文虎 郝健池 馬礪 任立峰 魏高明 鄭學(xué)召
摘要:將液態(tài)CO2注入煤層既可以達(dá)到驅(qū)替煤層CH4的目的,又可以有效地對(duì)CO2進(jìn)行封存,對(duì)煤礦瓦斯災(zāi)害防治和實(shí)現(xiàn)CO2封存及減排具有的重要意義。為研究液態(tài)CO2溶浸作用對(duì)煤吸附特征的影響,指導(dǎo)和完善液態(tài)CO2利用一封存一體化技術(shù)及機(jī)理,采用壓汞實(shí)驗(yàn)結(jié)合CO2等溫吸附實(shí)驗(yàn),對(duì)煤巖經(jīng)液態(tài)CO2“溶浸”作用引起的孔隙變化和CO2氣體的吸附特征變化進(jìn)行了探討。結(jié)果表明:溶浸前后煤樣的孔隙變化是造成煤樣對(duì)CO2氣體吸附存在差異性的主要原因,其中<100 nm孔徑非閉合孔隙在這個(gè)過(guò)程中起到了主導(dǎo)作用,溶浸后煤樣對(duì)CO2的吸附量小于原始煤樣,且對(duì)溫度的敏感程度要弱于原始煤樣。從熱力學(xué)角度分析得出,吸附過(guò)程中,原始煤樣的吸附熱及吸附勢(shì)始終比溶浸煤樣大,且原始煤樣比溶浸煤樣具有更大的吸附空間;解吸過(guò)程中,溶浸煤樣的吸附熱及吸附勢(shì)稍大于原始煤樣,但兩者的吸附空間差異不大。
關(guān)鍵詞:CO2封存;吸附解吸;吸附勢(shì);吸附熱
中圖分類(lèi)號(hào):TD 712文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-9315(2022)03-0397-08
DOI:10.13800/j.cnki.xakjdxxb.2022.0301開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Influence of liquid CO2soaking on adsorption characteristics of coa
WEN Hu HAO Jianchi MA Li REN Lifeng WEI Gaoming ZHENG Xuezhao
(1.Key Laboratory of Western Mine Exploitation and Hazard Prevention,Ministry of Education,
Xian University of Science and Technology,Xian 710054,China;;
2.College of Safety Science and Engineering,Xian University of Science and Technology,Xian 710054,China)Abstract:The injection of liquid CO2into coal seam can? displace coal seam CH4,and store CO2effectively,which is of great significance for coal mine gas disaster prevention and CO2storage and emission reduction.In order to study the influence of liquid CO2soaking on the adsorption characteristics of coal and to promote the integrated technology and mechanism of liquid CO2utilization-storage,the pore changes and CO2gas adsorption characteristics of coal and rock caused by liquid CO2“l(fā)eaching” were examined by mercury injection experiment and CO2isothermal adsorption experiment.The results indicate that the pore change of coal samples before and after solution leaching is the main reason for the difference of CO2adsorption of coal samples,the unclosed pores with a pore diameter less than 100 nm play a leading role in this process,the CO2adsorption capacity of the leached coal sample is less than that of the original coal sample,and the sensitivity to temperature is weaker than that of the original coal sample.From the perspective of thermodynamics,it is concluded that in the adsorption process,the adsorption heat and adsorption potential of the original coal sample tend to be greater than that of the solution coal sample,and the adsorption space in the original coal sample is larger than that in the solution coal sample.In the desorption process,the adsorption heat and adsorption potential of the solution leached coal sample are slightly larger than that of the original coal sample,but there is little difference in? the adsorption space between the solution leached coal sample and the original coal sample.68177E82-F437-4F90-B56D-0C8C8DB7BFE9
Key words: CO2storage;adsorption desorption;adsorption potential;adsorption heat
0引言
二氧化碳的肆意排放是造成溫室效應(yīng)的主要原因,可導(dǎo)致海平面上升,全球氣溫變暖,大量疾病的傳播等惡劣影響,已成為世界各國(guó)面臨的共同問(wèn)題[1-3]。為解決上述困境,各國(guó)際機(jī)構(gòu)、氣候組織和各國(guó)政府都在不斷探索如何最快、最有效地降低二氧化碳排放量的方法[4],其中發(fā)展綠色清潔能源的呼聲最為響亮[5-7]。但這些綠色清潔能源技術(shù)的起點(diǎn)相對(duì)較低,短期內(nèi)仍無(wú)法取代化石能源[8]。因此,CO2捕獲及封存技術(shù)是目前能實(shí)現(xiàn)CO2減排的主要途徑[9-10]。
目前,隨著該技術(shù)的不斷發(fā)展,已經(jīng)在煤礦安全生產(chǎn)中得到了廣泛應(yīng)用,但對(duì)煤層封存CO2的研究主要集中在煤巖體對(duì)超臨界及氣態(tài)CO2的吸附特征[11-13],同時(shí)對(duì)于CO2的利用及封存一體化技術(shù)尚處于探索階段。因此,有學(xué)者提出,將高壓液態(tài)CO2注入煤層,經(jīng)液態(tài)CO2“溶浸-相變-氣態(tài)吸附”作用后,既可以達(dá)到驅(qū)替置換煤層甲烷的目的[14-18],又可以有效地對(duì)CO2進(jìn)行封存。從而將該技術(shù)拓展為CO2利用及封存的一體化技術(shù),對(duì)煤礦瓦斯災(zāi)害防治和實(shí)現(xiàn)CO2封存及減排都有著重要意義。
煤礦在進(jìn)行液態(tài)CO2利用及封存時(shí),煤巖體首先會(huì)受到液態(tài)CO2“溶浸”的作用,從而影響煤體的孔裂隙,進(jìn)而會(huì)影響到煤體對(duì)CO2的吸附特性[19-20]。因此文中基于CO2利用及封存一體化技術(shù),通過(guò)壓汞實(shí)驗(yàn)及等溫吸附實(shí)驗(yàn)對(duì)煤體液態(tài)CO2溶浸后煤樣的孔隙結(jié)構(gòu)及其吸附特征進(jìn)行了分析,以煤樣溶浸前后對(duì)CO2氣體的吸附解吸量為依據(jù),提出了在液態(tài)CO2利用及封存技術(shù)過(guò)程中預(yù)測(cè)CO2儲(chǔ)量的方法,從而為完善液態(tài)CO2利用及封存一體化技術(shù)及理論提供依據(jù)。
1液態(tài)CO2溶浸前后孔裂隙特征
1.1煤樣溶浸處理
煤樣溶浸系統(tǒng)主要包括:液態(tài)二氧化碳儲(chǔ)罐、高壓管路、煤樣罐、壓力表、泄壓閥等,如圖1所示。
實(shí)驗(yàn)煤樣取自新疆硫磺溝礦(9-15)04工作面長(zhǎng)焰煤,工業(yè)分析見(jiàn)表1。實(shí)驗(yàn)開(kāi)始時(shí)首先將煤樣粉碎至80目,在70 ℃條件下進(jìn)行干燥處理6 h。然后將煤樣置于煤樣罐內(nèi)進(jìn)行溶浸處理,以2 MPa的壓力持續(xù)注入液態(tài)二氧化碳8 h后打開(kāi)泄壓閥,取出煤樣后可進(jìn)行下一步實(shí)驗(yàn)。
1.2壓汞實(shí)驗(yàn)
受液態(tài)二氧化碳溶浸作用的影響,煤體內(nèi)的孔隙結(jié)構(gòu)會(huì)發(fā)生變化。因此采用壓汞法對(duì)原煤樣及浸溶煤樣內(nèi)部的孔徑分布等參數(shù)進(jìn)行測(cè)試,對(duì)比研究溶浸作用對(duì)煤樣孔隙結(jié)構(gòu)的影響。
由壓汞實(shí)驗(yàn)的原理可知,壓力P(r)和孔徑r存在以下關(guān)系[21]
P(r)=2δcos θ/r (1)
式中P(r)為進(jìn)汞壓力,MPa;r為煤樣孔隙半徑,nm;δ為金屬汞表面張力,0.485 N/m;θ為接觸角,實(shí)驗(yàn)選取130°。
將煤樣放入壓汞儀后,通過(guò)軟件設(shè)置初始?jí)毫?.003 MPa,終止壓力為242 MPa。設(shè)置120個(gè)采集壓力點(diǎn),穩(wěn)定時(shí)間5 s,儀器按照設(shè)定程序自動(dòng)記錄和保存數(shù)據(jù)。
1.3壓汞實(shí)驗(yàn)(MIP)結(jié)果與分析
從表2可以看出,原煤樣及溶浸煤樣的比表面積分布主要孔徑范圍均在0~100 nm。其中,原煤樣的比表面積為36.647 68 m2/g,浸溶后煤樣的比表面積為30.485 49 m2/g,對(duì)比溶浸前后煤樣的比表面積可知,溶浸后煤樣的比表面積相對(duì)于原煤樣減少了16.82%。溶浸煤樣的比表面積峰值趨向大孔徑值偏移,說(shuō)明溶浸作用會(huì)影響原煤樣的孔隙,造成小孔徑逐漸擴(kuò)張至大孔徑。同時(shí)會(huì)產(chǎn)生新的孔隙,但生成孔隙的量要小于轉(zhuǎn)變量,導(dǎo)致孔徑峰值呈上升趨勢(shì),比表面積下降。
對(duì)煤樣孔隙體積的測(cè)定發(fā)現(xiàn),與原煤樣相比,溶浸后煤樣大孔孔隙體積比原煤樣增加0.005 mL/g,增長(zhǎng)率為8.6%。煤體小孔及中孔的孔隙體積及所占百分比均呈減小趨勢(shì),說(shuō)明煤體孔隙在溶浸作用下會(huì)從小孔至中孔再到大孔發(fā)展。溶浸煤樣的總孔隙體積相比原煤樣降低了0.006 mL/g,結(jié)合大孔孔隙體積變化可以推斷,在液態(tài)CO2溶浸作用下孔隙孔徑增大,甚至形成宏觀的裂隙,有效孔隙體積減小,裂隙發(fā)育連通成為裂隙網(wǎng)絡(luò)。
2溶浸前后煤樣的吸附特征
2.1CO2氣體吸附/解吸實(shí)驗(yàn)
實(shí)驗(yàn)所用儀器為高壓氣體吸附/解吸儀(PCT),該儀器主要由煤樣容器、氣動(dòng)閥、儲(chǔ)氣池、壓力控制單元、溫度傳感器、真空泵和氣瓶組成,如圖2所示。
實(shí)驗(yàn)選取粒徑80目的原煤樣和經(jīng)液態(tài)CO2溶浸處理后的煤樣,實(shí)驗(yàn)前需對(duì)煤樣進(jìn)行干燥處理,然后在壓力為0~5 MPa,實(shí)驗(yàn)溫度為30~70 ℃的條件下進(jìn)行CO2的吸附、解吸實(shí)驗(yàn)。
2.2液態(tài)CO2溶浸前后吸附特征分析
由壓汞實(shí)驗(yàn)可得經(jīng)液態(tài)CO2溶浸作用后,受煤中孔徑變化的影響,煤對(duì)CO2氣體的吸附量也將發(fā)生變化,結(jié)果如圖3所示。從圖3可以看出,不論原煤樣還是液態(tài)CO2溶浸煤樣都對(duì)CO2氣體的吸附/解吸整個(gè)過(guò)程都存在“解吸滯后”現(xiàn)象。隨著溫度的升高,原煤樣和溶浸煤樣對(duì)CO2氣體的吸附量均呈減少趨勢(shì),“吸附滯后環(huán)”也隨溫度的上升而減小,說(shuō)明煤體內(nèi)CO2殘余吸附量也隨著溫度的上升而減小,即隨著溫度的升高,CO2的解吸量呈上升趨勢(shì)。這是因?yàn)镃O2氣體吸附及解吸是一個(gè)物理過(guò)程,CO2解吸屬于吸熱反應(yīng),溫度的升高促進(jìn)了CO2氣體的解吸,導(dǎo)致游離態(tài)CO2分子增多而造成的。68177E82-F437-4F90-B56D-0C8C8DB7BFE9
同時(shí)可以看出,原煤樣和溶浸煤樣對(duì)CO2氣體的吸附量均隨著注氣壓力的升高而增大,當(dāng)溫度高于50 ℃時(shí),在3 MPa之前,氣體的吸附量迅速增加,超過(guò)3 MPa后,CO2氣體吸附量的增加趨勢(shì)逐漸變緩,這是由于煤中存在大量孔隙,隨著吸附量的不斷積累和壓力的不斷上升這些孔隙逐漸被CO2分子所占據(jù),最終將達(dá)到飽和,因此超過(guò)3 MPa壓力后煤樣對(duì)CO2氣體的吸附量逐漸趨于穩(wěn)定;當(dāng)溫度低于50 ℃時(shí),氣體的吸附量隨壓力的增大而增大,且高于3 MPa時(shí)依舊有上升趨勢(shì),這可能是由于溫度越低CO2氣體分子的活動(dòng)自由度也越低,吸附態(tài)CO2分子量就越高所造成的。
從表3可以看出,增壓吸附過(guò)程和降壓解吸過(guò)程皆可以用Langmuir[21-27]方程進(jìn)行描述,差值較小,擬合度高,見(jiàn)式(2)。由Langmuir方程可知,a,b為吸附特征常數(shù),其中a代表著煤樣的最大吸附量??梢钥闯?,原煤樣與溶浸煤樣,a的值均隨著溫度的上升呈下降趨勢(shì),這與實(shí)驗(yàn)結(jié)果完全吻合。同時(shí)隨著溫度的上升,不論原煤樣還是溶浸后的煤樣,擬合相關(guān)性系數(shù)均隨溫度升高而增大,這可能是因?yàn)殡S著溫度的升高,CO2氣體分子間的活動(dòng)加劇,分子間距增大,多層吸附的分子逐漸轉(zhuǎn)變?yōu)閱螌游?,從而造成吸附量的減少且單分子層吸附現(xiàn)象越來(lái)越明顯。而Langmuir方程所描述是正是單分子層吸附過(guò)程,因此擬合相關(guān)性系數(shù)也越高。
V=abp/1+bp (2)
式中V為壓力p時(shí)煤層氣吸附量,mL/g;a為煤樣最大吸附量,mL/g;b為吸附特征常數(shù)。
從圖4可以看出,受溫度影響,2種煤樣的CO2吸附量均隨著溫度升高呈減少趨勢(shì)。隨著溫度不斷上升,溶浸前后煤樣對(duì)CO2氣體吸附量之間的差異將會(huì)越來(lái)越小,說(shuō)明溶浸煤樣對(duì)溫度的敏感程度要小于原煤樣。結(jié)合壓汞實(shí)驗(yàn)數(shù)據(jù)來(lái)看,煤中孔隙變化是造成溶浸前后煤樣對(duì)CO2氣體吸附量存在差異性的主要原因,其中<100 nm孔隙在這個(gè)過(guò)程中起到主導(dǎo)作用。
2.3CO2溶浸前后煤樣的等量吸附線
根據(jù)煤在不同溫度條件下的等溫吸附曲線,利用 langmuir方程將等溫吸附曲線轉(zhuǎn)換成等量吸附線,分別選擇吸附量為0.2,0.4,0.6,0.8,10,1.4 mmol/g,等量吸附線如圖5所示。
從圖5可以看出,在吸附量相同的條件下,CO2氣體吸附平衡壓力與溫度之間呈正相關(guān)關(guān)系,CO2氣體的吸附平衡壓力隨著溫度的升高呈上升趨勢(shì)。這證明溶浸煤樣和原煤樣對(duì)CO2的吸附和解吸作用均屬于物理吸附[28]。將 CO2的等量吸附線延長(zhǎng),將會(huì)在較小的溫度范圍內(nèi)相交,有學(xué)者在進(jìn)行煤對(duì)CH4的吸附過(guò)程研究中也發(fā)現(xiàn)這一現(xiàn)象[29],對(duì)于該現(xiàn)象的出現(xiàn)尚未有統(tǒng)一的解釋。
3煤樣對(duì)CO2吸附的熱力學(xué)特征
3.1熱力學(xué)過(guò)程分析
由吸附熱力學(xué)可知,吸附能力的強(qiáng)弱,可以用吸附熱來(lái)進(jìn)行衡量,即吸附能力越強(qiáng),吸附熱就越大。在煤對(duì)CO2吸附過(guò)程中,CO2分子會(huì)在煤基質(zhì)表面形成單分子吸附層,使得CO2分子活躍程度降低,釋放出熱量,可以根據(jù)Clausius-Clapeyro方程間接計(jì)算等量吸附熱[30],見(jiàn)式(3)。
式中Qst為等量吸附熱,kJ/mol;P為解吸平衡壓力,MPa;R為氣體常數(shù),8.314 J/(mol·K);T為實(shí)驗(yàn)溫度,K;Γ為吸附量恒定。
在等吸附量條件下,lnP與1/T呈線性關(guān)系,由其直線斜率可求出Qst。
由表4和圖6可以看出,吸附是放熱反應(yīng),解吸是吸熱反應(yīng)。在溶浸煤樣與原煤樣的升壓吸附過(guò)程與降壓解吸過(guò)程中,等量吸附熱與吸附量呈線性相關(guān)。對(duì)比溶浸前后煤樣的等量吸附熱曲線可得,在煤對(duì)CO2吸附過(guò)程與解吸過(guò)程中,原煤樣的平均吸附熱要比溶浸煤樣的吸附熱大,吸附量越大這種差異越明顯,這也合理的從熱力學(xué)角度解釋了溶浸后煤樣對(duì)CO2的吸附量要小于原煤樣對(duì)CO2的吸附量。
同種煤樣的等量吸附熱在吸附量相同的條件下,CO2解吸過(guò)程的吸附熱要高于CO2吸附過(guò)程。這說(shuō)明CO2吸附時(shí)放出的熱量要小于CO2解吸所需要的熱量,這是導(dǎo)致CO2解吸曲線滯后于吸附曲線的主要原因。
3.2吸附勢(shì)與吸附空間分析
根據(jù)熱力學(xué)分子吸附理論,單位質(zhì)量的吸附質(zhì)從非吸附相的游離狀態(tài)轉(zhuǎn)移到吸附相的被吸附狀態(tài)所做的功ε可以表示為
式中ε為吸附勢(shì),J/mol;P0為氣體飽和蒸汽壓力,MPa;Pi為理想氣體在恒溫下的平衡壓力,MPa;R為普適氣體常數(shù),J/(mol·K);T為絕對(duì)溫度,K。
可采用Dubinin提出的超臨界條件下虛擬飽和蒸汽壓力經(jīng)驗(yàn)計(jì)算公式計(jì)算飽和蒸汽壓力P0,見(jiàn)式(5)
式中P0為臨界壓力,MPa;Tc為臨界溫度,K;取CO2臨界溫度Pc為304.2 K,臨界壓力Pc為7.39 MPa。
根據(jù)吸附空間的定義,采用煤對(duì)單一組分氣體的等溫吸附、解吸數(shù)據(jù)和式(6)計(jì)算[31],即68177E82-F437-4F90-B56D-0C8C8DB7BFE9
式中ω為吸附空間,cm3/g;M為氣體的分子量,g/mol;Vad為實(shí)測(cè)吸附量,mol/g;ρad為氣體吸附相密度,g/cm3。根據(jù)經(jīng)驗(yàn)公式計(jì)算,即
3.3計(jì)算結(jié)果分析
如圖7、表5所示,由吸附勢(shì)與吸附空間的計(jì)算結(jié)果可以看出,對(duì)于溶浸前后煤樣,無(wú)論吸附過(guò)程還是解吸過(guò)程,特征曲線均符合對(duì)數(shù)函數(shù)ε=aln(ω)+b,擬合度較好。在相同壓力下,吸附過(guò)程中原煤樣的吸附勢(shì)始終大于溶浸煤樣的吸附勢(shì),且原煤樣比溶浸煤樣具有更大的吸附空間,說(shuō)明原煤樣對(duì)于CO2的吸附能力要強(qiáng)于溶浸煤樣,這也是導(dǎo)致原煤樣吸附量大于溶浸煤樣吸附量的原因之一。但在解吸過(guò)程中,溶浸煤樣的吸附勢(shì)要稍大于原煤樣,且兩者的吸附空間差異不大,這說(shuō)明解吸過(guò)程中溶浸煤樣對(duì)于CO2的吸附能力要優(yōu)于原煤樣,因此能夠解吸出來(lái)的CO2量要比原煤樣少。
4結(jié)論
1)溶浸前后煤樣煤中孔隙的變化是造成對(duì)CO2氣體吸附量存在差異性的主要原因。在溶浸作用下,煤體的孔隙會(huì)從小孔至大孔進(jìn)行轉(zhuǎn)化,其中<100 nm孔徑非閉合孔隙在這個(gè)過(guò)程中起到了主導(dǎo)作用。
2)溶浸前后煤樣對(duì)CO2的吸附量均隨著壓力的升高而增大,且隨著溫度的升高呈減少趨勢(shì),但溶浸煤樣對(duì)溫度的敏感度要小于原煤樣。
3)從熱力學(xué)角度解釋溶浸前后煤樣對(duì)CO2的吸附量存在差異的原因,吸附過(guò)程中原煤樣的吸附熱及吸附勢(shì)始終比溶浸煤樣大,且原煤樣比溶浸煤樣具有更大的吸附空間。解吸過(guò)程中,溶浸煤樣的吸附熱及吸附勢(shì)稍大于原煤樣,但兩者的吸附空間差異不大。
參考文獻(xiàn)(References):
[1]謝和平.CO2封存與氣候變化(卷首語(yǔ))[J].科技導(dǎo)報(bào),2010,28(18):3.XIE Heping.CO2storage and climate change(Preface)[J].Science and Technology Review,2010,28(18):3.
[2]米劍鋒,馬曉芳.中國(guó)CCUS技術(shù)發(fā)展趨勢(shì)分析[J].中國(guó)電機(jī)工程學(xué)報(bào),2019,39(9):2537-2543.MI Jianfeng,MA Xiaofang.Development trend analysis of carbon capture,utilization and storage technology in China[J].Proceedings of the CSEE,2019,39(9):2537-2543.
[3]謝和平.發(fā)展低碳技術(shù)、推進(jìn)綠色經(jīng)濟(jì)[J].中國(guó)能源,2010,32(9):5-10.XIE Heping.Developing low carbon technology and promoting green economy[J].Energy of China,2010,32(9):5-10.
[4]謝和平,謝凌志,王昱飛,等.全球二氧化碳減排不應(yīng)是CCS,應(yīng)是CCU[J].四川大學(xué)學(xué)報(bào)(工程科學(xué)版),2012,44(4):1-5.XIE Heping,XIE Lingzhi,WANG Yufei,et al.CCU: A More Feasible and Economic Strategy than CCS for Reducing CO2Emissions[J].Journal of Sichuan University(Engineering Science Edition),2012,44(4):1-5.
[5]張強(qiáng),李小春,周英博,等.高壓孔隙CO2/水作用下完整四川三疊系砂巖剪切特性的試驗(yàn)研究[J].巖土力學(xué),2019,40(8):3028-3036.ZHANG Qiang,LI Xiaochun,ZHOU Yingbo,et al.Shear behavior of the Triassic sandstone in Sichuan under high pore pressure of H2O/CO2conditions[J].Rock and Soil Mechanics,2019,40(8):3028-3036.
[6]王寶群,李會(huì)泉,包煒軍.燃煤電廠CO2捕集與咸水層封存全過(guò)程經(jīng)濟(jì)性模型[J].化工學(xué)報(bào),2012,63(3):894-903.WANG Baoqun,LI Huiquan,BAO Weijun.A model of economy for overall process of CO2capture and saline storage[J].CIESC Journal,2012,63(3):894-903.
[7]王錚,蔣軼紅,吳靜,等.技術(shù)進(jìn)步作用下中國(guó)CO2減排的可能性[J].生態(tài)學(xué)報(bào),2006,26(2):423-431.WANG Zheng,JIANG Yihong,WU Jing,et al.The research on Chinas potential abatement of CO2 by technological progress[J].Acta Ecologica Sinica,2006,26(2):423-431.
[8]才慶祥,劉福明,陳樹(shù)召.露天煤礦溫室氣體排放計(jì)算方法[J].煤炭學(xué)報(bào),2012,37(1):103-106.CAI Qingxiang,LIU Fuming,CHEN Shuzhao.Calculation method of greenhouse gas emission in open pit coal mines[J].Journal of China Coal Society,2012,37(1):103-106.68177E82-F437-4F90-B56D-0C8C8DB7BFE9
[9]錢(qián)伯章,朱建芳.世界封存CO2驅(qū)油的現(xiàn)狀與前景[J].能源環(huán)境保護(hù),2008,22(1):1-4.QIAN Bozhang,ZHU Jianfang.Present situation together with foreground that CO2sequestrate and drive oil in the world[J].Energy Environmental Protection,2008,22(1):1-4.
[10]MOHAGHEGHIAN E,HASSANZADEH H,CHEN Z.CO2sequestration coupled with enhanced gas recovery in shale gas reservoirs[J].Journal of CO2Utilization,2019,34:646-655.
[11]HAO JC,WEN H,MA L,et al.Theoretical derivation of a prediction model for CO2adsorption by coal[J].ACS Omega,2021,6(20):13275-13283.
[12]LONG H,LIN HF,YAN M,et al.Molecular simulation of the competitive adsorption characteristics of CH4,CO2,N2,and multicomponent gases in coal[J].Powder Technology,2021,385:348-356.
[13]VISHAL V.In-situ disposal of CO2:Liquid and supercritical CO2permeability in coal at multiple down-hole stress conditions[J].Journal of CO2 Utilization,2017,17:235-242.
[14]SUN H,YAO J,GAO S H.Numerical study of CO2enhanced natural gas recovery and sequestration in shale gas reservoirs[J].International Journal of Greenhouse Gas Control,2013,19:406-419.
[15]WEN H,HAO J C,MA L,et al.Experimental study on replacing coal seam CH4 with CO2gas[J].ACS Omega,2022,7(1):1395-1403.
[16]HUO P L,ZHANG D F,YANG Z.CO2geological sequestration:Displacement behavior of shale gas methane by carbon dioxide injection[J].International Journal of Greenhouse Gas Control,2017,66:48-59.
[17]SCHUELLER B S,YANG R T.Ultrasound enhanced assorption and desorption of phenol on activated carbon and polymericresin[J].Industrial and Engineering Chemistry Research,2001,40(22):912-918.
[18]DELPHINE C,POKRYSZKA Z,BEHRA P.Effect of pressure and temperature on diffusion of CO2and CH4 into coal from the Lorraine Basin[J].International Journal of Coal Geology,2010,81(4):373-380.
[19]NIU Q,CAO L W,SANG S X,et al.Anisotropic adsorption swelling and permeability characteristics with injecting CO2in coal[J].Energy & Fuels,2018,32(2):1979-1991.
[20]OZDEMIR E.Role of pH on CO2sequestration in coal seams[J].Fuel,2016,172:130-138.
[21]OLAJIRE A.A review of mineral carbonation technology in sequestration of CO2[J].Journal of Petroleum Science & Engineering,2013,109:364-392.
[22]OZAWA S,KUSURNI S,OGINO Y J.Physical adsorption of gases at high pressures:An improvement of the Dubin in-Astakhov adsorption equation[J].Colloid & Interface Science,1976,56:83-91.68177E82-F437-4F90-B56D-0C8C8DB7BFE9
[23]劉保安,董云會(huì),劉曉芳.Polanyi吸附勢(shì)理論的熱力學(xué)推導(dǎo)[J].山東建材學(xué)院學(xué)報(bào),1999,13(2):105-108.LIU Baoan,DONG Yunhui,LIU Xiaofang.Briefly deduced of Polanyi sdsorption potential theroy[J].Journal of Shandong Institute of Building Materials,1999,13(2):105-108.
[24]BUSCH A,GENST E,KROSS B.Methaneand CO2 sorption and desorption measurements on dry argonnepremium coals:Pure compo-nents and mixture[J].International Journal of Coal Geology,2003,55:205-224.
[25]PARITYUM H.Study of coal sorption isotherms using a multi-components gas mixture[C]//Proceedings of the 1993 International Coal Methane Symposium.Birmingham,USA,Oct.20-23,1993:151-160.
[26]GREAVESKH,OWEN L B,MCLENMAN J D.Multicomponent gas adsorption-de-sorption behavior of coal[C]//Proceedings of the 1993 International Coalbed Methane Symposium.Tuscaloosa,USA,Jan.5-8,1993:197-205.
[27]鐘玲文.煤的吸附性能及影響因素[J].地球科學(xué)-中國(guó)地質(zhì)大學(xué)學(xué)報(bào),2004,29(3):327-334.Zhong Lingwen.Adsorption capacity of coals and its affecting factors[J]. Earth Science-Journal of China University of Geosciences,2004,29(3):327-334.
[28]唐書(shū)恒,湯達(dá)禎,楊起.二元?dú)怏w等溫吸附-解吸中氣分的變化規(guī)律[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2004,33(4):448-453.TANG Shuheng,TANG Dazhen,YANG Qi.Variation regularity of gas component concentration in binary-component gas adsorption-desorption isotherm experiments[J].Journal of China University of Mining & Technology,2004,33(4):448-453.
[29]馬東民,張遂安,藺亞兵. 煤的等溫吸附-解吸實(shí)驗(yàn)及其精確擬合[J].煤炭學(xué)報(bào),2011,36(3):477-480.MA Dongmin,ZHANG Suian,LIN Yabing.Isothermal adsorption and desorption experiment of coal and experimental results accuracy fitting[J].Journal of China Coal Society,2011,36(3):477-480.
[30]崔永君.煤對(duì)CH4,N2,CO2及多組分氣體吸附的研究[D].西安:煤炭科學(xué)研究總院,2003.CUI Yongjun.Study on adsorption of CH4,N2,CO2 and multicomponent gases by coal[D].Xian:General Institute of Coal Science,2003.
[31]RAMIREZ-PASTOR A,BULNES F. Differential heat of adsorption in the presence of an order-disorder phase transition E[J].Physica A,2000,283:198-203.
[32]HAO J C,WEN H,REN L F,et al.Experimental study of gangue-layer weakening with deep hole pre-splitting blasting[J].Shock and Vibration,2021:1-11.68177E82-F437-4F90-B56D-0C8C8DB7BFE9