劉 飛
(中國電子科技集團公司第29 研究所,四川 成都 610036)
隨著電子對抗技術的發(fā)展,對無線電目標進行精準的測向成了關鍵手段,其中被動測向技術中的干涉儀測向因其能實現(xiàn)較高的測向精度而被研究人員高度重視。由采取其測量多個天線之間信號到達天線的相位差來計算信號入射方向。這個過程影響因素多、過程復雜,本文就從理論入手分析影響干涉儀測向的幾個因素。
根據肖秀麗[1]干涉儀測向的基本原理如圖1 所示。
圖1 干涉儀測向基本原理
雷達信號的到達角θ,到達兩個天線之間的相位差:
上式中,λ為電磁信號波長,L為兩天線之間的距離,Φ為信號到達兩天線的相位差,θ為信號的入射角度。由式(1)可以得出,可以把入射角度表達成φ的反正弦函數(shù):
對式(1)進行全微分可以得到:
從式(3)可以測向誤差來至波長誤差(測頻),基線誤差。如果波長誤差和基線誤差忽略,那么公式(3)可以簡單記如下:
從式(4)可以得到如下結論:
(1)測量角度誤差和相位誤差成正比,而其中的相位誤差,由直接測量信號的相位差得到,要測量信號的相位差不可避免地受到通道一致性和信號強度(信噪比)的影響。
(2)測量角度誤差和基線長度L成反比,基線越長測量角度的誤差越小,但由于實工程上受到基線布置條件的限制,基線不可無限增加,其次由于受到信號周期性影響,測量相位存在2Kπ 的模糊,為了解算模糊,基線越長,需要的基線數(shù)量越多,受到限制的條件越多,因此實際基線長度有限。各個文獻中討論關于基線的布置非常多,大多是采用長短基線結合的解模糊方式來完成角度解模糊[2-3]。本文不參與討論關于基線選取的問題。
(3)測量角度誤差和cosθ值成反比,cosθ值越大測量精度越高,當cosθ=1,(θ=0°)時測量精度最高,當cosθ=0(θ=90°)時,誤差無窮大,無法測向。實際上信號不像理想情況一樣和天線在水平方向上入射,實際入射是在俯仰方向還有一個夾角α需要考慮。
本文從上文相位誤差和入射角度來簡要分析干涉儀測向和各個因素對測量的影響。
干涉儀測向中相位差Φ是以2π 為周期循環(huán)的,從式(4)可以得出,要測向角度誤差小,就必須要有足夠的基線長度L,基線L越長得到的測角精度越高,但基線變長,則會導致相位測量模糊,為了不產生相位模糊,基線要足夠短。這兩者之間是矛盾的,實際工程中研究人員采用多基線組陣的形式來化解這個矛盾。以數(shù)字信道化分機技術鑒相為背景,在多基線中必然出現(xiàn)多個天線,多個變頻通道,多個AD 變換器。
從圖2 看出組成各個通道的包括天線、前端放大、變頻、AD 采樣,還有連接電纜。從這個主場框圖可以看出,各個支路受到存在通道一致性影響,要做到一致是很困難的;每個支路存在天線、放大器、下變頻、AD采樣處理的情況。這是一個典型的信號處理通道,放大器和變頻器都存在自身的熱噪聲,和其他信號處理一樣,存在一個信號強度(信噪比)的問題。
圖2 干涉儀通道組成
在實際工程中要做到各個通道相位完全一致,概率是極小的。電纜加工最多做大5°的相位一致性,放大器,變頻器等15°~20°的相位不一致,這個不一致性和頻率、溫度濕度、連接器特性相關。整個通道上(到達AD 采樣之前)相位偏差大約會到10°~30°典型通道上的相位偏差如圖3 所示。
圖3 典型通道上的相位偏差
本文假設采用10 倍波長的基線測量角度,那么30°左右的相位偏差會帶來多大的測向誤差,此問題值得研究。
根據公式(4),將基線10λ、入射角度45°、相位偏差30°各條件帶入,可以得到θ 偏差在4.2°左右。此條件在對測向要求很高的應用場景是不能滿足要求的。
但此偏差通常在不同通道上表現(xiàn)相對一致,和頻率對應關系比較穩(wěn)定,例如A 通道固定向某個方向偏移固定值,可通過校準源校準其偏差。從而在計算時將校準信息納入其中減少相位固定誤差。僅留下隨機偏差。從圖4 可以看出,校準后的相位隨機誤差,校準的效果十分可觀。
圖4 校準后的通道相位情況
從校準后的相位誤差看,大致控制在4°左右,通過公式(4)的計算,這一偏差帶來的測向誤差不超過0.5°,因此能夠滿足一些測向精度要求較高的場景。
從圖2 示意圖看出,在天線接收后,信號經過放大、變頻處理才會進入數(shù)字化通道,在AD 之前,都為典型的模擬通道,與其他的信號處理一樣面臨著信噪比的問題。
在整個計算過程中,FFT(Fast Fourier Transform)的積累長度和基線長度都是關鍵因素,選取64 點FFT(Fast Fourier Transform)積累,10 倍波長的基線長度。用高斯白噪聲加正弦信號進行仿真計算得到如下曲線圖(見圖5)。
圖5 信噪比和測向精度之間關聯(lián)
從圖5 中看出,當信噪比到14 dB 以上時,測向精度達到比較理想的狀態(tài)。這個精度和FFT(Fast Fourier Transform)積累長度、基線選取高度關聯(lián)。其中天線陣的布置和基線長度選取在業(yè)內討論較多。
在式(1)中,僅僅考慮了目標和測試天線在同一水平面的情況,實際工程應用中,天線位置和目標位置時刻都在一個水平面上的概率極小,這樣實際工程中研究人員不單需要時刻測量水平角度,還需同時測量俯仰角。假設俯仰度為α,水平角度為θ,水平基線L1,俯仰基線L2,可以得到式(5)、(6):
上式中ΦA為水平向(入射波投影和天線法線方向夾角)相位差,ΦB為俯仰向(入射波和水平面夾角)相位差??梢娫趯嶋H工程上水平方向測向會包含一個α 的傾角因子。此傾角可能來自目標不在水平面上,也可能因為天線安裝而不在水平面上(和水平面有夾角)。
從公式看這個傾角最佳是0°。意味著:(1)天線法線最佳是在水平方向;(2)目標最佳是在天線一個水平面上。條件(1)可以通過天線的安裝較容易實現(xiàn),條件(2)要求能夠在大部分工程中忽略,例如天線安裝在飛機上,目標和飛機在近似高度2 km 左右,目標距離飛機30 km 甚至更遠,其這個夾角很小接近0°可忽略,研究人員認為無較大影響。但在飛機做機動的時候,其角度就不能被忽略,這是飛機大機動條件下,測向跳躍的原因之一。
干涉儀測向的影響因素很多,天線布置、基線長度、信噪比、入射角度、通道一致性及其選取的信號積累方式都高度關聯(lián)。實際工程上由于多種因素的交叉影響,測向精度大多保持在0.5°~1.5°。這篇文章從通道一致性和信噪比、入射角等角度討論,希望能夠給工程技術人員提供一個新的思路。