賈倩,張斌,賴振國(guó),張俊彥
摩擦磨損與潤(rùn)滑
非晶含氫碳薄膜本征結(jié)構(gòu)對(duì)退火行為的影響
賈倩1,2,張斌1,2,賴振國(guó)1,2,張俊彥1,2
(1.中國(guó)科學(xué)院蘭州化學(xué)物理研究所 中國(guó)科學(xué)院材料磨損與防護(hù)重點(diǎn)實(shí)驗(yàn)室,蘭州 730000;2.中國(guó)科學(xué)院大學(xué) 材料與光電技術(shù)學(xué)院,北京 100049)
為在高溫工況下服役的含氫碳(a–C:H)薄膜的制備提供新思路。首先利用DP–PECVD和BiP–PECVD兩種方法分別在Si基底上制備了兩種本征結(jié)構(gòu)不同的a–C:H薄膜,分別在350、450、550、650 ℃下進(jìn)行退火處理。通過(guò)納米硬度、X射線光電子能譜、傅里葉轉(zhuǎn)變紅外光譜、激光共聚焦拉曼光譜、場(chǎng)發(fā)射掃描電鏡及CSM摩擦試驗(yàn)機(jī)等,分別評(píng)價(jià)了未退火和不同退火溫度下兩種不同結(jié)構(gòu)a–C:H薄膜的結(jié)構(gòu)、表面形貌、力學(xué)及摩擦學(xué)等性能。研究了不同本征結(jié)構(gòu)a–C:H薄膜對(duì)退火行為的影響。DP–PECVD方法在制備a–C:H薄膜(A薄膜)的過(guò)程中具有更高的沉積速率,是BiP–PECVD法(B薄膜)的1.52倍。隨著退火溫度的增加,兩種方法制備的a–C:H薄膜均發(fā)生H脫附,但是A薄膜的脫H轉(zhuǎn)變點(diǎn)為450 ℃,B薄膜的脫H轉(zhuǎn)變點(diǎn)為350 ℃。DP–PECVD法制備的a–C:H薄膜在H脫附過(guò)程中更容易形成sp3–C,而BiP–PECVD法制備的a–C:H薄膜在此過(guò)程中形成sp3–C和sp2–C雜化鍵的概率基本相同。BiP–PECVD法制備的a–C:H薄膜在退火過(guò)程中更容易失去H,且在450 ℃以上出現(xiàn)大面積剝離,摩擦失效。而DP–PECVD法制備的碳薄膜則表現(xiàn)出更好的熱和摩擦學(xué)穩(wěn)定性,在350~650 ℃均可保持薄膜的完整性,并且在350~ 550 ℃退火后保持低至約0.06的摩擦因數(shù)。DP–PECVD方法制備的a–C:H薄膜具有更好的熱穩(wěn)定性、力學(xué)穩(wěn)定性及摩擦學(xué)穩(wěn)定性。
非晶含氫碳薄膜;退火;雙極脈沖;直流脈沖;等離子體增強(qiáng)化學(xué)氣相沉積
DLC薄膜是主要以sp3–C和sp2–C雜化鍵結(jié)合的非晶碳材料。根據(jù)2005年德國(guó)工程師學(xué)會(huì)發(fā)布的“碳薄膜”標(biāo)準(zhǔn),DLC薄膜可以被分為7類,即:非晶碳(a–C)、四面體非晶碳(ta–C)、金屬摻雜非晶碳(a–C:Me)、含氫非晶碳(a–C:H)、四面體含氫非晶碳(ta–C:H)、金屬摻雜含氫非晶碳(a–C:H:Me)、改性含氫非晶碳(a–C:H:X)[1-3]。a–C:H薄膜具有獨(dú)特的高硬度、高熱導(dǎo)率、低介電常數(shù)、良好的光學(xué)透過(guò)性、優(yōu)異的化學(xué)惰性和生物相容性以及優(yōu)異的減摩耐磨等性能,被廣泛應(yīng)用于機(jī)械、電子、光學(xué)、生物醫(yī)學(xué)、航空航天等領(lǐng)域[4-10]。
將化學(xué)氣相沉積和輝光等離子體放電過(guò)程綜合用于制備薄膜的方式稱為等離子體化學(xué)氣相沉積(PECVD)技術(shù),是常用的制備a–C:H薄膜的方法之一[11-15]。該方法能夠方便地控制薄膜厚度和結(jié)構(gòu),制備的薄膜質(zhì)量均勻,結(jié)構(gòu)致密,穩(wěn)定性好。值得注意的是,許多研究表明a–C:H薄膜在惰性或真空環(huán)境下的摩擦因數(shù)可以達(dá)到10?3量級(jí),磨損率低于10?9mm3/(N·m),展現(xiàn)出很好的應(yīng)用前景。但是,在一些使用溫度較高(≥350 ℃)的工況條件下,如活塞環(huán)、氣門、摩擦副等,則要求a–C:H薄膜具有更好的熱穩(wěn)定性。
通常采用退火研究a–C:H薄膜的熱穩(wěn)定性及高溫下的摩擦學(xué)行為,較高的退火溫度通常會(huì)促使a–C:H薄膜的結(jié)構(gòu)發(fā)生變化[16-17]。研究表明在溫度高于200 ℃時(shí),H會(huì)開始逸出[18],300 ℃以上薄膜會(huì)發(fā)生相轉(zhuǎn)變,出現(xiàn)石墨化[19-21]等。Li等[22]研究了a–C:H薄膜的退火行為,認(rèn)為200 ℃以上薄膜開始釋放H,硬度下降,磨損增加,但是摩擦因數(shù)(~0.1)在大氣中基本保持不變。Wu等[23]研究了真空下a–C:H薄膜的退火行為,結(jié)果與Li等人的研究一致。但是Wang等[24]結(jié)合彈性反沖散射(ERD)、拉曼光譜(Raman)和高分辨電鏡對(duì)比研究了10納米級(jí)和亞微米級(jí)類富勒烯含氫碳(FL–C:H)薄膜在500 ℃以內(nèi)的退火行為,認(rèn)為薄膜的厚度對(duì)結(jié)構(gòu)轉(zhuǎn)化有一定的影響,且含氫量在退火過(guò)程中變化不大。Wang等[25]進(jìn)一步研究表明,退火溫度在300 ℃以內(nèi)時(shí),硬度隨溫度的升高而增加,隨后降低;在高載荷下,摩擦因數(shù)隨著溫度的升高而降低,在250 ℃以上趨于穩(wěn)定,摩擦因數(shù)低至0.004。上述研究結(jié)果表明,不同的a–C:H薄膜表現(xiàn)出不同的退火行為。因此,研究不同本征結(jié)構(gòu)a–C:H薄膜的熱穩(wěn)定性對(duì)適用于高溫服役的a–C:H薄膜的制備及應(yīng)用具有指導(dǎo)性意義。
雖然目前國(guó)內(nèi)外已經(jīng)開展了一些高溫退火對(duì)a–C:H薄膜熱穩(wěn)定行為影響的研究,但是尚缺乏對(duì)不同制備方法下獲得的不同本征結(jié)構(gòu)的a–C:H薄膜退火行為進(jìn)行系統(tǒng)對(duì)比研究,尤其是溫度高于500 ℃以上的a–C:H薄膜熱穩(wěn)定性研究幾乎未見報(bào)道。因此,本文分別使用直流脈沖等離子體增強(qiáng)化學(xué)氣相沉積(DP–PECVD)和雙極脈沖等離子體增加化學(xué)氣相沉積(BiP–PECVD)法制備了兩種不同結(jié)構(gòu)的a–C:H薄膜,在同樣的條件下進(jìn)行退火處理,研究了薄膜本征結(jié)構(gòu)對(duì)退火行為的影響。
試驗(yàn)使用等離子體增強(qiáng)化學(xué)氣相沉積鍍膜設(shè)備,如圖1所示。薄膜沉積前,首先將真空腔預(yù)抽到10?4Pa,然后在100 ml/min的Ar等離子體環(huán)境中清洗襯底30 min,調(diào)節(jié)脈沖偏壓為?900 V,Ar 20 Pa。使用的基體材料為單晶Si(100)片,尺寸為直徑20 mm,厚度725 μm。制備過(guò)程中兩電極間距離為50 mm,襯底不加熱。
1.1.1 a–C:H薄膜的制備
1)DP–PECVD。反應(yīng)氣體為Ar、CH4和H2混合氣體,流量比為1∶1∶2,偏壓為?800 V,脈沖頻率為40 kHz,占空比為0.6,此時(shí)通過(guò)樣品盤的電流約0.1 A,沉積2 h,稱之為A樣品。
2)BiP–PECVD。關(guān)閉Ar,通入反應(yīng)氣體CH4,調(diào)節(jié)壓強(qiáng)至10 Pa。將恒流雙極對(duì)稱脈沖電源加載到負(fù)極板上,調(diào)控電壓至?500 V,脈沖頻率為200 kHz,占空比為0.6,此時(shí)通過(guò)樣品盤的電流約0.8 A,沉積3 h,稱之為B樣品。
圖1 沉積系統(tǒng)及供電模式示意圖
1.1.2 退火處理
將制備好的兩種a–C:H薄膜在管式爐儀器中進(jìn)行退火處理。退火處理在Ar保護(hù)下進(jìn)行,升溫速率設(shè)定為5 ℃/min,退火時(shí)間定為1 h。退火溫度分別為350、450、550、650 ℃,將未退火(室溫25 ℃)與不同溫度(350、450、550、650 ℃)退火后的樣品分別標(biāo)記為A25、A350、A450、A550、A650、B25、B350、B450、B550和B650。
利用X射線光電子能譜(XPS,ESCALAB 250Xi,美國(guó))來(lái)獲得薄膜表面元素組成及C的鍵合組成,腔體壓力10?6Pa,Al–Ka 輻射。借助傅里葉轉(zhuǎn)變紅外(FTIR,V70,Bruker,德國(guó))光譜儀來(lái)確定a–C:H薄膜中的C—H基團(tuán),掃描范圍700~4 000 cm?1,分辨率為1 cm?1。通過(guò)場(chǎng)發(fā)射掃描電子顯微鏡(FE– SEM,JSM–6701F,日本)對(duì)a–C:H薄膜厚度及表面形貌進(jìn)行觀察,加速電壓300 kV。利用納米壓入儀(Ti–950,Hysitron,美國(guó))對(duì)a–C:H薄膜的力學(xué)性能進(jìn)行測(cè)量,壓入深度為薄膜厚度的10%~12%。利用顯微共聚焦拉曼(Raman)光譜(LabRAM HR Evolution,法國(guó))獲得薄膜的鍵合信息,激發(fā)波長(zhǎng)為532 nm。
使用摩擦試驗(yàn)機(jī)(Tribometer 3,瑞士)對(duì)A、B兩種a–C:H薄膜退火前后的摩擦因數(shù)進(jìn)行了測(cè)量。測(cè)試參數(shù)為:載荷3 N,相對(duì)濕度25% ~ 30%,Ar氛圍,頻率5 Hz,摩擦?xí)r間30 min。
圖2給出了分別用DP–PECVD和BiP–PECVD制備的A、B兩種a–C:H薄膜的FE–SEM斷面照片,證明這兩種方法制備的薄膜均具有致密的內(nèi)部結(jié)構(gòu)。A、B兩種a–C:H薄膜厚度分別為728、718 nm,沉積速率分別為6.06、3.99 nm/min,這說(shuō)明DP–PECVD方法制備的薄膜具有更快的沉積速率,約是BiP– PECVD法的1.52倍。納米壓痕測(cè)量結(jié)果表明A薄膜硬度為15.88 GPa,彈性模量為100.65 GPa;B薄膜硬度為22.49 GPa,彈性模量為174.11 GPa。這說(shuō)明B薄膜在退火前具有更好的力學(xué)性能。
圖3給出了A、B兩種a–C:H薄膜在退火前后的FTIR吸收光譜。對(duì)于a–C:H薄膜,由于1 800 cm?1以下的C—H彎曲振動(dòng)和C—C伸縮振動(dòng)模式強(qiáng)度弱,疊加嚴(yán)重而不考慮。在2 700~2 950 cm?1處出現(xiàn)的吸收帶主要?dú)w因于sp3雜化C—H伸縮震動(dòng)模式。在2 855 cm?1和2 920 cm?1附近出現(xiàn)兩個(gè)較強(qiáng)的吸收峰,分別是sp3–CH2(sym)對(duì)稱振動(dòng)吸收峰和sp3–CH(asym)非對(duì)稱振動(dòng)模式,在2 955 cm?1附近出現(xiàn)一個(gè)弱的肩峰,可以歸結(jié)為sp3–CH3(asym)的非對(duì)稱振動(dòng)模式[26-28]。并且可以從圖3a和圖3b得知,H在非晶碳網(wǎng)絡(luò)中主要以sp3–CH2和sp3–CH的形式存在,較少的H以sp3–CH3的形式存在。隨著退火溫度的增加,在2 700~2 950 cm?1區(qū)間的吸收峰逐漸變?nèi)酢?duì)于A薄膜,在550 ℃下峰強(qiáng)度突然變?nèi)?,而?duì)于B薄膜,這種變化發(fā)生在450 ℃左右。為了進(jìn)一步說(shuō)明H鍵合結(jié)構(gòu)的變化,如圖3c和圖3d所示,對(duì)所有樣品的特征FTIR吸收峰進(jìn)行了高斯擬合,分別對(duì)應(yīng)sp3– CH2(sym)、sp3–CH(asym)、sp3–CH3(asym)振動(dòng)模式。進(jìn)一步地,通過(guò)分析sp3–CH2(sym)/sp3–CH3(asym)和sp3–CH(asym)/sp3–CH3(asym)的比值隨退火溫度變化的趨勢(shì),可以分析H原子更容易從哪個(gè)鍵合位置脫附較快,結(jié)果如圖3e和圖3f所示。綜合考慮圖3c和圖3d的結(jié)果,可以認(rèn)為,隨著退火溫度的增加,不同鍵合結(jié)構(gòu)的H均發(fā)生脫附行為。對(duì)A薄膜,在550 ℃之前,sp3–CH2和sp3–CH3的脫附速率基本一致,在550 ℃之后sp3–CH2脫附變快,且在450 ℃開始sp3–CH脫附變快。這說(shuō)明在450 ℃之前,sp3–CH2和sp3–CH3脫附H后可能變?yōu)閟p3–CH,在450 ℃之后sp3–CH脫附H轉(zhuǎn)化為純碳鍵合結(jié)構(gòu)。對(duì)B薄膜,在350 ℃之前,sp3–CH2和sp3–CH3脫附速率基本一致,在350 ℃之后sp3–CH2和sp3–CH脫附H變快。這說(shuō)明在350 ℃之前,sp3–CH2和sp3–CH3脫附H后可能變?yōu)閟p3–CH,在350 ℃之后sp3–CH脫附H轉(zhuǎn)化為純碳鍵合結(jié)構(gòu)。上述結(jié)論說(shuō)明A薄膜具有更好的溫度穩(wěn)定性,而B薄膜更易脫氫。
圖2 A、B兩種a–C:H薄膜斷面厚度
圖3 A、B薄膜退火前后紅外吸收光譜
如圖4所示,將A、B兩種a–C:H薄膜退火前后XPS的C 1s峰利用洛倫茲–高斯擬合為3個(gè)峰,分別出現(xiàn)在284.3~284.8、285.5~285.9、287.3~287.9 eV,分別對(duì)應(yīng)sp2C==C鍵、sp3C—C鍵以及C==O鍵[28-30]。為了更系統(tǒng)地研究薄膜中sp2–C和sp3–C雜化鍵的相對(duì)含量,表1統(tǒng)計(jì)了A、B兩種a–C:H薄膜退火前后的C 1s分峰結(jié)果。從表1中可以看出,退火前,A、B兩種a–C:H薄膜中的sp3–C雜化鍵含量基本一致。但是在不同溫度下進(jìn)行退火處理后,A薄膜sp3–C雜化鍵含量隨著退火溫度的升高而增大,B薄膜中sp3–C雜化鍵含量變化不大。對(duì)比圖3e和圖3f,可以看到A薄膜sp3/sp2比值的變化趨勢(shì)與其紅外分峰的變化恰好相反,說(shuō)明A薄膜在H脫附過(guò)程中更容易形成sp3–C,而B薄膜中形成sp3–C雜化鍵和sp2–C雜化鍵的概率基本一樣。這一結(jié)果說(shuō)明,不同方法制備的碳薄膜,其退火過(guò)程中的結(jié)構(gòu)變化依賴于含氫碳薄膜的本征結(jié)構(gòu)。
圖4 A、B兩種薄膜退火前后C 1s的分峰結(jié)果
表1 A、B兩種含氫碳薄膜退火前后的XPS結(jié)果
Tab.1 The statistical results from XPS of A and B film before and after annealing %
Raman光譜可以有效地區(qū)分碳薄膜中sp2–C(G峰,1 560 cm?1)和sp3–C(D峰,1 350 cm?1)雜化結(jié)構(gòu)[31-33]。如圖5a和圖5b所示,利用高斯擬合將退火前后A、B兩種a–C:H薄膜的Raman光譜從1 000 cm?1到2 000 cm?1分為2個(gè)峰,分別對(duì)應(yīng)G峰和D峰??梢钥闯鲭S著退火溫度的增加,G峰隨著退火溫度的增加逐漸向高波數(shù)移動(dòng),說(shuō)明薄膜內(nèi)部結(jié)構(gòu)的有序化程度增加。但是,A薄膜Raman峰向高波數(shù)移動(dòng)的速度較慢,且在550 ℃左右才出現(xiàn)明顯的兩個(gè)波峰;不同于A薄膜,B薄膜Raman峰向高波數(shù)移動(dòng)的速度較快,在450 ℃左右就出現(xiàn)明顯的兩個(gè)波峰,這一結(jié)果同紅外及XPS光譜獲得的結(jié)果一致。D/G值是表示sp2–C團(tuán)簇有序度和尺寸大小的證據(jù)之一。圖5c和圖5b給出了G峰位置和D/G值變化的曲線,進(jìn)一步證實(shí)了薄膜中的sp2–C有序度增加,sp2–C相對(duì)含量增加,sp2–C團(tuán)簇尺寸增加。
圖5 A、B兩種薄膜退火前后拉曼光譜分析
表面形貌照片能夠直觀展示退火前后薄膜表面的變化,圖6為A、B兩種a–C:H薄膜退火前后表面FE–SEM形貌照片。其中A薄膜在退火前后表面始終保持光滑,退火處理并未使其脫落。B薄膜隨著退火溫度的升高,出現(xiàn)愈發(fā)嚴(yán)重的脫落現(xiàn)象,在450 ℃時(shí)薄膜開始從基底剝離,550 ℃時(shí)剝離嚴(yán)重,且部分開始脫落,退火溫度進(jìn)一步升高至650 ℃時(shí)表面大面積脫落。這說(shuō)明在高溫下,B薄膜的結(jié)合力變差。此外,對(duì)薄膜退火前后的厚度進(jìn)行了研究,結(jié)果見表2,隨著退火溫度的升高,薄膜的厚度發(fā)生變化,對(duì)于A薄膜,退火處理使得薄膜厚度增大,當(dāng)退火溫度在550 ℃時(shí)厚度達(dá)到最大,為1 020 nm。B薄膜厚度同樣隨著退火溫度的升高而呈現(xiàn)出增大趨勢(shì),在450 ℃時(shí)厚度最大為850 nm。
此外,如表2所示,納米測(cè)試結(jié)果表明,A薄膜的納米硬度在450 ℃之前基本不變,但是當(dāng)溫度高于550 ℃時(shí),薄膜硬度下降,這與sp3–C增加(XPS)的結(jié)果相反。對(duì)比紅外結(jié)果,可以發(fā)現(xiàn)其變化同紅外特征峰強(qiáng)度一致(2 700~2 950 cm?1),這可能是因?yàn)殡m然sp3增加,但是FTIR結(jié)果表明大部分為sp3–CH飽和的端基,導(dǎo)致sp2團(tuán)簇不能形成sp3–C鍵以形成橋接的互鎖結(jié)構(gòu),團(tuán)簇之間容易因外力而發(fā)生相對(duì)位移。對(duì)于B薄膜,在退火溫度450 ℃以下納米硬度的變化基本同A薄膜一致,但是更高退火溫度導(dǎo)致其脫落而不能測(cè)量納米硬度。因此,A薄膜具有更好的熱穩(wěn)定性。
圖6 退火前后A、B薄膜的表面形貌
表2 退火前后A、B薄膜機(jī)械性能測(cè)試結(jié)果
進(jìn)一步地,對(duì)A、B兩種薄膜退火前后的摩擦因數(shù)進(jìn)行了測(cè)量,結(jié)果如表3所示。A、B兩種薄膜在退火前摩擦因數(shù)均為0.10,其中A薄膜的摩擦因數(shù)在退火溫度為350~550 ℃時(shí)基本保持在0.06左右,但是當(dāng)退火溫度高達(dá)650 ℃時(shí),摩擦測(cè)試失效。對(duì)于B薄膜,在室溫和退火溫度為350 ℃時(shí)均為0.10,更高溫下的摩擦測(cè)試均失效。說(shuō)明A薄膜在550 ℃范圍內(nèi)均有很好的摩擦學(xué)性能,適用于在550 ℃以下變溫條件下的潤(rùn)滑服役。
表3 退火前后A、B薄膜摩擦因數(shù)
Tab.3 The friction coefficient of A and B film before and after annealing with 3 N
1)本文分別使用DP–PECVD和BiP–PECVD兩種方法成功制備了A、B兩種本征結(jié)構(gòu)不同的a–C:H薄膜,其中DP–PECVD方法制備a–C:H薄膜的速率更快(6.06 nm/min),是BiP–PECVD法制備a–C:H薄膜(3.99 nm/min)的1.52倍。
2)對(duì)不同方法制備的的薄膜,隨著退火行為的發(fā)生均出現(xiàn)脫H現(xiàn)象。A和B薄膜的脫H轉(zhuǎn)變溫度不同,對(duì)于A薄膜,在450 ℃之前,sp3–CH2和sp3–CH3脫附速率基本一致,主要以sp3–CH2和sp3–CH3脫H為主,脫氫后可能變?yōu)閟p3–CH,在450 ℃之后sp3–CH2和sp3–CH脫附H變快。對(duì)于B薄膜,在350 ℃之前,sp3–CH2和sp3–CH3脫附速率基本一致,在350 ℃之后sp3–CH2和sp3–CH脫附H變快。說(shuō)明A薄膜具有更高的熱穩(wěn)定性。
3)在本文考察的退火溫度范圍內(nèi),A薄膜幾乎沒(méi)發(fā)生剝離,硬度在退火溫度升高至550 ℃時(shí)急劇下降,且摩擦因數(shù)在550 ℃之前穩(wěn)定在0.06左右,在650 ℃時(shí)失效。B薄膜在退火溫度達(dá)到450 ℃即開始大面積剝離脫落,摩擦因數(shù)在350 ℃前穩(wěn)定在0.10,自450 ℃起失效,說(shuō)明A薄膜具有更好的熱、力學(xué)和摩擦學(xué)穩(wěn)定性。
[1] DONNET C, ERDEMIR A. Tribology of diamond-like carbon films: fundamentals and applications[M].
[2] 趙飛. 多環(huán)境適應(yīng)性超潤(rùn)滑復(fù)合類金剛石薄膜的制備及其性能研究[D]. 北京: 中國(guó)科學(xué)院研究生院, 2010.
ZHAO Fei. Preparation and Properties of Composite Diamond-Like Carbon Films with Multi-Environmental Adaptability and Super-Lubrication[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2010.
[3] OHTAKE N, HIRATSUKA M, KANDA K, et al. Pro-perties and Classification of Diamond-Like Carbon Films [J]. Materials (Basel, Switzerland), 2021, 14(2): 315.
[4] BAI Li-chun, ZHANG Guan-gan, LU Zhi-bin, et al. Tribological Mechanism of Hydrogenated Amorphous Carbon Film Against Pairs: A Physical Description[J]. Journal of Applied Physics, 2011, 110(3): 033521.
[5] DONNET C, ERDEMIR A. Historical Developments and New Trends in Tribological and Solid Lubricant Coatings [J]. Surface and Coatings Technology, 2004, 180-181: 76-84.
[6] ROBERTSON J. Diamond-Like Amorphous Carbon[J]. Materials Science and Engineering: R: Reports, 2002, 37(4-6): 129-281.
[7] NOVIKOV N V, GONTAR A G, KHANDOZHKO S I, et al. Protective Diamond-Like Coatings for Optical Ma-terials and Electronic Devices[J]. Diamond and Related Materials, 2000, 9(3-6): 792-795.
[8] GRILL A. From Tribological Coatings to Low-Diele-ctrics for ULSI Interconnects[J]. Thin Solid Films, 2001, 398-399: 527-532.
[9] 左瀟, 孫麗麗, 汪愛英, 等. 高功率脈沖磁控濺射制備非晶碳薄膜研究進(jìn)展[J]. 表面技術(shù), 2019, 48(9): 53-63.
ZUO Xiao, SUN Li-li, WANG Ai-ying, et al. Research Progress on Preparation of Amorphous Carbon Thin Films by High Power Impulse Magnetron Sputtering[J]. Surface Technology, 2019, 48(9): 53-63.
[10] LU L, JONES M W, WU R L. Diamond-Like Carbon as Biological Compatible Material for Cell Culture and Me-dical Application[J]. Bio-Medical Materials and Engine-ering, 1993, 3(4): 223-228.
[11] CHOU L H. Hydrogenated Amorphous Carbon Films Prepared by Plasma-Enhanced Chemical-Vapor Deposi-tion[J]. Journal of Applied Physics, 1992, 72(5): 2027- 2035.
[12] KIM Y T, CHO S M, CHOI W S, et al. Dependence of the Bonding Structure of DLC Thin Films on the Deposition Conditions of PECVD Method[J]. Surface and Coatings Technology, 2003, 169-170: 291-294.
[13] CAPOTE G, PRIOLI R, JARDIM P M, et al. Amorphous Hydrogenated Carbon Films Deposited by PECVD: Influence of the Substrate Temperature on Film Growth and Microstructure[J]. Journal of Non-Crystalline Solids, 2004, 338-340: 503-508.
[14] BRUNO P, CICALA G, LOSACCO A M, et al. Me-chanical Properties of PECVD Hydrogenated Amorphous Carbon Coatings via Nanoindentation and Nanoscratching Techniques[J]. Surface and Coatings Technology, 2004, 180-181: 259-264.
[15] SUGIURA H, OHASHI Y, ISHIKAWA K, et al. Gas- Phase and Film Analysis of Hydrogenated Amorphous Carbon Films: Effect of Ion Bombardment Energy Flux on Sp2Carbon Structures[J]. Diamond and Related Materials, 2020, 104: 107651.
[16] 王林青, 周永濤, 王軍軍. 退火處理對(duì)DLC薄膜結(jié)構(gòu)及摩擦學(xué)性能的影響[J]. 表面技術(shù), 2019, 48(2): 133-138.
WANG Lin-qing, ZHOU Yong-tao, WANG Jun-jun. Effects of Annealing Treatment on the Structure and Tribological Properties of Diamond-Like Carbon Thin Films[J]. Surface Technology, 2019, 48(2): 133-138.
[17] 崔龍辰, 余偉杰. 類金剛石碳薄膜的高溫摩擦學(xué)研究進(jìn)展[J]. 表面技術(shù), 2019, 48(12): 150-159.
CUI Long-chen, YU Wei-jie. Progress on High-Tempera-ture Tribology of Diamond-Like Carbon Films[J]. Surface Technology, 2019, 48(12): 150-159.
[18] HUANG B R, YEH C S, LEE S F, et al. Effects of Pretreatment and Post-Annealing on the Field Emission Property of Diamond-Like Carbon Grown on a Titanium/ Silicon Substrate[J]. New Carbon Materials, 2008, 23(3): 209-215.
[19] FRIEDMANN T A, MCCARTY K F, BARBOUR J C, et al. Thermal Stability of Amorphous Carbon Films Grown by Pulsed Laser Deposition[J]. Applied Physics Letters, 1996, 68(12): 1643-1645.
[20] TALLANT D R, PARMETER J E, SIEGAL M P, et al. The Thermal Stability of Diamond-Like Carbon[J]. Diamond and Related Materials, 1995, 4(3): 191-199.
[21] CLIN M, BENLAHSEN M, ZEINERT A, et al. Effect of Annealing on the Structural and Electrical Properties of D.C. Multipolar Plasma Deposited A-C: H Films[J]. Thin Solid Films, 2000, 372(1-2): 60-69.
[22] LI Hong-xuan, XU Tao, WANG Cheng-bing, et al. An-nealing Effect on the Structure, Mechanical and Tribo-logical Properties of Hydrogenated Diamond-Like Carbon Films[J]. Thin Solid Films, 2006, 515(4): 2153-2160.
[23] WU Yan-xia, LI Hong-xuan, JI Li, et al. Effect of Vacuum Annealing on the Microstructure and Tribological Be-havior of Hydrogenated Amorphous Carbon Films Pre-pared by Magnetron Sputtering[J]. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227(7): 729-737.
[24] WANG Zhao-long, GAO Kai-xiong, ZHANG Bin, et al. Verification Study of Nanostructure Evolution with Heating Treatment between Thin and Thick Fullerene- Like Hydrogen Carbon Films[J]. Coatings, 2019, 9(2): 82.
[25] WANG Zhao-long, GONG Zhen-bin, ZHANG Bin, et al. Heating Induced Nanostructure and Superlubricity Evolu-tion of Fullerene-Like Hydrogenated Carbon Films[J]. Solid State Sciences, 2019, 90: 29-33.
[26] XIAO Ye-quan, TAN Xin-yu, JIANG Li-hua, et al. The Effect of Radio Frequency Power on the Structural and Optical Properties of A-C: H Films Prepared by PECVD [J]. Journal of Materials Research, 2017, 32(7): 1231-1238.
[27] VERES M, KOóS M, PóCSIK I. IR Study of the Formation Process of Polymeric Hydrogenated Amor-phous Carbon Film[J]. Diamond and Related Materials, 2002, 11(3-6): 1110-1114.
[28] TERZYK A P. The Influence of Activated Carbon Surface Chemical Composition on the Adsorption of Acetaminophen (Paracetamol) in Vitro[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 177(1): 23-45.
[29] PANDIYAN R, DELEGAN N, DIRANY A, et al. Correlation of Sp2Carbon Bonds Content in Magnetron- Sputtered Amorphous Carbon Films to Their Electro-chemical H2O2Production for Water Decontamination Applications[J]. Carbon, 2015, 94: 988-995.
[30] MéREL P, TABBAL M, CHAKER M, et al. Direct Evaluation of the Sp3Content in Diamond-Like-Carbon Films by XPS[J]. Applied Surface Science, 1998, 136(1-2): 105-110.
[31] ZHANG Bin, YU Yuan-lie, ZHANG Jun-yan. Magnetron Sputtering Deposition of Carbon Nitride Nanocolumns at Low Temperature[J]. Journal of Physics D: Applied Physics, 2009, 42(18): 185304.
[32] BAI Chang-ning, LIANG Ai-min, CAO Zhong-yue, et al. Achieving a High Adhesion and Excellent Wear Resistance Diamond-Like Carbon Film Coated on NBR Rubber by Ar Plasma Pretreatment[J]. Diamond and Related Materials, 2018, 89: 84-93.
[33] FILIK J, MAY P W, PEARCE S R J, et al. XPS and Laser Raman Analysis of Hydrogenated Amorphous Carbon Films[J]. Diamond and Related Materials, 2003, 12(3-7): 974-978.
Annealing Treatment of Hydrogenated Amorphous Carbon Film is Affected by Its Intrinsic Structure
1,2,1,2,1,2,1,2
(1. Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; 2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)
Hydrogenated amorphous carbon (a-C:H) film was used in different field due to its excellent electrical, optical and tribological properties. With the evolution of the mechanic systems, the a-C:H film is required not only to have the performance of low friction coefficient, but also to meet the high temperature (≥350 ℃) service conditions. Thus, the thermal stability of the a-C:H film is the key point. The stability of a-C:H films is closely related to their inner structure, which depends on the preparation methods. So it is important to study the effects of different preparation methods on the nano structure of a-C:H films with variation of temperatures. The previous work mainly focused on the structural changes of specific a-C:H films at different annealing temperatures. However, there still lack of attention to the effect of film’s intrinsic structure on the annealing results. Thus, in this work, DC Pulsed Plasma Enhanced Chemical Vapor Deposition (PD-PECVD) and Bipolar Pulsed Plasma Enhanced Chemical Vapor Deposition (BiP-PECVD) were used to deposit two kinds of a-C:H films with different structures, then of which were annealed at 350 ℃, 450 ℃, 550 ℃ and 650 ℃, respectively. The variation of structural, mechanical properties, surface morphology and tribological properties of two kinds of a-C:H films were evaluated by appropriate testing methods. The results show that the deposition rate of a-C:H films, deposited via PD-PECVD method is 1.52 times higher than that of the BiP-PECVD method. With the increase of the annealing temperature, the a-C:H films prepared by the two methods all desorbed H but the transitional temperature point of desorption of H at 450 ℃ and 350 ℃, respectively. One can be also confirmed that the a-C:H film prepared by the PD-PECVD method is easier to form sp3-C during the H desorption process, while the a-C:H film prepared by the BiP-PECVD method has the same probability of forming sp3-C and sp2-C hybrid bonds. In addition, the a-C:H film, prepared by the BiP-PECVD method, is easier to lose H during the annealing process and peeled off in a large area beyond the annealing temperature of 450 ℃, resulting in friction failure. The a-C:H film prepared by the PD-PECVD method is unpeeled off and keep the friction coefficient as low as 0.06 when annealing at 350-550 ℃. To sum up, the film prepared by PD-PECVD method has better thermal, mechanical and tribological stability, which can work under high-temperature conditions.
hydrogenated amorphous carbon film; annealing; bipolar pulse; DC pulse; plasma-enhanced chemical vapor deposition
TG174.442
A
1001-3660(2022)07-0098-09
10.16490/j.cnki.issn.1001-3660.2022.07.009
2021–05–21;
2021–11–17
2021-05-21;
2021-11-17
國(guó)家自然科學(xué)基金(U1737213)
Supported by National Natural Science Foundation of China (U1737213)
賈倩(1995—),女,博士研究生,主要研究方向?yàn)樘急∧ぎ愘|(zhì)配副界面行為及超滑機(jī)制。
JIA Qian (1995-), Female, Doctoral student, Research focus: heterogeneous interfacial behavior and superlubricity mechanism of carbon films.
張俊彥(1968—),男,博士,研究員,主要研究方向?yàn)楸∧げ牧系奈⒓?xì)結(jié)構(gòu)構(gòu)筑與摩擦學(xué),材料表面、界面及功能可控的物理化學(xué)。
ZHANG Jun-yan (1968-), Male, Doctor, Professor, Research focus: microstructure construction and tribology properties study of thin film materials, physical chemistry of material surface, interface and function controllable.
賈倩, 張斌, 賴振國(guó), 等. 非晶含氫碳薄膜本征結(jié)構(gòu)對(duì)退火行為的影響[J]. 表面技術(shù), 2022, 51(7): 98-106.
JIA Qian, ZHANG Bin, LAI Zhen-guo, et al. Annealing Treatment of Hydrogenated Amorphous Carbon Film is Affected by Its Intrinsic Structure [J]. Surface Technology, 2022, 51(7): 98-106.
責(zé)任編輯:萬(wàn)長(zhǎng)清