高揚(yáng),龐棋月
基于切換網(wǎng)絡(luò)的一類適型分?jǐn)?shù)階耦合非線性系統(tǒng)的穩(wěn)定性
高揚(yáng)1,龐棋月2
(1. 大慶師范學(xué)院 數(shù)學(xué)科學(xué)學(xué)院,黑龍江 大慶 163712;2. 東北石油大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,黑龍江 大慶 163711)
Caputo導(dǎo)數(shù);適型分?jǐn)?shù)階導(dǎo)數(shù);分?jǐn)?shù)階指數(shù)穩(wěn)定;Mittag-Leffler型穩(wěn)定
由于在物理和工程領(lǐng)域的強(qiáng)大應(yīng)用性,分?jǐn)?shù)階微積分理論得到廣泛關(guān)注[1-4].2014年,Khalil[5]等提出一個(gè)新的分?jǐn)?shù)階導(dǎo)數(shù),命名為適型分?jǐn)?shù)階導(dǎo)數(shù),同3種常見(jiàn)的Riemann-Liouville型、Grunwald型和Caputo型分?jǐn)?shù)階導(dǎo)數(shù)相比,適型分?jǐn)?shù)階導(dǎo)數(shù)更接近實(shí)際,因而一經(jīng)提出就引起了廣泛關(guān)注[6-8].近年來(lái),雖然一些學(xué)者已經(jīng)著手建立適型分?jǐn)?shù)階系統(tǒng)微積分理論,但是基于適型分?jǐn)?shù)階導(dǎo)數(shù)的穩(wěn)定性理論研究結(jié)果還較少.比較經(jīng)典的是文獻(xiàn)[8],建立了適型分?jǐn)?shù)階非線性系統(tǒng)的穩(wěn)定性與漸進(jìn)穩(wěn)定性Lyapunov理論.
文獻(xiàn)[9]研究了基于網(wǎng)絡(luò)的分?jǐn)?shù)階微分方程耦合系統(tǒng)
考慮適型分?jǐn)?shù)階微分方程系統(tǒng)
考慮適型分?jǐn)?shù)階切換線性系統(tǒng)
定理1假設(shè)系統(tǒng)(3)滿足條件:
則系統(tǒng)(3)為分?jǐn)?shù)階指數(shù)穩(wěn)定的.
證畢.
本文在文獻(xiàn)[5-6]的基礎(chǔ)上進(jìn)一步推廣,從2個(gè)方面進(jìn)行探索:(1)用適型分?jǐn)?shù)階導(dǎo)數(shù)取代Caputo導(dǎo)數(shù);(2)考慮網(wǎng)絡(luò)頂點(diǎn)之間關(guān)系依賴時(shí)間,也就是引入切換拓?fù)淝樾危?/p>
考慮適型分?jǐn)?shù)階系統(tǒng)
定理2若系統(tǒng)(4)滿足條件:
利用條件(1)~(2)和文獻(xiàn)[9]的引理2.4,有
例 設(shè)有適型分?jǐn)?shù)階系統(tǒng)
[1] 嚴(yán)燁.分?jǐn)?shù)階微分系統(tǒng)穩(wěn)定性及其應(yīng)用的研究[D].上海:東華大學(xué),2012.
[2] 張鳳榮. 分?jǐn)?shù)階微分系統(tǒng)的穩(wěn)定性分析[D].上海:上海大學(xué),2012.
[3] 孫軼男,徐曉明,馮立婷.Caputo型分?jǐn)?shù)階導(dǎo)數(shù)的一個(gè)離散格式[J].科學(xué)技術(shù)創(chuàng)新,2020(18):152-153.
[4] 梁家輝.Caputo分?jǐn)?shù)階導(dǎo)數(shù)的一些性質(zhì)[J].?dāng)?shù)學(xué)的實(shí)踐與認(rèn)識(shí),2021,51(9):256-269.
[5] Khalil R,Al Horani M,Yousef A,et al.A new definition of fractional derivative[J].J Comput Appl Math,2014(264):65-70.
[6] Abdeljawad T.On conformable fractional calculus[J].J Comput Appl Math,2015(279):57-66.
[7] Benkhettou N,Hassani S,Torres D F M.A conformable fractional calculus on arbitrary time scales[J].J King Saud Univ Sci,2016,28:3-98.
[8] Abdourazek S,Abdellatif B M,Ali H M,et al.Stability analysis of conformable fractional-order nonlinear systems[J].Indagationes Mathematicae,2017,28:1265-1274.
[9] Li H L,Jiang Y L,Wang Z L,et al.Globlal Mittag-Leffler stability of coupled system of fractional-order differential equations on network[J].Applied Mathematics and Computation,2015,270: 269-277.
[10] Li H L,Hu C,Jiang Y L,et al. Global Mittag-Leffler stability for a coupled system of fractional-order differential equations on network with feedback controls[J].Neurocomputing,2016,214:233-241.
[11] Luo R Z,Su H P.The stability of impulsive incommensurate fractional order chaotic systems with Caputo derivative[J].Chinese Journal of Physics,2018,56:1599-1608.
[12] Zahariev A,Kiskinov H,Angelova E.Linear fractional system of incommensurate type with distributed delay bounded Lebesgue measurable initial condition[J].Dynamic Systems and Applications,2019,28(2):491-506.
[13] Lekdee N,Sirisubtawee S,Koonprasert S.Bifurcations in a delayed fractional model of glucose-insulin interaction with income-
mensurate orders[J].Advances in Difference Equations,2019,318:1-22.
[14] Li Y,Chen Y Q,Podlubny I.Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized Mittag-Leffler stability[J].Computers & Mathematics with Applications,2010,59(5):1810-1821.
The stability for one class of the conformable fractional order coupled nonlinear system on switched network
GAO Yang1,PANG Qiyue2
(1. School of Mathematics,Daqing Normal University,Daqing 163712,China;2. School of Mathematics and Statistical,Northeast Petroleum University,Daqing 163711,China)
Caputo derivative;conformable fractional order derivative;fractional exponential stability;Mittag-Leffler type stability
1007-9831(2022)04-0001-05
O175.6
A
10.3969/j.issn.1007-9831.2022.04.001
2021-10-23
黑龍江省自然科學(xué)基金項(xiàng)目(HL2020A017)
高揚(yáng)(1979-),男,黑龍江大慶人,教授,博士,從事非線性系統(tǒng)研究.E-mail:gy19790607@163.com