付曉梅,馬馨玉,王思寧,崔俊飛
基于字典設(shè)計(jì)的正交線性調(diào)頻信號(hào)復(fù)用水聲通信系統(tǒng)
付曉梅,馬馨玉,王思寧,崔俊飛
(天津大學(xué)海洋科學(xué)與技術(shù)學(xué)院,天津 300072)
基于離散菲涅耳變換的正交線性調(diào)頻信號(hào)復(fù)用技術(shù)(OCDM)具有一定的抗多徑能力,近年來成為極具潛力的水聲多載波通信方法.然而,由于水聲信道嚴(yán)重的多徑擴(kuò)展和多普勒擴(kuò)展,降低了OCDM水聲通信系統(tǒng)可靠性,限制了OCDM應(yīng)用于水聲通信系統(tǒng)的可行性.為了增強(qiáng)OCDM水聲通信系統(tǒng)的抗多徑和抗多普勒能力,可以通過改變載波的時(shí)頻特性以提高OCDM適應(yīng)信道環(huán)境能力,而改變載波的時(shí)頻特性可以通過信號(hào)分析領(lǐng)域的字典設(shè)計(jì)來實(shí)現(xiàn).通過把OCDM系統(tǒng)中的菲涅耳變換矩陣等效為信號(hào)分析領(lǐng)域中的字典矩陣,將字典設(shè)計(jì)引入到多載波調(diào)制矩陣設(shè)計(jì),以改變載波的時(shí)頻特性,提出了基于字典設(shè)計(jì)的正交線性調(diào)頻信號(hào)復(fù)用(Dic-OCDM)水聲通信系統(tǒng).利用字典設(shè)計(jì)中的線性變換方法,通過合理設(shè)計(jì)字典原子,對間隔更大的線性調(diào)頻原子重新排列,并保持矩陣維度不變,既能保留OCDM系統(tǒng)中線性調(diào)頻信號(hào)抗多徑能力,又能在增大Dic-OCDM系統(tǒng)子載波間隔的同時(shí)保證調(diào)制符號(hào)長度不變,進(jìn)而能夠有效抵抗水聲信道多徑擴(kuò)展和多普勒擴(kuò)展.仿真實(shí)驗(yàn)驗(yàn)證了Dic-OCDM系統(tǒng)抗多徑擴(kuò)展和多普勒擴(kuò)展能力,尤其在循環(huán)前綴不足和多普勒擴(kuò)展嚴(yán)重情況下,Dic-OCDM系統(tǒng)誤碼率性能均優(yōu)于正交頻分復(fù)用(OFDM)系統(tǒng)和OCDM系統(tǒng),同時(shí)在欠載條件下,Dic-OCDM性能進(jìn)一步提高.湖試實(shí)驗(yàn)測試了3個(gè)系統(tǒng)的誤碼率性能,進(jìn)一步驗(yàn)證了Dic-OCDM系統(tǒng)的有效性.
水聲通信;多載波通信;正交線性調(diào)頻信號(hào)復(fù)用技術(shù);正交頻分復(fù)用技術(shù);字典設(shè)計(jì)
水聲信道可用帶寬窄,具有嚴(yán)重的多徑時(shí)延擴(kuò)展和多普勒擴(kuò)展,是最具有挑戰(zhàn)性的無線信道[1].針對水聲信道可用帶寬窄的問題,多載波通信技術(shù)被引入水聲通信領(lǐng)域,其中正交頻分復(fù)用技術(shù)(orthogonal frequency division multiplexing,OFDM)由于循環(huán)前綴的設(shè)置,能一定程度對抗多徑時(shí)延擴(kuò)展,廣泛應(yīng)用于水聲多載波通信.但水聲信道多徑時(shí)延結(jié)構(gòu)較為復(fù)雜,OFDM仍受多徑干擾的影響,且嚴(yán)重的多普勒頻移影響子載波間的正交性,降低了OFDM水聲通信系統(tǒng)性能[2-3].
近年來,基于離散菲涅耳變換(discrete Fresnel transform,DFnT)的正交線性調(diào)頻信號(hào)復(fù)用技術(shù)(orthogonal chirp division multiplexing,OCDM)作為一種新興多載波通信方案,受到廣泛關(guān)注[4-6].與OFDM相似,OCDM使用一組正交波形作為載波.不同于OFDM的子載波為分割帶寬的正弦信號(hào),OCDM的子載波為占據(jù)全部帶寬具有不同起始頻率的正交線性調(diào)頻信號(hào),即chirp信號(hào).
目前,對OCDM的研究主要集中在陸上無線通信接收機(jī)設(shè)計(jì)和應(yīng)用化.文獻(xiàn)[7]提出一種基于最小均方誤差的通用迭代接收機(jī),用于OCDM無循環(huán)前綴傳輸,使OCDM具有更低的延遲和更高的頻譜效率,但代價(jià)是增加了系統(tǒng)復(fù)雜性.文獻(xiàn)[8]提出OCDM實(shí)值符號(hào)設(shè)計(jì)和文獻(xiàn)[9]提出強(qiáng)度調(diào)制的雙邊帶(DSB)調(diào)制OCDM使其適應(yīng)于實(shí)際系統(tǒng).
由于OCDM中chirp子載波頻率占據(jù)全帶寬,OCDM相較于OFDM對信道頻率選擇性衰弱不敏感,即對信道多徑時(shí)延擴(kuò)展具有一定的魯棒性[4],一些研究嘗試將OCDM應(yīng)用于水聲通信領(lǐng)域.文獻(xiàn)[10-11]提出欠載OCDM方案,使用chirp載波子集,以降低數(shù)據(jù)速率為代價(jià),改善誤碼率(bit error rate,BER).文獻(xiàn)[12]設(shè)計(jì)了一種RAKE接收機(jī),進(jìn)一步改善OCDM在保護(hù)間隔不足時(shí)的性能.然而,上述研究主要針對水聲信道中多徑擴(kuò)展問題,不能解決OCDM調(diào)制應(yīng)用于水聲通信時(shí)的多普勒擴(kuò)展問題.
已有研究表明,由于載波頻率偏移(carrier frequency offset,CFO)導(dǎo)致的正交性損失,OCDM通信性能受到嚴(yán)重影響[13].水聲信道具有高頻偏、強(qiáng)時(shí)變的多普勒擴(kuò)展,對擴(kuò)展的消除需要依次進(jìn)行多普勒因子估計(jì)、重采樣補(bǔ)償、CFO估計(jì)以及窄帶多普勒補(bǔ)償?shù)葟?fù)雜環(huán)節(jié),計(jì)算復(fù)雜度高且對多個(gè)環(huán)節(jié)都有較高精度要求[14-15].本文擬在不降低系統(tǒng)性能的前提下,通過增大子載波間隔提高系統(tǒng)本身抗多普勒擴(kuò)展能力,且不需要復(fù)雜的多普勒估計(jì)和補(bǔ)償處理.
字典是信號(hào)分析領(lǐng)域用來分解信號(hào)的一組基本信號(hào)或原子,常見的字典矩陣有傅里葉矩陣和小波矩陣[16].不同字典原子具有不同時(shí)頻特性[17],本文將菲涅耳變換矩陣等效為信號(hào)分析領(lǐng)域的字典矩陣,將字典設(shè)計(jì)引入到多載波調(diào)制矩陣設(shè)計(jì),通過合理設(shè)計(jì)字典原子,改變載波時(shí)頻特性.所設(shè)計(jì)的字典矩陣可以在不改變載波矩陣維度的前提下,增大子載波間隔,以提高抵抗多徑擴(kuò)展和多普勒擴(kuò)展能力,由此提出的基于字典設(shè)計(jì)的正交線性調(diào)頻信號(hào)復(fù)用多載波通信方案(dictionary design based orthogonal chirp division multiplexing,Dic-OCDM)更適用于水聲通信環(huán)境.仿真和實(shí)驗(yàn)結(jié)果表明,所提出的通信系統(tǒng)相較于OFDM、OCDM系統(tǒng)具有更好的抗多徑時(shí)延擴(kuò)展、多普勒擴(kuò)展能力.
OCDM通信系統(tǒng)的基礎(chǔ)是離散菲涅耳變換.具體而言,逆離散菲涅耳變換(inverse discrete Fresnel transform,IDFnT)在發(fā)射機(jī)處產(chǎn)生OCDM信號(hào),離散菲涅耳變換在接收機(jī)處恢復(fù)OCDM信號(hào).
式中:為總子載波數(shù);,=0,1,2,…,-1.
圖1?DFnT矩陣結(jié)構(gòu)及OCDM頻譜
即經(jīng)字典設(shè)計(jì)后的調(diào)制矩陣仍為酉矩陣.
圖2?字典矩陣結(jié)構(gòu)及Dic-OCDM頻譜
當(dāng)使用迫零(zero forcing,ZF)時(shí)
使用最小均方誤差(minimum mean square error,MMSE)均衡均衡時(shí)
為了更好模擬系統(tǒng)在水聲信道下的傳輸性能,基于文獻(xiàn)[18]生成最大多普勒頻移不同的多徑水聲信道,以測試系統(tǒng)的抗多徑和抗多普勒擴(kuò)展性能.水聲信道參數(shù)如表1所示,圖4展示了多徑時(shí)變水聲信道沖激響應(yīng).信道1為多徑擴(kuò)展為主的水聲信道,以測試通信系統(tǒng)的抗多徑擴(kuò)展性能;信道2為多普勒擴(kuò)展為主的水聲信道,以測試通信系統(tǒng)的抗多普勒擴(kuò)展性能.系統(tǒng)參數(shù)如表2所示.
仿真對比了各系統(tǒng)在不同信道下分別采用ZF均衡和MMSE均衡的誤碼率效果.從圖5可看出,OFDM在兩種均衡方式下誤碼率性能相近,OCDM和Dic-OCDM系統(tǒng)在MMSE均衡方式下高信噪比條件下誤碼率性能有所提高,MMSE均衡器一定程度改善了噪聲對于系統(tǒng)的影響,但由于在低信噪比時(shí),影響OCDM及Dic-OCDM性能的主要因素為噪聲而非多徑,此時(shí)ZF均衡和MMSE均衡均無法完全消除噪聲影響.因此低信噪比時(shí)相較于OFDM系統(tǒng),OCDM、Dic-OCDM誤碼率更高.
表1?水聲信道參數(shù)
Tab.1?Underwater acoustic channel parameters
圖4?水聲信道沖激響應(yīng)
表2?系統(tǒng)參數(shù)
Tab.2?System parameters
從圖5(a)可看出,在高信噪比條件下,在多徑為主的信道1環(huán)境下,Dic-OCDM和OCDM系統(tǒng)在采用ZF均衡時(shí)誤碼率相近優(yōu)于OFDM系統(tǒng),這是由于chirp載波的抗多徑能力.經(jīng)過MMSE均衡算法后,Dic-OCDM系統(tǒng)可靠性明顯優(yōu)于OCDM系統(tǒng).
由于信道2具有更嚴(yán)重多普勒擴(kuò)展,在圖5(b)中,3個(gè)系統(tǒng)的誤碼率都有所上升,此時(shí)Dic-OCDM系統(tǒng)誤碼率明顯好于OFDM系統(tǒng),且Dic-OCDM系統(tǒng)在ZF均衡情況下仍優(yōu)于其他兩個(gè)系統(tǒng)在MMSE均衡情況下誤碼率性能.這是由于Dic-OCDM子載波間隔大于OFDM、OCDM子載波間隔,具有更強(qiáng)的抗多普勒特性.
(a)信道1
(b)信道2
圖5?不同信道環(huán)境下誤碼率變化情況
Fig.5 Variation of the bit error rate(BER) with different channels
為進(jìn)一步比較OFDM系統(tǒng)、OCDM系統(tǒng)和Dic-OCDM的抗多普勒性能,圖6比較了在同一信道環(huán)境即信道1條件下,添加不同載波頻偏(CFO)后各系統(tǒng)的誤碼率性能.圖中為歸一化的CFO,表示頻率偏移與子載波間隔的比值,對應(yīng)頻偏分別為0.30Hz及0.06Hz.從圖6中可以發(fā)現(xiàn),在不同載波頻偏條件下,Dic-OCDM系統(tǒng)的誤碼率性能均優(yōu)于OCDM系統(tǒng)和OFDM系統(tǒng),進(jìn)一步驗(yàn)證了Dic-OCDM系統(tǒng)具有更好的抗多普勒特性.
圖6?不同載波頻偏對誤碼率性能影響
圖7?減少循環(huán)前綴比例對誤碼率性能影響
圖8 不同字典結(jié)構(gòu)組成的Dic-OCDM系統(tǒng)誤碼率變化情況
為進(jìn)一步改善低信噪比下Dic-OCDM性能,可采用欠載Dic-OCDM方案.圖9對比了在信道2條件下,采用ZF均衡時(shí),OFDM、OCDM、Dic-OCDM欠載情況下,即僅使用256個(gè)子載波下的誤碼率性能.從圖中可以看出,采用部分子載波可以改善OCDM和Dic-OCDM在低信噪比時(shí)的誤碼率性能,3個(gè)通信系統(tǒng)中,Dic-OCDM誤碼率性能仍為最優(yōu).
圖9?欠載情況下誤碼率性能比較
為驗(yàn)證Dic-OCDM系統(tǒng)在實(shí)際水聲信道中應(yīng)用效果,于天津大學(xué)敬業(yè)湖進(jìn)行湖試實(shí)驗(yàn),實(shí)驗(yàn)水域深度約為2~3m,收發(fā)端水下深度均為1m,通信距離約為300m.實(shí)驗(yàn)系統(tǒng)參數(shù)與仿真參數(shù)一致,發(fā)送信號(hào)幀結(jié)構(gòu)如圖10(a)所示,由幀頭、間隔、導(dǎo)頻和信息碼組成,其中,幀頭為頻率20~30kHz的線性調(diào)頻信號(hào)用于同步,導(dǎo)頻為塊狀導(dǎo)頻對實(shí)際信道進(jìn)行最小二乘信道估計(jì)(least square,LS)以測量通信實(shí)驗(yàn)的信道環(huán)境,信息碼分別承載經(jīng)OFDM、OCDM和Dic-OCDM調(diào)制信息.實(shí)驗(yàn)過程中,在同一發(fā)射功率下依次發(fā)射OFDM、OCDM和Dic-OCDM信號(hào),信號(hào)間隔200ms,以保證不同系統(tǒng)信號(hào)經(jīng)歷相似信道,并均采取ZF均衡方式消除信道影響.圖10(b)為信噪比16dB下的Dic-OCDM接收信號(hào).圖11給出了信噪比16dB下湖試信道的約35s沖激響應(yīng)時(shí)變過程,最大多徑時(shí)延約為10ms.
圖10?發(fā)送和接收信號(hào)結(jié)構(gòu)
通過改變功率放大器發(fā)射功率重復(fù)實(shí)驗(yàn),獲得10dB、14dB和16dB信噪比下Dic-OCDM、OCDM、OFDM系統(tǒng)的誤碼率.表3可看出,在不同信噪比下,Dic-OCDM的性能均優(yōu)于其他兩個(gè)系統(tǒng),隨著信噪比增高,Dic-OCDM可以比OCDM更早實(shí)現(xiàn)無誤碼.可見,所提出的方法相比傳統(tǒng)OFDM、OCDM方法可顯著提高水聲通信系統(tǒng)的可靠性.
為進(jìn)一步測試Dic-OCDM系統(tǒng)在實(shí)際水聲信道抗多普勒性能,發(fā)射端換能器以0.25m/s速度進(jìn)行移動(dòng),接收端水聽器固定,根據(jù)信號(hào)中心頻率25kHz及聲速1500m/s,添加多普勒頻移約為4Hz.實(shí)驗(yàn)結(jié)果如表4所示,可以看出由于多普勒頻移的存在,3個(gè)系統(tǒng)的誤碼率均有所上升,但Dic-OCDM的誤碼率性能仍優(yōu)于其他兩個(gè)系統(tǒng),具有更好的抗多普勒性能.
圖11?湖試信道沖激響應(yīng)
表3?靜止湖試實(shí)驗(yàn)結(jié)果
Tab.3?Results of the stationary lake experiment
表4?運(yùn)動(dòng)湖試實(shí)驗(yàn)結(jié)果
Tab.4?Results of the motional lake experiment
本文通過對菲涅耳字典矩陣原子進(jìn)行線性變換設(shè)計(jì)新型調(diào)制解調(diào)矩陣,所實(shí)現(xiàn)的調(diào)制解調(diào)矩陣具有更大的子載波間隔,且能保持矩陣維度不變,將其應(yīng)用于通信系統(tǒng)所得到的基于字典設(shè)計(jì)的正交線性調(diào)頻信號(hào)復(fù)用水聲通信系統(tǒng)具有更強(qiáng)的抗多徑擴(kuò)展和抗多普勒擴(kuò)展能力.仿真和實(shí)驗(yàn)結(jié)果驗(yàn)證了所提出系統(tǒng)的可靠性,尤其在循環(huán)前綴不足和多普勒擴(kuò)展嚴(yán)重情況下,Dic-OCDM系統(tǒng)誤碼率性能均優(yōu)于OFDM和OCDM系統(tǒng),且在MMSE均衡和欠載情況下,Dic-OCDM系統(tǒng)誤碼率性能可進(jìn)一步提升.
[1] Wen M,Cheng X,Yang L,et al. Index modulated OFDM for underwater acoustic communications[J]. IEEE Communications Magazine,2016,54(5):132-137.
[2] Kumar P,Trivedi V K,Kumar P. Recent trends in multicarrier underwater acoustic communications[C] //2015 IEEE Underwater Technology(UT). Chennai,India,2015:1-8.
[3] Zakharov Y V,Morozov A K. OFDM transmission without guard interval in fast-varying underwater acoustic channels[J]. IEEE Journal of Oceanic Engineering,2014,40(1):144-158.
[4] Ouyang X,Zhao J. Orthogonal chirp division multiplexing[J]. IEEE Transactions on Communications,2016,64(9):3946-3957.
[5] Ouyang X,Zhao J. Orthogonal chirp division multiplexing for coherent optical fiber communications[J]. Journal of Lightwave Technology,2016,34(18):4376-4386.
[6] Ouyang X,Dobre O A,Guan Y L,et al. Chirp spread spectrum toward the nyquist signaling rate—Orthogonality condition and applications[J]. IEEE signal Processing Letters,2017,24(10):1488-1492.
[7] Bomfin R,Chafii M,F(xiàn)ettweis G. A Novel iterative receiver design for CP-free transmission under frequency-selective channels[J]. IEEE Communications Letters,2019,24(3):525-529.
[8] Dib Leonardo De M B A,Colen G R,F(xiàn)ilomeno M L,et al. Orthogonal chirp division multiplexing for baseband data communication systems[J]. IEEE Systems Journal,2019,14(2):2164-2174.
[9] Ouyang X,Talli G,Power M,et al. Orthogonal chirp-division multiplexing for IM/DD-based short-reach systems[J]. Optics Express,2019,27(16):23620-23632.
[10] Bai Y,Bouvet P J. Orthogonal chirp division multiplexing for underwater acoustic communication[J]. Sensors,2018,18(11):3815.
[11] Bouvet P J,Auffret Y,Aubry C. On the analysis of orthogonal chirp division multiplexing for shallow water underwater acoustic communication[C]//OCEANS 2017. Aberdeen,UK:IEEE,2017:1-5.
[12] Zhu P,Xu X,Tu X,et al. Anti-multipath orthogonal chirp division multiplexing for underwater acoustic communication[J]. IEEE Access,2020,8:13305-13314.
[13] Omar M S,Ma X. Performance analysis of OCDM for wireless communications[J]. IEEE Transactions on Wireless Communications,2021,20(7):4032-4043.
[14] Li B,Zhou S,Stojanovic M,et al. Multicarrier communication over underwater acoustic channels with nonuniform Doppler shifts[J]. IEEE Journal of Oceanic Engineering,2008,33(2):198-209.
[15] Mason S F,Berger C R,Zhou S,et al. Detection,synchronization,and Doppler scale estimation with multicarrier waveforms in underwater acoustic communication[J]. IEEE Journal on Selected Areas in Communications,2008,26(9):1638-1649.
[16] Rubinstein R,Bruckstein A M,Elad M. Dictionaries for sparse representation modeling[J]. Proceedings of the IEEE,2010,98(6):1045-1057.
[17] Mallat S G,Zhang Z. Matching pursuits with time-frequency dictionaries[J]. IEEE Transactions on Signal Processing,1993,41(12):3397-3415.
[18] Qarabaqi P,Stojanovic M. Statistical characterization and computationally efficient modeling of a class of underwater acoustic communication channels[J]. IEEE Journal of Oceanic Engineering,2013,38(4):701-717.
Dictionary Design Based Orthogonal Chirp Division Multiplexing Underwater Acoustic Communication System
Fu Xiaomei,Ma Xinyu,Wang Sining,Cui Junfei
(School of Marine Science and Technology,Tianjin University,Tianjin 300072,China)
Orthogonal chirp division multiplexing(OCDM)is based on discrete Fresnel transform,and it has the antimultipath capability. In recent years,OCDM has been considered a promising underwater acoustic multicarrier communication method. However,because of severe multipath and Doppler spread in underwater acoustic(UWA) channels,the reliability and feasibility of the OCDM underwater acoustic communication system have severely degenerated. Aimed at the antimultipath and anti-Doppler capabilities of the OCDM underwater acoustic communication system,the time-frequency characteristics of carriers can be transformed to ensure that the OCDM can adapt to the channel environment,which can be achieved by dictionary design in the field of signal analysis. In this study,the Fresnel transform matrix in OCDM was regarded as the dictionary matrix,and the dictionary design was introduced into the multicarrier modulation matrix design to develop the dictionary design based orthogonal chirp division multiplexing(Dic-OCDM)underwater acoustic communication system. Through the translation operation in dictionary design,the chirp atoms with large spacing were rearranged reasonably,with the dimension of the matrix remaining unchanged,i.e.,the Dic-OCDM system can not only inherit the antimultipath capability of the chirp signal in the OCDM but also increase the subcarrier spacing. Meanwhile,the Dic-OCDM system can ensure that the modulation symbol length is unchanged. Thus,the Dic-OCDM effectively resists severe multipath and Doppler spread. Simulations verified the antimultipath and anti-Doppler capabilities of the Dic-OCDM system,and the bit error rate(BER)of the Dic-OCDM system is better than those of the orthogonal frequency division multiplexing and OCDM systems,particularly in the case of insufficient cyclic prefix and severe Doppler spread. The performance of underload Dic-OCDM is further improved. The BER performance of the three systems was tested in the lake experiments,which further verified the effectiveness of the Dic-OCDM system.
underwater acoustic(UWA) communication;multicarrier communication;orthogonal chirp division multiplexing(OCDM);orthogonal frequency division multiplexing(OFDM);dictionary design
10.11784/tdxbz202105058
TN929.3
A
0493-2137(2022)07-0682-08
2021-05-28;
2021-10-21.
付曉梅(1968—??),女,博士,教授.Email:m_bigm@tju.edu.cn
付曉梅,fuxiaomei@tju.edu.cn.
天津市技術(shù)創(chuàng)新引導(dǎo)專項(xiàng)基金資助項(xiàng)目(21YDTPJC00850);國家自然科學(xué)基金資助項(xiàng)目(61571323).
Tianjin Technology Innovation Guidance Special Fund Project(No. 21YDTPJC00850),the National Natural Science Foundation of China(No. 61571323).
(責(zé)任編輯:孫立華)