含量接近飽和,防污性能達(dá)到最佳。易清潔涂層即使經(jīng)過1 000次的磨損循環(huán)測(cè)試后,依然具有油性記號(hào)筆筆跡收縮效果。PDMS–B改性的聚氨酯丙烯酸酯涂層比PDMS–A改性的聚氨酯丙烯酸酯涂層具有更優(yōu)異的記號(hào)筆筆跡收縮性能和耐磨性能,而且PDMS–5000改性的聚氨酯丙烯酸酯涂層比PDMS–1000改性的聚氨酯丙烯酸酯涂層具有更好的易清潔性能。當(dāng)PDMS的添加量從0.5%提高到2.0%時(shí),涂層的疏水疏油性能逐漸提高。
有機(jī)硅;易清潔涂層;光滑涂層;紫外光固化;聚氨酯丙烯酸酯;耐磨性能
易清潔涂層由于其對(duì)水和油性污染物具有優(yōu)異的防護(hù)性能,廣泛應(yīng)用于各個(gè)行業(yè),包括保護(hù)機(jī)器設(shè)備免受腐蝕,減少手機(jī)上汗水、指紋等其他污垢的殘留,防止建筑物和公共設(shè)施上出現(xiàn)涂鴉,延長基材的使用壽命,減少維護(hù)次數(shù)和清潔成本[1-5]。
涂層要想具備優(yōu)異的防污效果,需要具備納米或微米級(jí)的粗糙表面和低表面張力[6]。通常需要將SiO2無機(jī)納米粒子[7]加入涂料中來構(gòu)建微粗糙表面,由于無機(jī)粒子與樹脂的不相容等問題,導(dǎo)致涂層透光率下降,限制了其在高透光率基材的應(yīng)用(如塑料基材),因此制備具有光滑表面的防污涂層更加具有實(shí)用性[8-10]。盡管水和油在光滑涂層表面上的接觸角可能不會(huì)超過120°[11],但可以通過降低水和油在涂層表面的滑動(dòng)角,使污染物不容易黏附在涂層上,從而實(shí)現(xiàn)易清潔效果[12]。
構(gòu)建光滑的防污涂層,一種方法是通過噴涂、旋涂等手段,在基材表面制備一層光滑的含氟或含硅的防污涂層[13],但這種方法對(duì)基材的表面性質(zhì)具有很強(qiáng)的依賴性,形成的涂層耐磨性能較差[14]。通過將含氟[15]或含硅[16]組分接枝到聚合物中,可以提高其耐污持久性。含氟組分雖然具有優(yōu)異的防污效果,但是其高成本、高毒性以及生物蓄積性限制了其應(yīng)用[17-19],而將低表面能的無毒低成本聚二甲基硅氧烷與聚合物基質(zhì)結(jié)合在一起制備的防污涂層,具有高透光率,疏水疏油性能優(yōu)異等特點(diǎn),因此更適合于實(shí)際應(yīng)用[20]。
目前已經(jīng)制成了許多具有優(yōu)異性能的防污涂料,高溫?zé)峁袒匀皇侵苽溥^程中必不可少的方式。Gee等[21]以多元醇、六亞甲基二異氰酸酯三聚體和PDMS的接枝共聚物為原料,在120 ℃下固化制備了具有防污性能的聚氨酯涂層,探究了PDMS相對(duì)分子質(zhì)量和添加量對(duì)涂層防污性能的影響,研究發(fā)現(xiàn)添加1.0%的PDMS–5000,即可得到具有優(yōu)異防污性能的聚氨酯涂層。Zhong等[9]使用巰基乙醇改性蓖麻油(COME)、PDMS和六甲氧基甲基三聚氰胺(HMMM)開發(fā)了一種新型生物基防污涂層,所得涂層具有優(yōu)異的防污性能和自清潔性能。UV固化技術(shù)在熱敏性基材的應(yīng)用由于其獨(dú)特的優(yōu)勢(shì)(例如室溫固化、適應(yīng)性廣、低能耗、高效環(huán)保等)而受到越來越多的關(guān)注[22-24]。Yan等[6]通過雙羥基封端的PDMS、二羧基封端的聚(2,2,3,4,4,4,4-六氟丁基丙烯酸酯)低聚物(CTHFA)、2,4-甲苯二異氰酸酯(TDI)和甲基丙烯酸羥乙酯(HEMA)的縮合反應(yīng)合成了乙烯基末端官能的氟化硅氧烷接枝共聚物(Vi–PFSi),添加到雙酚A環(huán)氧甲基丙烯酸酯(EMA)中,通過UV固化獲得性能優(yōu)異的防污涂層。Zhong等[25]制備了一種新型的防污涂料,該涂料由PDMS、季戊四醇三丙烯酸酯(PETA)、異佛爾酮二異氰酸酯(IPDI)形成多功能單體組成。該涂料通過日光照射或35 s紫外線照射即可固化,即使經(jīng)受1 000次棉布磨損循環(huán),該涂層也表現(xiàn)出優(yōu)異的油墨收縮性能。
本研究以聚乙二醇(PEG)、IPDI、羥基封端聚二甲基硅氧烷(PDMS)和PETA為原料,采用一鍋法制備了可UV固化的有機(jī)硅改性聚氨酯丙烯酸酯易清潔樹脂,并紫外光(UV)固化得到易清潔涂層。探究了PDMS相對(duì)分子質(zhì)量、官能度及添加量對(duì)聚氨酯丙烯酸酯易清潔涂層防污性能的影響。
異佛爾酮二異氰酸酯(IPDI,99%)、聚乙二醇(PEG,n=300)、季戊四醇三丙烯酸酯(PETA,96%),分析純,阿拉丁有限公司;單羥基封端的聚二甲基硅氧烷(PDMS–A,n=1 000、5 000,97%)和雙羥基封端的聚二甲基硅氧烷(PDMS–B,n= 1 000、5 000,97%),工業(yè)級(jí),蓋爾斯公司;乙酸乙酯(EAC,≥99.5%),分析純,中國醫(yī)藥集團(tuán)有限公司;二月桂酸二丁基錫(DBTDL,95%)和4–甲氧基苯酚(HEHQ,99%),分析純,上海麥克林生化科技有限公司。
1.2.1 PDMS的結(jié)構(gòu)
PDMS–A和PDMS–B的結(jié)構(gòu)如圖1所示。
圖1 PDMS–A和PDMS–B的結(jié)構(gòu)
1.2.2 UV固化有機(jī)硅改性聚氨酯丙烯酸酯易清潔樹脂(PDMS–PUA)的合成
為了探究PDMS相對(duì)分子質(zhì)量、官能度及添加量對(duì)聚氨酯丙烯酸酯易清潔涂層防污性能的影響,制備了PDMS添加量為0.5%、1.0%、1.5%和2.0%的聚氨酯丙烯酸酯易清潔樹脂。在裝有攪拌器、回流冷凝管、恒壓滴液漏斗、溫度計(jì)的四口燒瓶中,加入IPDI和乙酸乙酯,將恒溫油浴鍋緩慢升溫至50 ℃后,加入PDMS–A和0.1% DBTDL的混合物,保溫反應(yīng)2 h,中間用二正丁胺反滴定法檢測(cè)—NCO基團(tuán)含量變化。當(dāng)—NCO基團(tuán)含量達(dá)到理論值時(shí),然后將PEG、0.1% DBTDL的混合物充分?jǐn)嚢韬?,通過恒壓滴液漏斗在30 min內(nèi)勻速滴加至四口燒瓶中,并繼續(xù)保溫?cái)嚢璺磻?yīng)2 h,繼續(xù)用二正丁胺反滴定法檢測(cè)—NCO基團(tuán)含量的變化,直到—NCO基團(tuán)含量達(dá)到理論值,之后將溫度升至60 ℃,稱量PETA、0.1% DBTDL和0.1% MEHQ的混合物,充分?jǐn)嚢柰耆芙夂?,? h內(nèi)勻速滴加至四口燒瓶,繼續(xù)保溫反應(yīng)至終點(diǎn)(—NCO基團(tuán)的含量≤0.1%),制得PDMS–A–PUA,合成過程如圖2所示,PDMS–B–PUA合成步驟與PDMS–A–PUA一樣。其中PDMS–A–1000–1.0定義為添加1.0% 1 000相對(duì)分子質(zhì)量的PDMS–A制備的聚氨酯丙烯酸酯樹脂。
1.2.3 涂層的制備
稱取一定質(zhì)量制備好的樹脂,加入4.0%(占主體樹脂總量的百分?jǐn)?shù))的光引發(fā)劑1173,避光混合均勻后,用線棒涂布器在聚碳酸酯板上制備涂層。在室溫下干燥1 h,然后放入40 ℃的烘箱中干燥,最后用高壓汞燈(1 kW)在距基材25 cm處照射90 s(波長250~410 nm,能量密度為~2 300 mJ/cm2),引發(fā)自由基聚合,固化成膜。
圖2 PDMS–A–PUA的合成過程
1.3.1 樹脂外觀及儲(chǔ)存穩(wěn)定性
通過肉眼觀察有機(jī)硅改性聚氨酯丙烯酸酯易清潔樹脂的外觀和儲(chǔ)存穩(wěn)定性。
1.3.2 結(jié)構(gòu)表征
使用傅里葉變換紅外光譜儀對(duì)原料、中間體和樹脂進(jìn)行紅外表征,波數(shù)測(cè)量范圍為3 750~500 cm?1。使用核磁共振譜儀對(duì)有機(jī)硅改性聚氨酯丙烯酸酯易清潔樹脂進(jìn)行1H NMR表征,所用溶劑為氘代氯仿。
1.3.3 涂層的表面形貌及透過率
通過Bruker公司的型號(hào)為MuLtimode 8的原子力顯微鏡(AFM)觀察涂層形貌。通過X射線光電子能譜分析(XPS)對(duì)涂層進(jìn)行元素成分分析。通過雙光束紫外可見分光光度計(jì)測(cè)試涂層的透過率,以空白基材為背景,每個(gè)樣品在不同的位置測(cè)試3次,取波長500 nm處的平均值作為透過率標(biāo)準(zhǔn)。
1.3.4 接觸角和滑動(dòng)角
在接觸角測(cè)量?jī)x上測(cè)量5個(gè)不同位置的水和十六烷的接觸角和滑動(dòng)角。用于接觸角測(cè)試的水為1.5 μL、十六烷為1.0 μL,用于滑動(dòng)角測(cè)試的水為40 μL、十六烷為5 μL。
1.3.5 防污性能測(cè)試
通過油性記號(hào)筆(ZEBRA記號(hào)筆)在涂層表面書寫,觀察書寫筆跡在涂層表面的收縮情況,來測(cè)試涂層的防污性能。
1.3.6 耐磨性能測(cè)試
根據(jù)GB/T 6739—2006《色漆和清漆鉛筆法測(cè)定漆膜硬度》測(cè)試涂層的鉛筆硬度。通過型號(hào)為JK– NM–339的耐磨試驗(yàn)機(jī)對(duì)涂層的耐磨性能進(jìn)行測(cè)試,以AATCC標(biāo)準(zhǔn)棉布為磨損介質(zhì),負(fù)載砝碼質(zhì)量為200 g,來回一次作為一個(gè)磨損循環(huán),通過觀察油性記號(hào)筆筆跡收縮情況,來評(píng)定涂層的防污性能。
PDMS相對(duì)分子質(zhì)量、官能度及添加量對(duì)有機(jī)硅改性聚氨酯丙烯酸酯樹脂外觀的影響情況如圖3所示。從圖3可以看出,添加PDMS–1000的樹脂比添加PDMS–5000的樹脂具有更好的透明度。受PDMS鏈段中羥基官能度的影響,PDMS–B比PDMS–A具有更高的極性,與聚氨酯樹脂的相容性也有一定提高。當(dāng)易清潔樹脂中PDMS–B–1000的添加量從0.5%增加到2.0%時(shí),樹脂始終保持澄清透明,即使儲(chǔ)存2個(gè)月,制備的涂層仍然具有優(yōu)異的防污性能。其他樹脂雖然在儲(chǔ)存期間出現(xiàn)不同程度的分層現(xiàn)象,但經(jīng)過攪拌器攪拌混合均勻后,制備的涂層依舊具有穩(wěn)定的防污性能。
圖3 PDMS相對(duì)分子質(zhì)量、官能度及添加量對(duì)有機(jī)硅改性聚氨酯丙烯酸酯樹脂外觀的影響
圖4為原料PDMS、PEG、PETA和合成的樹脂PDMS–PUA–1.0的紅外圖譜??梢钥闯觯琍DMS、PEG、PETA在3 460 cm–1處左右均出現(xiàn)了—OH的伸縮振動(dòng)吸收峰,IPDI在2 270 cm–1處出現(xiàn)了—NCO的特征吸收峰,同時(shí)PETA的C=C伸縮振動(dòng)吸收峰也出現(xiàn)在1 635 cm–1處。800 cm–1為長鏈中Si—O—Si的伸縮振動(dòng)峰。PDMS–PUA–1.0中的—OH吸收峰消失,并且在3 335 cm?1左右出現(xiàn)了氨基甲酸酯結(jié)構(gòu)中N—H的吸收峰,在1 720 cm–1處存在NCOOR特征吸收峰,同時(shí)—NCO峰消失,C=C峰出現(xiàn),說明聚合物PDMS–PUA–1.0成功合成。
圖4 PDMS、PEG、PETA和PDMS–PUA–1.0的紅外譜圖
圖5中的a曲線為PEG–IPDI–PETA的1H NMR譜圖。其中=5.90~6.45之間的3個(gè)峰為PETA中雙鍵上的質(zhì)子峰,=4.24是IPDI上的—NCO與PEG和PDMS上的—OH反應(yīng)之后生成的氨基甲酸酯上質(zhì)子峰,=3.65對(duì)應(yīng)于與醚鍵相鄰的亞甲基上的氫(—CH2—O—CH2—),=0.80~1.31之間的峰為IPDI中甲基(—CH3)和亞甲基(—CH2—)上的質(zhì)子峰。圖5中的b、c曲線分別是PDMS–A–IPDI–PETA–1.0和PDMS–B–IPDI–PETA–1.0的1H NMR譜圖,=0.08是PDMS中與Si相連的—CH3質(zhì)子峰,=0.56是PDMS兩端與Si相連的—CH2—質(zhì)子峰。之后,對(duì)核磁譜圖中各峰進(jìn)行積分,算出實(shí)際值與理論值基本一致,證明PEG–IPDI–PETA、PDMS–A–IPDI–PETA–1.0和PDMS–B–IPDI–PETA–1.0成功合成。
圖5 PEG-IPDI-PETA(a)、PDMS-A-IPDI-PETA-1.0(b)、PDMS-B-IPDI-PETA-1.0(c)的1H NMR譜圖
圖6為添加2% PDMS涂層的AFM圖像。從圖中可以看出,4種涂層的q粗糙度分別為0.381、1.260、0.380、0.712 nm;添加PDMS–5000的涂層比添加PDMS–1000的涂層具有更高的粗糙度,同時(shí)添加PDMS–A的涂層比添加PDMS–B的涂層具有更高的粗糙度。添加PDMS–1000的涂層表面光滑,沒有紋理結(jié)構(gòu),然而添加PDMS–5000的涂層表面卻出現(xiàn)一些凹陷的小孔,這是因?yàn)镻DMS鏈段與聚氨酯樹脂表面張力相差太大,產(chǎn)生了明顯的相分離,同時(shí)PDMS的鏈段越長,相分離越嚴(yán)重,最終導(dǎo)致涂層表面粗糙度變大。從圖7中也可以清楚地看出,添加PDMS–1000的涂層透過率保持在96%以上,添加PDMS–5000的涂層透過率則隨著PDMS添加量的增加而大幅度降低。
為了驗(yàn)證PDMS含量在涂層中是否存在分布差異,同時(shí)驗(yàn)證涂層表面Si含量是否達(dá)到飽和,需要進(jìn)一步對(duì)涂層表面以及底面的元素組成及分布進(jìn)行表征。由圖6和圖7分析結(jié)果可知,添加了PDMS–A和PDMS–B的涂層具有類似的表面形貌及透過率,但是PDMS–B涂層表面更均勻且缺陷較少,于是選擇PDMS–B涂層進(jìn)行XPS表征。圖8為添加PDMS–B涂層表面和底面的XPS表面的能級(jí)譜。圖9為PDMS–B涂層表面C 1s能級(jí)譜。表2為添加PDMS–B涂層表面和底面的元素含量分析。
從圖8a—b和圖9a—b中可以看出涂層表面的硅含量占比明顯高于涂層底面,對(duì)XPS圖像C 1s峰面積擬合得到284.78、284.6、285.5、286.7、286.6、289.4 eV 6個(gè)特征峰,其分別對(duì)應(yīng)C—Si、C—H、C—C、C—O、C—N和—O=C—O鍵。隨著涂層中PDMS–B添加量的增加,C—O、C—N和—O=C—O特征峰的占比減小,相應(yīng)的C—Si、C—H和C—C特征峰的占比增加,這是因?yàn)镃—Si、C—H和C—C特征峰是PDMS–B鏈段中主要的化學(xué)鍵。隨著涂層中PDMS–B添加量的增加,涂層表面的硅含量占比的增加幅度比涂層底面的硅含量占比的增加幅度更加明顯,這是因?yàn)镻DMS–B比聚氨酯丙烯酸酯樹脂具有更低的表面能,在涂層固化過程中發(fā)生遷移,在涂層表面富集,使得固化后的涂層中出現(xiàn)了一定的微相分層現(xiàn)象,造成涂層表面和底面硅含量占比不一致。從圖8a和圖8b中可以看出長鏈PDMS比短鏈PDMS更容易遷移至涂層表面。另外,由于溶劑乙酸乙酯存在,在成膜過程中,會(huì)對(duì)PDMS鏈段遷移到表面具有一定的促進(jìn)作用。通過計(jì)算可知PDMS–B–1000和PDMS–B–5000中Si含量占比分別為21.9%和22.7%。從圖8c—d和表2可以看出PDMS–B的添加量為2.0%時(shí),添加PDMS–B–1000和PDMS–B–5000的涂層表面的Si含量占比分別為20.18%和20.22%,兩者相差不大。雖然PDMS鏈段具有很高的表面遷移率,但由于涂層固化時(shí)間很短,會(huì)有一部分PDMS鏈段被掩埋在聚氨酯丙烯酸酯樹脂中,進(jìn)而導(dǎo)致涂層表面硅含量占比無法達(dá)到理論值[14],同時(shí)考慮經(jīng)濟(jì)成本,故本研究聚氨酯丙烯酸酯樹脂中PDMS的添加量最高為2.0%。
圖6 PDMS-A-1000-2.0(a)、PDMS-A-5000-2.0(b)、PDMS-B-1000-2.0(c)、PDMS-B-5000-2.0(d)的AFM圖像
圖7 PDMS相對(duì)分子質(zhì)量、官能度及添加量對(duì)透過率的影響
圖8 添加PDMS-B涂層表面和底面的XPS表面能級(jí)譜
圖9 添加PDMS–B涂層表面的C 1s能級(jí)譜
表2 添加PDMS-B涂層表面和底面的元素含量分析
Tab.2 Analysis of element content on the surface and bottom of the coating with PDMS
在20 ℃條件下,水的表面張力為72.5 mN/m,十六烷的表面張力為28.5 mN/m,PDMS的表面張力則為19.8 mN/m,于是將低表面張力的PDMS引入聚氨酯樹脂中,經(jīng)UV固化制備了具有易清潔功能的涂層。圖10為PDMS相對(duì)分子質(zhì)量、官能度及添加量對(duì)接觸角和滑動(dòng)角的影響。
如圖10a和圖10b所示,PDMS–A–5000、PDMS– B–1000和PDMS–B–5000表現(xiàn)出更高的接觸角,當(dāng)添加量為2.0%時(shí),可以達(dá)到108.6°的接觸角。PDMS–A–5000在添加量為0.5%時(shí)表面比較粗糙,表面積變大,PDMS在表面聚集的含量較少,導(dǎo)致涂層表面水和十六烷的接觸角減小。如圖10c和圖10d所示,隨著PDMS添加量從0.5%增加到2.0%,水和十六烷的滑動(dòng)角均有不同程度的降低,5 000相對(duì)分子質(zhì)量的PDMS表現(xiàn)出更低的水滑動(dòng)角,PDMS–B– 5000含量為2.0%時(shí),表現(xiàn)出最小的水滑動(dòng)角15.1°。而對(duì)于十六烷,滑動(dòng)角則相差不大,添加0.5%即可降低7°左右的滑動(dòng)角,添加量從0.5%增大到2.0%時(shí),只降低了2°左右的滑動(dòng)角,影響較弱。雖然制備的涂層沒有高的接觸角,但具有比較低的滑動(dòng)角,這是因?yàn)镻DMS中的硅氧鍵(O—Si—O)具有一定的柔順性,能夠使水和十六烷在涂層表面不容易黏附,可以輕易地從涂層表面滑落,從而使涂層具有易清潔的功能。
為了進(jìn)一步更加直觀地反映PDMS種類及含量對(duì)涂層防污性能的影響,對(duì)涂層進(jìn)行了油性記號(hào)筆收縮測(cè)試,測(cè)試結(jié)果如圖11所示。
圖10 PDMS相對(duì)分子質(zhì)量、官能度及添加量對(duì)接觸角和滑動(dòng)角的影響
圖11 PDMS相對(duì)分子質(zhì)量、官能度及添加量對(duì)油性記號(hào)筆收縮現(xiàn)象的影響
從圖11可以看出,添加相同含量PDMS–5000比PDMS–1000具有明顯的油性記號(hào)筆筆跡收縮效果,并且相同相對(duì)分子質(zhì)量下,PDMS–B比PDMS–A表現(xiàn)出更優(yōu)異的油墨收縮性能。然而添加0.5%PDMS– A–5000的涂層卻無法引起油性記號(hào)筆筆跡收縮效果,并且沉積的油墨痕跡不容易擦拭干凈,性能較差,其主要原因是涂層表面聚集的PDMS鏈密度低,導(dǎo)致涂層表面產(chǎn)生一定數(shù)量的縮孔。
雖然易清潔涂層沒有提供可用于極高接觸角的粗糙表面,但也沒有脆弱的紋理結(jié)構(gòu),因此易清潔涂層具有一定的機(jī)械強(qiáng)度,經(jīng)鉛筆硬度儀測(cè)試后,涂層硬度為3H。為了進(jìn)一步研究涂層的機(jī)械強(qiáng)度,進(jìn)行了摩擦循環(huán)測(cè)試。圖12為在添加量為2%下,PDMS相對(duì)分子質(zhì)量和官能度對(duì)摩擦試驗(yàn)后接觸角和滑動(dòng)角的影響,從圖中可以看出,水和十六烷的接觸角隨著摩擦次數(shù)的增加而減小,而滑動(dòng)角隨著摩擦次數(shù)的增加而增大。經(jīng)過1 000次摩擦循環(huán)后,在添加PDMS的涂層上,水滴和十六烷依舊可以滑落。同時(shí)從圖13中可以看出,經(jīng)過1 000次的摩擦循環(huán)之后,涂層表面依然具有記號(hào)筆筆跡收縮現(xiàn)象。添加PDMS–B的涂層比添加PDMS–A的涂層具有更明顯的收縮現(xiàn)象,這是因?yàn)榻?jīng)過PDMS與PETA反應(yīng)后,PDMS–B的分子鏈上比PDMS–A的分子鏈多一倍的可光固化的官能團(tuán),經(jīng)紫外光固化后具有更高的交聯(lián)密度,從而提高耐磨性能。
圖12 PDMS相對(duì)分子質(zhì)量和官能度對(duì)摩擦試驗(yàn)后接觸角和滑動(dòng)角的影響
圖13 PDMS相對(duì)分子質(zhì)量和官能度對(duì)摩擦測(cè)試后油性記號(hào)筆筆跡收縮現(xiàn)象的影響
Fig.13 Effect of PDMS molecular weight and functionality on the shrinkage of oily marker pens after rubbing test
將羥基封端的PDMS引入聚氨酯丙烯酸酯樹脂中,制備了UV固化的有機(jī)硅改性聚氨酯易清潔樹脂。PDMS–B改性的聚氨酯涂層比PDMS–A改性的聚氨酯涂層具有更優(yōu)異的記號(hào)筆筆跡收縮性能和耐磨性能,并且PDMS–5000改性的聚氨酯涂層比PDMS– 1000改性的聚氨酯涂層具有更好的易清潔性能。當(dāng)PDMS的添加量從0.5%提高到2.0%時(shí),涂層的疏水疏油性能逐漸提高。
[1] STOEHR B, MCCLURE S, H?FLICH A, et al. Unusual Nature of Fingerprints and the Implications for Easy-to- Clean Coatings[J]. Langmuir, 2016, 32(2): 619-625.
[2] DU Yang, ZHANG Jing-shu, ZHOU Chao. Synthesis and Properties of Waterborne Polyurethane-Based PTMG and PDMS as Soft Segment[J]. Polymer Bulletin, 2016, 73(1): 293-308.
[3] ZHONG Xi-ming, ZHOU Meng, WANG Sheng, et al. Pre-paration of Water-Borne Non-Fluorinated Anti-Smudge Surfaces and Their Applications[J]. Progress in Organic Coatings, 2020, 142: 105581.
[4] PAN Shuai-jun, GUO Rui, BJ?RNMALM M, et al. Coa-tings Super-Repellent to Ultralow Surface Tension Li-quids[J]. Nature Materials, 2018, 17(11): 1040-1047.
[5] WU Yang, WEI Qiang-bing, CAI Mei-rong, et al. Inter-facial Friction Control[J]. Advanced Materials Interfaces, 2015, 2(2): 1400392.
[6] YAN Zhen-long, LIU Wei-qu, GAO Nan, et al. Synthesis and Properties of a Novel UV-Cured Fluorinated Siloxane Graft Copolymer for Improved Surface, Dielectric and Tribological Properties of Epoxy Acrylate Coating[J]. Applied Surface Science, 2013, 284: 683-691.
[7] LI Fei-ran, WANG Zi-ran, HUANG Sui-chu, et al. Sele-ctive Superwettability: Flexible, Durable, and Uncondi-tioned Superoleophobic/Superhydrophilic Surfaces for Controllable Transport and Oil-Water Separation (Adv. Funct. Mater. 20/2018)[J]. Advanced Functional Mate-rials, 2018, 28(20): 1870136.
[8] YU Meng-nan, LIU Ming-ming, HOU Yuan-yuan, et al. Covalently Grafted Liquids for Transparent and Omni-phobic Surfaces via Thiol-Ene Click Chemistry[J]. Jour-nal of Materials Science, 2020, 55(27): 12811-12825.
[9] ZHONG Xi-ming, LV Li-zhang, HU Heng-feng, et al. Bio-Based Coatings with Liquid Repellency for Various Applications[J]. Chemical Engineering Journal, 2020, 382: 123042.
[10] ZHONG Xi-ming, HU Heng-feng, YANG Lei, et al. Ro-bust Hyperbranched Polyester-Based Anti-Smudge Coa-tings for Self-Cleaning, Anti-Graffiti, and Chemical Shiel-ding[J]. ACS Applied Materials & Interfaces, 2019, 11(15): 14305-14312.
[11] MARTINELLI E, FANTONI C, GALLOT B, et al. Poly-styrene-Polyperfluorooctylethyl Acrylate Diblock Co-po-lymers: The Effect of Dilution of the Fluorinated Meso-genic Chains on Bulk and Surface Properties[J]. Macro-molecular Symposia, 2010, 296(1): 294-302.
[12] CHAMBERS L D, STOKES K R, WALSH F C, et al. Modern Approaches to Marine Antifouling Coatings[J]. Sur--face and Coatings Technology, 2006, 201(6): 3642-3652.
[13] AMINI S, KOLLE S, PETRONE L, et al. Preventing Mussel Adhesion Using Lubricant-Infused Materials[J]. Science, 2017, 357(6352): 668-673.
[14] KHAN F, KHAN A, TUHIN M O, et al. A Novel Dual-Layer Approach towards Omniphobic Polyurethane Coatings[J]. RSC Advances, 2019, 9(46): 26703-26711.
[15] BOBAN M, GOLOVIN K, TOBELMANN B, et al. Smooth, All-Solid, Low-Hysteresis, Omniphobic Surfaces with Enhanced Mechanical Durability[J]. ACS Applied Materials & Interfaces, 2018, 10(14): 11406-11413.
[16] SHANG Bin, CHEN Min, WU Li-min. One-Step Synthe-sis of Statically Amphiphilic/Dynamically Amphiphobic Fluoride-Free Transparent Coatings[J]. ACS Applied Ma-te-rials & Interfaces, 2018, 10(48): 41824-41830.
[17] MILIONIS A, BAYER I S, LOTH E. Recent Advances in Oil-Repellent Surfaces[J]. International Materials Reviews, 2016, 61(2): 101-126.
[18] WANG Hong-xia, ZHOU Hua, GESTOS A, et al. Robust, Superamphiphobic Fabric with Multiple Self-Healing Abi--lity Against both Physical and Chemical Damages[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10221- 10226.
[19] KOBAKU S P R, KOTA A K, LEE D H, et al. Patterned Superomniphobic-Superomniphilic Surfaces: Templates for Site-Selective Self-Assembly[J]. Angewandte Chemie (International Ed in English), 2012, 51(40): 10109-10113.
[20] ZHANG Ka-ka, HUANG Shuai-shuai, WANG Jian-dong, et al. Transparent Organic/Silica Nanocomposite Coating that is Flexible, Omniphobic, and Harder than a 9H Pen-cil[J]. Chemical Engineering Journal, 2020, 396: 125211.
[21] GEE E, LIU Guo-jun, HU Heng, et al. Effect of Varying Chain Length and Content of Poly(Dimethylsiloxane) on Dynamic Dewetting Performance of NP-GLIDE Polyure-thane Coatings[J]. Langmuir, 2018, 34(34): 10102-10113.
[22] ZHENG Chao, LIU Guo-jun, HU Heng. UV-Curable An-tis-mudge Coatings[J]. ACS Applied Materials & Inter-faces, 2017, 9(30): 25623-25630.
[23] YANG Jin, LI Jia-yu, JIA Xiao-hua, et al. Fabrication of Robust and Transparent Slippery Coating with Hot Water Repellency, Antifouling Property, and Corrosion Resis-tance[J]. ACS Applied Materials & Interfaces, 2020, 12(25): 28645-28654.
[24] SOHAIL M, ASHFAQ B, AZEEM I, et al. A Facile and Versatile Route to Functional Poly(Propylene) Surfaces via UV-Curable Coatings[J]. Reactive and Functional Polymers, 2019, 144: 104366.
[25] ZHONG Xi-ming, SHENG Jie, FU He-qing. A Novel UV/Sunlight-Curable Anti-Smudge Coating System for Various Substrates[J]. Chemical Engineering Journal, 2018, 345: 659-668.
Preparation and Performance of UV-curable Silicone Modified Polyurethane Easy-to-clean Coating
,,,,
(School of Chemical and Material Engineering, Jiangnan University, Jiangsu Wuxi 214122, China)
In order to study the influence of polydimethylsiloxane (PDMS) molecular weight, functionality and addition amount on the antifouling performance of UV-curable polyurethane acrylate easy-to-clean coatings. Using polyethylene glycol (PEG), isophorone diisocyanate (IPDI), hydroxyl-terminated PDMS and pentaerythritol triacrylate (PETA) as raw materials, a silicone-modified polyurethane acrylate easy-to-clean resin was prepared by a one-pot method and UV curing to get an easy-to-clean coating. The coating added with 5 000 molecular weight PDMS (PDMS-5000) has higher contact angle, lower sliding angle, better oily marker handwriting shrinkage and wear resistance than the coating with 1 000 molecular weight PDMS (PDMS-1000) performance, but the transmittance of the coating is significantly reduced; the coating with PDMS (PDMS-B) with double hydroxyl end cap has better shrinkage effect of oily marker pen than the coating with PDMS (PDMS-A) with single hydroxyl end cap and wear resistance. As the addition of PDMS in the coating increases from 0.5wt.% to 2.0wt.%, the anti-fouling performance gradually improves. At the same time, according to XPS analysis, when the addition of PDMS in the coating increases to 2wt.% , the Si content is close to saturation, and the anti-fouling performance reaches the best. The easy-to-clean coating still has the effect of shrinking the handwriting of the oily marker pen even after 1 000 abrasion cycle tests. The AFM characterization test shows that the prepared smooth and easy-to-clean coating surface has very low roughness. The PDMS-B modified urethane acrylate coating has better marker handwriting shrinkage and abrasion resistance than the PDMS-A modified urethane acrylate coating, and the PDMS-5000 modified urethane acrylate coating is better than the PDMS-5000 modified urethane acrylate coating. PDMS-1000 modified polyurethane acrylate coating has better easy-to-clean performance. When the amount of PDMS added was increased from 0.5wt.% to 2.0wt.%, the hydrophobic and oleophobic properties of the coating gradually improved.
silicone; easy-cleaning coating; smooth coating; UV-curing; polyurethane acrylate; wear resistance
TQ264.1
A
1001-3660(2022)07-0334-09
10.16490/j.cnki.issn.1001-3660.2022.07.033
2021–07–08;
2021–10–09
:2021-07-08;
2021-10-09
呂朝龍(1996—),男,碩士,主要研究方向?yàn)楣δ芡苛稀?/p>
LYU Zhao-long (1996-), Male, Postgraduate, Research focus: functional coating.
劉曉亞(1958—),女,博士,教授,主要研究方向?yàn)榇蠓肿幽z體與先進(jìn)功能涂層材料。
LIU Xiao-ya (1958-), Female, Doctor, Professor, Research focus: macromolecular self-assembly and advanced fun-ctio-nal coating materials.
呂朝龍,李志剛,魏瑋,等. UV固化有機(jī)硅改性聚氨酯易清潔涂層的制備及性能研究[J]. 表面技術(shù), 2022, 51(7): 334-342.
LYU Zhao-long, LI Zhi-gang, WEI Wei, et al. Preparation and Performance of UV-curable Silicone Modified Polyurethane Easy-to-clean Coating[J]. Surface Technology, 2022, 51(7): 334-342.
責(zé)任編輯:萬長清