李軍 朱夢(mèng)珂 田激旋 陳瑜 林冬枝 董彥君
摘? 要: 粳稻品種“嘉花1號(hào)”經(jīng)甲基磺酸乙酯(EMS)化學(xué)誘變處理,獲得一個(gè)穩(wěn)定遺傳水稻幼苗高溫白化復(fù)綠突變體.該突變體在高溫(>24 ℃)條件下,二葉期葉色呈白色失綠,三葉期開始復(fù)綠,四葉期后與野生型沒有明顯差異;而在低溫(20 ℃)條件下,突變體苗期葉色與野生型一致呈綠色,無白化現(xiàn)象.利用該突變體與“培矮64S”雜交構(gòu)建F遺傳群體,發(fā)現(xiàn)苗期的高溫白化復(fù)綠葉色性狀受到一對(duì)隱性核基因控制,并將該突變基因()定位在水稻第5染色體上的ID05M16025和ID05M16113分子標(biāo)記之間的127 kb區(qū)間內(nèi),經(jīng)測(cè)序推定突變基因是編碼PPR蛋白的基因.結(jié)果表明:是一個(gè)受高溫響應(yīng)且影響水稻早期葉綠體發(fā)育的關(guān)鍵基因.今后將進(jìn)一步對(duì)基因進(jìn)行研究,以加深了解溫度對(duì)水稻葉綠體分子發(fā)育機(jī)理.
關(guān)鍵詞: 水稻; 葉色突變; 高溫敏感; 遺傳分析; 分子定位
中圖分類號(hào): Q 344??? 文獻(xiàn)標(biāo)志碼: A??? 文章編號(hào): 1000-5137(2022)02-0243-08
Genetic analysis and molecular mapping of high-temperature albino regreen mutant in rice
LI JunZHU MengkeTIAN JixuanCHEN XuLIN DongzhiDONG Yanjun
(1.College of Life Sciences, Shanghai Normal University, Shanghai 200234, China;2.Institute of Genetics, Shanghai Normal University, Shanghai 200234, China)
Japonica rice variety “Jiahua 1” was treated with Ethyl methyl sulfone (EMS) chemical mutagenesis to obtain a stable genetic rice seedling high temperature albino and regreening mutant . Under high temperature (>24 ℃), the mutant showed white chlorosis at the 2-leaf stage, re-greening at the 3-leaf stage, and no significant difference from the wild type after the 4-leaf stage. By contrast, under low temperature (20 ℃), the leaf color of the mutant at the seedling stage was the same as that of the wild type, and it was green, and there was no albino phenomenon. The F genetic population was constructed by hybridizing the mutant with Peiai 64S. It was found that the high temperature albino regreen leaf color trait at seedling stage was controlled by a pair of recessive nuclear genes. The mutant gene () was located in the 127 kb interval between ID05M16025 and ID05M16113 molecular markers on rice chromosome 5. The mutant gene was presumed to be the gene encoding PPR protein. Collectively, is a key gene that responds to high temperature and affects early rice chloroplast development. In the future, further study of gene will help to deepen the understanding of temperature on the molecular development mechanism of rice chloroplast.
rice; leaf-color mutant; high-temperature sensitive; genetic analysis; molecular mapping
0? 引 言
高質(zhì)量的水稻生產(chǎn)對(duì)于保障我國(guó)的糧食安全有著極為重要的作用.光合作用能否順利進(jìn)行是影響水稻生長(zhǎng)發(fā)育及產(chǎn)量最主要的因素之一.水稻葉色變化與葉綠體的發(fā)育是影響水稻光合作用的主要因素.關(guān)于水稻葉色突變的研究已開展多年,目前至少有150種葉色突變體被發(fā)現(xiàn),其中多數(shù)突變體基因已經(jīng)被定位與克隆.在這些葉色基因中不少是溫敏感基因,如低溫敏感基因有:編碼三角狀五肽重復(fù)序列(PPR)蛋白,,,],,編碼50S核糖體L13蛋白;編碼RNA聚合酶,與類囊體膜的穩(wěn)定性有關(guān),編碼葉綠體核糖體小亞基蛋白S6的;編碼S-磺基半胱氨酸合酶的,編碼合成蘇氨酰-tRNA合成酶的以及編碼偽尿嘧啶合酶等等;但已報(bào)道的高溫敏感基因僅有:與類胡蘿卜素合成相關(guān)-()、編碼Deg蛋白酶的以及編碼谷氨酰-tRNA合成酶()等,且在高溫條件下又能復(fù)綠的更為少見.因此,對(duì)高溫白化復(fù)綠相關(guān)基因進(jìn)行定位與克隆,可以為進(jìn)一步解釋水稻葉綠體發(fā)育的復(fù)雜機(jī)制奠定基礎(chǔ).
本研究所用的高溫白化復(fù)綠突變體是水稻品種“嘉花1號(hào)”經(jīng)過甲基磺酸乙酯(EMS)誘變獲得的.對(duì)該突變體的葉色、光合色素含量、葉綠體顯微結(jié)構(gòu)進(jìn)行了觀察和分析,并利用了SSR及InDel分子標(biāo)記對(duì)該突變基因進(jìn)行了定位,為該基因的分子克隆及分子機(jī)理的研究奠定基礎(chǔ).
1? 材料與方法
實(shí)驗(yàn)材料
本實(shí)驗(yàn)所用的突變體是“嘉花1號(hào)”干種子經(jīng)過EMS化學(xué)誘變形成的,經(jīng)多次自交繁殖,當(dāng)其農(nóng)藝性狀穩(wěn)定后,再與“培矮64S”雜交獲得F代,F(xiàn)代自交得到F代,F(xiàn)代群體作為遺傳分析和基因定位材料.
方 法
1.2.1 突變體苗期表型觀察
將已發(fā)芽的突變體與野生型“嘉花1號(hào)”(WT)的種子分別播種于塑料盤中,再將它們分別置于20,24,28,32 ℃的光照培養(yǎng)箱(寧波江南儀器,GXZ智能型)中培養(yǎng),每日光照12 h,光照強(qiáng)度為180 μmol?m·s,每天觀察幼苗的生長(zhǎng)狀況,并分別在二葉期、三葉期和四葉期進(jìn)行拍照.
1.2.2 苗期葉片葉綠素含量的測(cè)定
分別剪取在20,24,28,32 ℃培養(yǎng)箱中培養(yǎng)的野生型“嘉花1號(hào)”和突變體第3片葉子的中間區(qū)域,剪碎后并稱取0.02 g,倒入10 mL離心管中,并加入5 mL葉綠素提取液((乙醇)∶(丙酮)∶(水)=5∶4∶1),室溫條件下避光處理20 h;然后,將已經(jīng)溶解全部色素的提取液加入到比色皿中,用分光光度計(jì)(METASH-UV5100型)分別測(cè)定470,645,663 nm波長(zhǎng)的吸光值,并推算苗期葉片中葉綠素a(Chl a)、葉綠素b(Chl b)和類胡蘿卜素(CAR)的含量.實(shí)驗(yàn)重復(fù)3次,取平均值.
1.2.3 葉綠體亞顯微結(jié)構(gòu)的觀察
葉片取樣過程與1.2.2節(jié)相同,然后沿著葉脈方向剪成約8 mm長(zhǎng)的片段,放進(jìn)離心管中,加入2.5%(體積分?jǐn)?shù))的戊二醛進(jìn)行固定,隨后抽真空,4 ℃下避光保存,之后再經(jīng)過磷酸緩沖液沖洗,鋨酸再固定,乙醇梯度去水,丙酮置換、浸漬、包埋、聚合、修塊、切片、醋酸鈾染色等一系列處理后,在透射電鏡(Hitachi765型)下進(jìn)行觀察拍照.
1.2.4 遺傳群體的構(gòu)建
本研究將“培矮64S”與雜交后代F種子作為遺傳分析和基因定位的群體,然后,將發(fā)芽F種子播在裝有水稻土的托盤中,放置在32 ℃的培養(yǎng)箱中生長(zhǎng),觀察葉色變化及其分離比,并選取突變型白化幼苗作為基因定位遺傳群體.
1.2.5 DNA的提取
將挑取的親本幼苗及F代白化幼苗分別利用十六烷基三甲基溴化銨(CTAB)法和TPS法提取其基因組DNA.
1.2.6 基因定位
在本實(shí)驗(yàn)中,首先利用在“培矮64S”和之間多態(tài)性良好的SSR及InDel分子標(biāo)記,對(duì)F代群體的具有白化表型的幼苗進(jìn)行突變基因定位,確定突變基因在哪條染色體后,擴(kuò)大遺傳群體和更多DNA分子標(biāo)記(表1),對(duì)突變基因進(jìn)行精細(xì)定位.通過網(wǎng)站(http://rice.uga.edu/cgi-bin/gbrowse/rice/)查詢得到區(qū)間內(nèi)的全部預(yù)測(cè)基因,并通過測(cè)序驗(yàn)證突變位點(diǎn).
2? 結(jié)果與分析
突變體苗期表型
通過對(duì)突變體苗期葉色表型的觀察(圖1),發(fā)現(xiàn)在20 ℃時(shí),的葉色從二葉期到四葉期都為綠色,與WT一致;在24 ℃和28 ℃時(shí),其在二葉期表現(xiàn)出葉片白化現(xiàn)象,在三葉期迅速轉(zhuǎn)綠,葉色與WT相仿,在四葉期與WT無明顯差異;而在32 ℃時(shí),突變體在二葉期同樣表現(xiàn)出白化,三葉期仍為白葉,四葉期基本轉(zhuǎn)綠. 觀察結(jié)果表明:突變體在低溫下(20 ℃)葉色正常,在高溫下(>24 ℃)苗期葉色都有白化現(xiàn)象,并隨幼苗生長(zhǎng)逐漸轉(zhuǎn)綠,是一個(gè)高溫白化復(fù)綠突變體,但其復(fù)綠的速度與溫度呈負(fù)相關(guān).
突變體葉綠素含量變化
對(duì)20,24,28,32 ℃下生長(zhǎng)的WT及tcd52突變體的三葉期幼苗的葉片的葉綠素含量進(jìn)行測(cè)定,結(jié)果如圖2所示.在20 ℃時(shí),WT與tcd52的葉綠素含量無顯著差異;24 ℃時(shí),tcd52葉綠素下降到WT的一半;28 ℃時(shí),下降至WT的1/4;而32 ℃時(shí),tcd52中幾乎檢測(cè)不到葉綠素.由此可知,溫度越高,tcd52突變體的葉綠素含量下降幅度越大,這與葉色表型變化一致.
突變體葉綠體顯微結(jié)構(gòu)
通過透射電鏡觀察第3葉葉綠體的亞顯微結(jié)構(gòu)(圖3),發(fā)現(xiàn)在32 ℃時(shí),葉片細(xì)胞中基本沒有完整的、成形的葉綠體結(jié)構(gòu);而在20 ℃時(shí),與WT的葉綠體結(jié)構(gòu)沒有顯著差異,與2.1和2.2節(jié)葉色和光合色素的變化完全吻合.
群體的遺傳分析
“培矮64S”與突變體雜交得到的F代在高溫(32 ℃)條件下全表現(xiàn)為綠色,無白化現(xiàn)象,而F代自交得到的F代則苗色分離.對(duì)其中F代772株群體調(diào)查發(fā)現(xiàn),綠色植株582株,白色植株190株,對(duì)其進(jìn)行卡方檢驗(yàn)(=0.062 17),符合分離比3∶1的標(biāo)準(zhǔn). 由此,推斷該高溫白化復(fù)綠性狀是由一對(duì)隱性核基因()控制.
基因定位
選取22株F代突變型白苗進(jìn)行連鎖分析,發(fā)現(xiàn)水稻第5染色體上的分子標(biāo)記MM2914(圖4(a))有強(qiáng)烈的偏態(tài)擴(kuò)增,初步確定位于第5染色體上. 然后將群體擴(kuò)大到413株,將基因定位在MM3827和MM4201兩個(gè)分子標(biāo)記之間(圖4(a)),隨后將定位群體擴(kuò)大到1 094株,把該基因定位在ID16025和ID16113兩個(gè)分子標(biāo)記127 kb的區(qū)間內(nèi)(圖4(b),4(c)).該區(qū)域跨越3個(gè)BACs(OJ1126_B10,OJ11268_B08,OJ1735_C10)(圖4(c))共有27個(gè)候選基因,經(jīng)測(cè)序只發(fā)現(xiàn)編碼PPR蛋白基因()的編碼區(qū)第2219個(gè)堿基G到A的突變,導(dǎo)致第740個(gè)氨基酸由絲氨酸變(Ser)為天冬酰胺(Asn)(圖4(d)).
3? 討 論
水稻不僅是重要糧食作物,也是單子葉植物和禾本科的模式植物,所以,對(duì)水稻葉綠體發(fā)育相關(guān)基因的研究極其重要.葉綠體是植物特有的半自主性細(xì)胞器,自身能夠合成部分蛋白質(zhì),也受到核基因的調(diào)控,在植物的生長(zhǎng)發(fā)育過程中起到關(guān)鍵作用.葉綠體的發(fā)育是影響葉色的最主要因素之一,溫敏感的葉色突變體是研究葉綠體發(fā)育溫度響應(yīng)機(jī)制的理想材料.溫敏感的葉色突變體可以分為低溫敏感和高溫敏感兩種類型.在高溫敏感的葉色基因中,的破壞會(huì)使植株在四葉期后致死;的突變會(huì)使水稻的葉色在高溫條件下呈現(xiàn)黃色的表型;本研究發(fā)現(xiàn)基因只對(duì)水稻三葉期前的葉綠體的發(fā)育起到重要的作用,它的突變?cè)诟邷叵率谷~綠體的結(jié)構(gòu)出現(xiàn)嚴(yán)重缺陷,從而出現(xiàn)白化現(xiàn)象,但在三葉期后其對(duì)水稻葉綠體發(fā)育的影響顯著降低,植株出現(xiàn)復(fù)綠.經(jīng)過基因定位,推定是在水稻第5染色體上的編碼PPR蛋白()基因上,由于第2 219位堿基G替換為A,導(dǎo)致第740位的氨基酸由絲氨酸變(Ser)為天冬酰胺(Asn),造成基因功能改變.有趣的是,TANG等也報(bào)道了在的突變體說明是復(fù)等位突變基因,而是第1 103個(gè)堿基C替換成T,導(dǎo)致其編碼的第368位氨基酸由蘇氨酸(Thr)變?yōu)楫惲涟彼幔↙eu)(圖5).更有意思的是,雖同為復(fù)等位突變基因,但是這兩個(gè)突變體的表型卻有著明顯的差異,突變體只有在高溫下,才會(huì)出現(xiàn)白化表型,并且隨著幼苗的生長(zhǎng)而逐漸復(fù)綠,后期并不會(huì)影響植株的生長(zhǎng),是高溫白化復(fù)綠表型突變體;但突變體表現(xiàn)出苗白化,不受溫度的影響,也不會(huì)轉(zhuǎn)綠,植株最終枯萎而死,是致死突變體. 比較發(fā)現(xiàn),的突變位置比更加靠前(圖5),但兩者均未造成提前翻譯終止.由此,推測(cè)的突變位點(diǎn)所在蛋白結(jié)構(gòu)域?qū)λ救~綠體發(fā)育和植株生長(zhǎng)極其重要,并影響著水稻植株生死存亡,而突變位點(diǎn)所在DYW蛋白結(jié)構(gòu)域只影響水稻幼葉綠體發(fā)育,并受到溫度調(diào)控. 結(jié)合兩個(gè)突變體的表型情況及基因的突變情況,還有DYW結(jié)構(gòu)域?qū)θ~綠體和線粒體轉(zhuǎn)錄本成熟的重要作用,更加確定基因?qū)θ~綠體發(fā)育以及溫度響應(yīng)具有重要作用.
4? 結(jié) 論
實(shí)驗(yàn)利用EMS化學(xué)誘變粳稻“嘉花1號(hào)”,獲得了由一對(duì)隱性基因控制的高溫白化復(fù)綠突變體.該突變體在高溫(>24 ℃)下會(huì)出現(xiàn)白化,四葉期轉(zhuǎn)綠恢復(fù)正常,葉色表型變化與其葉綠體完整性和葉綠素含量變化相一致.該基因()定位在水稻第5染色體上ID16025和ID16113兩個(gè)分子標(biāo)記之間127 kb內(nèi),測(cè)序發(fā)現(xiàn)是一個(gè)編碼PPR蛋白()基因,是蛋白中一個(gè)絲氨酸變(Ser)突變成天冬酰胺(Asn)導(dǎo)致突變體苗色產(chǎn)生高溫白化復(fù)綠.今后將進(jìn)一步研究該基因分子機(jī)制,以加深對(duì)溫度影響水稻葉綠體發(fā)育機(jī)理的理解.
參考文獻(xiàn):
[1]? ZHENG C K, ZHOU G H, NIU S L, et al. Phenotype identification and gene localization of premature aging mutant - in rice [J/OL]. Acta Agronomica Sinica,2021:1-13[2022-01-11].http://kns.cnki.net/kcms/detail/11.1809.S.20211202.1852.002.html.
[2]? GUO X Q, LUO D, ZHU Q, et al. Research progress on genetic mechanism, exploration and utilization of rice albino mutants [J/OL]. Molecular Plant Breeding,2021:1-19[2022-01-11].http://kns.cnki.net/kcms/detail/46.1068.S.20210609.0919.005.html.
[3]? ZHANG P, LIU M L, YE H S, et al. Research progress of rice leaf color mutants [J]. Molecular Plant Breeding,2021,19(17):5712-5719.
[4]? YAGN Y R, HUANG Q Q, ZHAO Y N, et al. Advances in rice leaf color gene cloning and molecular mechanism [J]. Journal of Plant Genetic Resources,2020,21(4):794-803.
[5]? GOTHANDAM K M, KIM E S, CHO H, et al. OsPPR1, a pentatricopeptide repeat protein of rice is essential for the chloroplast biogenesis [J]. Plant Molecular Biology,2005,58(3):421-433.
[6]? WANG Y. Map based cloning and functional analysis of rice white stripe gene [D]. Beijing: Chinese Academy of Agricultural Sciences,2017.
[7]? GONG X, SU Q, LIN D, et al. The rice encoding a novel pentatricopeptide repeat protein is required for chloroplast development during the early leaf stage under cold stress [J]. Journal of Integrative Plant Biology,2014,56(4):400-410.
[8]? LIU X, LAN J, HUANG Y, et al. WSL5, a pentatricopeptide repeat protein, is essential for chloroplast biogenesis in rice under cold stress [J]. Journal of Experimental Botany,2018,69(16):3949-3961.
[9]? DU Y X, MO W P, MA T T, et al. A pentatricopeptide repeat protein DUA1 interacts with sigma factor 1 to regulate chloroplast gene expression in rice [J]. Photosynth Res,2020,147(2):131-143.
[10] SONG J, WEI X, SHAO G, et al. The rice nuclear gene encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions [J]. Plant Molecular Biology,2014,84(3):301-314.
[11] YU Y, ZHOU Z, PU H, et al. is required for chloroplast development in rice ( L.) at low temperature by regulating plastid genes expression [J]. Functional Plant Biology,2019,46(8):766-776.
[12] HE Y. Cloning and functional analysis of ATP binding cassette transporter gene in Rice [D]. Beijing:Chinese Academy of Agricultural Sciences,2020.
[13] WANG W J, ZHENG K L, GONG X D, et al. The rice encoding plastid ribosomal protein S6 is essential for chloroplast development at low temperature [J]. Plant Science,2017,259:1-11.
[14] WANG Y, ZHONG P, ZHANG X Y, et al. encoding a putative S-sulfocysteine synthase is involved in chloroplast development at the early seedling stage of rice [J]. Plant Science,2019,280:321-329.
[15] LIN D Z, ZHOU W H, WANG Y L, et al. Rice encoding threonyl-tRNA synthetase is needed for early chloroplast development and seedling growth under cold stress [J]. G3 (Bethesda, Md),2021,11(9):jkab196.
[16] LIN D Z, KONG R R, CHEN L, et al. Chloroplast development at low temperature requires the pseudouridine synthase gene in rice [J]. Science Letter,2020,10(1):8518.
[17] GUO T, HUANG Y X,HUANG X, et al. Map based cloning of - gene from albino to green and multi tiller dwarf in rice [J] Journal of Crops,2012,38(8):1397-1406.
[18] ZHENG K L, ZHAO J, LIN D Z, et al. The rice gene encoding a novel Deg protease protein is essential for chloroplast development under high temperatures [J]. Rice,2016,9(1):13.
[19] LIU W Z, FU Y P, HU G C, et al. Identification and fine mapping of a thermo-sensitive chlorophyll deficient mutant in rice ( L.) [J]. Planta,2007,226(3):785-795.
[20] JIANG S H, ZHOU H, LIN D Z, et al. Identification and gene localization of leaf color temperature sensitive mutants in rice seedlings [J]. Chinese Rice Science,2013,27(4):359-364.
[21] ZHANG X Z. Determination of plant chlorophyll content: acetone ethanol mixture method [J]. Liaoning Agricultural Sciences,1986(3):26-28.
[22] LI C, LIN D Z, DONG Y J, et al. Genetic analysis and gene localization of a temperature-sensitive white striped leaf mutant in rice seedling stage [J]. Chinese Rice Science,2010,24(3):223-227.
[23] POREBSKI S, BAILEY L G, BAUM B R. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components [J]. Plant Molecular Biology Reporter,1997,15(1):8-15.
[24] ZHANG X Q, ZOU J S, ZHU H T, et al. Genetic analysis and gene localization of multi-Ovary mutant fon5 in rice early maturation [J]. Heredity,2008(10):1349-1355.
[25] GAO Y Y, ZHANG T, ZHOU W H, et al. Identification and gene localization of , low temperature sensitive mutant in rice [J]. Genomics and Applied Biology,2020,39(11):5143-5149.
[26] LEI X Q, WU L L, WANG W J, et al. Identification of , a lethal mutant of albinism at seedling stage of rice and its gene localization [J]. Journal of Shanghai Normal University (Natural Science Edition),2018,47(5):577-584.
[27] WANG X W, AN Y Q, XIAO J W, et al. Research progress on PPR protein regulation of plastoid gene expression and chloroplast development [J]. Journal of Plant Physiology,2020,56(12):2510-2516.
[28] TANG J P, ZHANG W W, WEN K, et al. OsPPR6, a pentatricopeptide repeat protein involved in editing and splicing chloroplast RNA, is required for chloroplast biogenesis in rice [J]. Plant Molecular Biology,2017,95(4/5):345-357.
(責(zé)任編輯:顧浩然)
上海師范大學(xué)學(xué)報(bào)·自然科學(xué)版2022年2期