王世澤,張英敏
(四川大學(xué)電氣工程學(xué)院,四川 成都 610000)
安全、可靠、優(yōu)質(zhì)的供電是對現(xiàn)代電力系統(tǒng)運行的基本要求。如今,隨著電網(wǎng)容量的增大和運行電壓等級的提高,電力系統(tǒng)的安全可靠運行面臨著更大的挑戰(zhàn)。一旦發(fā)生大面積停電事故,將給國家經(jīng)濟和人民生活帶來不可挽回的重大損失。輸配電裝備的安全運行是有效避免電網(wǎng)重大事故的第一道防御系統(tǒng),變壓器則是輸配電裝備中的最為重要的設(shè)備之一,其安全運行對于保證電網(wǎng)安全具有重大意義。
變壓器調(diào)壓主要是通過更改分接繞組的抽頭位置完成的。在切換分接抽頭時,一定要把變壓器從網(wǎng)路內(nèi)清除,也就是在不帶電的情況下完成切換調(diào)壓,即無載調(diào)壓[1]。電力變壓器是維護電力系統(tǒng)安全的關(guān)鍵設(shè)備,所以,有效評估變壓器繞組匝間狀態(tài)是十分必要的。通過識別明顯老化的變壓器絕緣位置,并對其剩余壽命進行精準評估,從而實現(xiàn)設(shè)備穩(wěn)定運行的目標[2]。
文獻[3]針對絕緣狀態(tài)等級邊界的隨機性與模糊性問題,使用可拓云理論來建立狀態(tài)評估模型的基本架構(gòu)。以等級劃分的準確性為前提,采用可自適應(yīng)評估對象的最優(yōu)云熵計算方法,完成對傳統(tǒng)可拓云理論的改進。針對單一賦權(quán)方法存在的不足,建立一種基于模糊集值統(tǒng)計法和熵權(quán)法的主客觀組合賦權(quán)模型,基于指標權(quán)重信息的變化程度進行評估目標的動態(tài)調(diào)整。但該方法評估速率較慢,實際應(yīng)用效果并不理想。文獻[4]首先對變壓器的多部件進行多參量統(tǒng)計分析,結(jié)合歷史數(shù)據(jù)和當(dāng)前數(shù)據(jù)構(gòu)建量化評估指標體系。在研究變壓器各參量關(guān)聯(lián)的基礎(chǔ)上,獲得參量關(guān)聯(lián)度及健康指數(shù)貢獻值,在此基礎(chǔ)上構(gòu)建健康指數(shù)評價模型。但該方法的使用環(huán)境較為局限,且評估結(jié)果與實際情況存在較大差距。
總結(jié)上述方法的缺陷,重點考慮到了無載調(diào)壓變壓器繞組故障定位易受到噪聲干擾,導(dǎo)致匝間絕緣狀態(tài)評估準確性下降的問題,本文采用小波熵濾噪方法數(shù)據(jù)去噪處理,進而對繞組匝間短路故障進行準確定位,在此基礎(chǔ)上,構(gòu)建基于模糊理論的繞組匝間絕緣狀態(tài)評估模型。
利用非線性映射φ(x)函數(shù)把輸入無載調(diào)壓變壓器樣本數(shù)據(jù)x呈現(xiàn)于高維特征空間Z內(nèi),同時在高維特征空間Z內(nèi)采用結(jié)構(gòu)風(fēng)險最低原則構(gòu)建用于繞組熱點溫度預(yù)測的線性回歸函數(shù)
y′=θhs(x)=w·φ(x)+b
(1)
其中,w是權(quán)值矢量,w∈Z,b表示偏置,y′表示預(yù)測值,y是真實值。
(2)
計算式(2)時,采用引入非負的Lagrange乘子構(gòu)建Lagrange函數(shù),那么問題就變換為求解Lagrange方程的鞍點問題[6-7],依次對式內(nèi)每個變量求解偏導(dǎo)數(shù),并讓其數(shù)值為0,引用對偶機制,將該函數(shù)求解的問題轉(zhuǎn)換為計算對偶問題,具體描述為
(3)
繼而求出SVM非線性回歸函數(shù)解析式
(4)
常用的核函數(shù)中,RBF核函數(shù)的參數(shù)在有效范圍中進行變化時,不會讓空間復(fù)雜度過高且易完成SVM優(yōu)化[8]。本文運用RBF核函數(shù)進行SVM優(yōu)化,將其描述為
(5)
構(gòu)建非線性回歸SVM預(yù)測模型,其學(xué)習(xí)參數(shù)是懲罰因子z與核函數(shù)γ,其選擇與取值直接對模型預(yù)測準確度有極大影響。在z高于閾值時,對訓(xùn)練偏差大于ε的樣本懲罰越大,模型泛化性能越低,反之越高。使用RBF核函數(shù)的過程中,通過徑向基神經(jīng)網(wǎng)絡(luò)輸出核函數(shù)γ的影響,γ越高,支持向量間相互作用越強,越容易形成欠學(xué)習(xí)狀態(tài);γ越低會容易生成過度學(xué)習(xí),讓模型變得更加復(fù)雜,泛化性能也隨之降低。
本文運用均方誤差MES、平均相對誤差eMAPE和關(guān)聯(lián)系數(shù)r三個指標評估模型性能與預(yù)測結(jié)果的準確性。r在區(qū)間[0,1]內(nèi)取值,MES、eMAPE的值越小,同時r值趨近于1,證明模型預(yù)測結(jié)果精度越高,即
(6)
(7)
(8)
其中,s表示訓(xùn)練集的最大樣本數(shù)量。
采用小波熵濾噪方法進行繞組溫度等數(shù)據(jù)的去噪處理,進而準確定位繞組匝間短路故障。
將無載調(diào)壓變壓器的等值回路解析式定義為
(9)
其中,RM與LM表示勵磁電阻與電感。不論變壓器處于穩(wěn)定運行狀態(tài)或故障狀態(tài),在變壓器繞組電阻產(chǎn)生耗損的情況下[9],將變壓器的等值回路重新定義為
(10)
其中,R表示等效電阻,L是等效瞬時電感,id代表勵磁電流。
考慮到真實場景內(nèi)測量噪聲的影響,使用小波熵濾噪手段對包含繞組溫度等數(shù)據(jù)進行去噪處理。假設(shè)信號是s(t),對其進行小波分解獲得小波轉(zhuǎn)換系數(shù)ωj,k,臨界值λ是一個定值,若ωj,k小于臨界值,則認定轉(zhuǎn)換系數(shù)是由噪聲引發(fā)的,可將其剔除;若ωj,k高于臨界值,直接保留信號即可,把處理后的小波系數(shù)采取重組,獲得去噪信號。將此過程描述為:
(11)
小波分解的每一層系數(shù)均為一個概率分布序列,將信號熵函數(shù)當(dāng)作臨界值,信號在全部信號內(nèi)服從統(tǒng)計學(xué)分布[10],利用該值可以更加高效地剔除信號噪聲,保存可用信號。詳細過程為:
將含噪聲信號進行小波分解,獲取不同尺度的小波轉(zhuǎn)換系數(shù)。把dj,k作為單獨的信號源,把各層的小波系數(shù)劃分為l個相同區(qū)間,在信號長度是N的情況下,子區(qū)間小波系數(shù)的相對能量是
(12)
第j層高頻小波系數(shù)全局能量是:
(13)
第k個子區(qū)間推算獲得的能量在第j尺度內(nèi)全局能量留存的幾率是
(14)
將第j層的Tsallis小波熵值記作
(15)
無載調(diào)壓變壓器在穩(wěn)定運行時,等效勵磁電感起伏浮動不大,所以Hausdorff距離改變的數(shù)值較少,因此設(shè)定值Hset較?。欢鵁o載調(diào)壓變壓器處于空載合閘的情況時,勵磁電感在穩(wěn)定電感值與飽和電感值之間相互轉(zhuǎn)換,擁有顯著的浮動性,Hausdorff距離改變數(shù)值較多,所以設(shè)定值Hset較大。
把變壓器正常運行狀態(tài)下,微小匝間短路故障時的Hausdorff距離設(shè)定成Hset1,匝間電弧放電故障時的Hausdorff距離設(shè)定成Hset2;變壓器空載合閘時,繞組微小匝間短路故障及匝間電弧放電故障的Hausdorff距離值依次為Hset3和Hset4。
如果推算的Hausdorff距離HLTS符合以下條件
(16)
可以斷定變壓器繞組呈現(xiàn)微小匝間短路故障。
變壓器繞組產(chǎn)生微小匝間電弧放電故障時,HLTS要符合條件
(17)
在一般情況下模糊關(guān)聯(lián)能夠表現(xiàn)出事物之間更廣泛意義上的關(guān)聯(lián)性。假設(shè)已知事件B與導(dǎo)致該結(jié)果的原因之間的模糊關(guān)聯(lián)矩陣是M,從而計算原因事件A的值,就可將該過程總結(jié)成一個求解模糊關(guān)聯(lián)公式:A*M=B,同時把其表示為以下模糊線性公式
(18)
在尋求最優(yōu)解之前,需要首先定義模糊貼近度σ,具體將其描述為
(19)
其中,ik和jk依次為矢量i、j的第k個分量大小。
如果已知M、B和全部的可能解{A1,A2,…,Ak},可計算得到
Ai*M=Bii=1,2,…,k
(20)
分別求解Bi和B的模糊貼近度,繼而選擇模糊貼近度最高的Bi對應(yīng)的解Ai當(dāng)作模糊關(guān)聯(lián)公式的最優(yōu)解。
把模糊關(guān)聯(lián)公式運用于無載調(diào)壓變壓器絕緣狀態(tài)評估中,可以將事件結(jié)果B與原因A依次映射至觀測到的絕緣故障表現(xiàn)集合與變壓器故障原因集合內(nèi)。利用模糊關(guān)聯(lián)矩陣表現(xiàn)出故障原因與故障表現(xiàn)之間的關(guān)聯(lián)性。
模糊綜合評估可在多種因素影響下進行無載調(diào)壓變壓器繞組匝間絕緣狀態(tài)判定,得到一個綜合性的評估結(jié)果[11],所以能夠取得比較準確且合理的評估成果,其基礎(chǔ)原理如下所示
U={u1,u2,…,un}
(21)
V={v1,v2,…,vm}
(22)
假設(shè)式(24)與式(25)是模糊綜合評估過程中的評估元素和評估結(jié)果集合,針對單元素ui∈U來說,其對繞組匝間絕緣狀態(tài)的模糊評估可使用一個定義為V內(nèi)的模糊集(ui1/v1,ui2/v2,…,uim/vm)進行描述,以此獲得一個綜合評估矩陣
(23)
如果每個評估元素的權(quán)重利用U內(nèi)的模糊集(x1/u1,x2/u2,…,xn/un)進行描述,那么繞組匝間絕緣狀態(tài)的綜合評估結(jié)果就是V內(nèi)的模糊集(y1/v1,y2/v2,…,ym/vm),其中
(24)
其中,i=1,2,…,n;j=1,2,…,m,∧、∨都是模糊合成算子,可按照實際狀況進行合理設(shè)置。
本文使用二級模糊綜合評估方法構(gòu)建無載調(diào)壓變壓器繞組匝間絕緣狀態(tài)評估模型。在該模型中,一級評估依次采用兩個單獨的模糊評估矩陣E1、E2來判斷繞組匝間絕緣情況。
二級評估可更加深入地對一級評估結(jié)果進行綜合判斷,如果E1、E2的評估結(jié)果依次為(y1A,y1B,…,y1E)及(y2A,y2B,…,y2E),兩個評估結(jié)果在二級評估內(nèi)的權(quán)重分別是0.70與0.30,那么二級評估結(jié)果是
(yA,yB,yC,yD,yE)=(0.70,0.30)°
y1A,y1B,y1C,y1D,y1E
y2A,y2B,y2C,y2D,y2E
(25)
其中,°為二級模糊評估過程中的模糊合成算子。
從上式的推算結(jié)果內(nèi)選擇最高模糊隸屬度的絕緣等級[12],就能對無載調(diào)壓變壓器的繞組匝間絕緣壽命進行初步推斷,這也為維修方案的制定提供有效幫助。
在實際繞組匝間絕緣狀態(tài)評估過程中,應(yīng)該首先明確變壓器繞組匝間絕緣的老化程度,然后再評判絕緣老化的原因,提升絕緣狀態(tài)評估效率。本文構(gòu)建的絕緣狀態(tài)評估模型架構(gòu)圖如圖1所示。
圖1 絕緣狀態(tài)評估模型架構(gòu)圖
為了證明本文方法的優(yōu)越性,與文獻[3]和文獻[4]方法進行仿真對比實驗,實驗平臺為MATLAB 7.0軟件,實驗環(huán)境是Windows系統(tǒng)。本文選擇無載調(diào)壓變壓器如圖2所示。
圖2 無載調(diào)壓變壓器
該變壓器的額定容量為31500kVA,高壓及分接范圍是110±8×1.25%,低壓為10.5kV,空載損耗是27kV,空載電流0.5%。經(jīng)實際驗證,該變壓器存在多處繞組匝間絕緣故障。
采用不同方法進行變壓器繞組匝間絕緣故障檢測,有效的檢測結(jié)果比較如表1所示。
表1 故障點數(shù)量
分析表1可知,與文獻方法相比,研究方法檢測出來的故障點數(shù)量與實際數(shù)量最為接近,說明該方法能夠準確檢測出變壓器繞組匝間絕緣故障,能夠為匝間絕緣狀態(tài)評估奠定良好的基礎(chǔ)。
在上述實驗的基礎(chǔ)上,比較三種方法的評估準確率,結(jié)果如圖3所示。
圖3 準確率比較
分析上圖可知,研究方法的準確率始終高于文獻方法,說明該方法能夠?qū)崿F(xiàn)對無載調(diào)壓變壓器繞組匝間絕緣狀態(tài)的準確評估。
圖4是三種方法的評估耗時均值對比結(jié)果。
圖4 評估耗時均值
從上圖可知,本文方法的時間消耗最短,可以實現(xiàn)繞組匝間絕緣狀態(tài)的高效率評估,文獻[3]與文獻[4]方法的評估時間均值都高于本文方法,評估效率較低。
研究表明,無載調(diào)壓變壓器的故障主要是由于其絕緣性能下降造成的,特別是內(nèi)絕緣的老化將導(dǎo)致變壓器壽命終結(jié)。在一般情況下,變壓器的絕緣性隨時間增長而不斷衰減,但是在多種因素的共同作用下,例如水分、溫度、機械應(yīng)力等因素,會加速變壓器匝間絕緣的老化程度。為明確變壓器繞組匝間絕緣狀態(tài),建立一種基于模糊理論的繞組匝間絕緣狀態(tài)評估模型。通過仿真,結(jié)果表明該方法絕緣故障點檢測準確性高,具有較高的評估準確率,進行狀態(tài)評估的耗時較短,擁有較優(yōu)的魯棒性。該方法能夠為無載調(diào)壓變壓器的進一步維護與維修提供重要參考。