鮑慶臣 渠懷志 史建強(qiáng) 宮明龍
摘要:軌道交通車輛在沖擊振動(dòng)試驗(yàn)后,部分設(shè)備SUS304不銹鋼焊接件出現(xiàn)斷裂失效現(xiàn)象。為了提升SUS304不銹鋼焊后機(jī)械性能,采用金相顯微鏡、掃描電鏡、硬度測(cè)試及拉伸試驗(yàn)等方法,研究了中低溫?zé)崽幚砉に噷?duì)2 mm厚 SUS304不銹鋼板 TIG 焊接接頭的組織及力學(xué)性能的影響。研究發(fā)現(xiàn),經(jīng)400℃熱處理30 min及焊接后未處理態(tài)焊縫組織均由γ -奧氏體與δ -鐵素體組成,δ-鐵素體主要分布于富Cr 區(qū)呈蠕蟲狀,熱處理后δ -鐵素體含量有一定程度的減少。焊接接頭熱處理后硬度值整體較未處理態(tài)低,焊后焊縫屈服強(qiáng)度為189.5 MPa,應(yīng)變?yōu)?4.5%,熱處理后屈服強(qiáng)度為221 MPa,應(yīng)變?yōu)?2.7%,屈服強(qiáng)度提升了16.6%,達(dá)到母材的屈服強(qiáng)度。斷口呈現(xiàn)出韌性斷裂特征且無顯著焊接缺陷,主要呈現(xiàn)出較深的韌窩,韌窩分布著第二相粒子,第二相粒子阻礙滑移造成應(yīng)力集中而產(chǎn)生微坑,成為裂紋的主要發(fā)源地之一。
關(guān)鍵詞: SUS304;TIG焊;中低溫?zé)崽幚?微觀組織;力學(xué)性能
中圖分類號(hào): TG456.7????? 文獻(xiàn)標(biāo)識(shí)碼: A文章編號(hào):1001-2303(2022)02-0063-06
Effect of Heat Treatment on Microstructure and Properties of SUS304 Stainless Steel TIG Welded Joint
BAO Qingchen1, QU Huaizhi1, SHI Jianqiang1, GONG Minglong2
1. CRRC Qingdao Sifang Rolling Stock Research Institute Co., Ltd., Qingdao 266000, China
2. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Abstract: After the impact and vibration test of rail transit vehicles, some equipment 304 stainless steel welded parts ap‐ peared fracture failure. In order to improve the mechanical properties of 304 stainless steel after welding, in this paper, by means of metallographic microscope, scanning electron microscope, hardness and tensile test, the effects of medium and low temperature heat treatment process on the microstructure and mechanical properties of 2 mm thick 304 stainless steel plate TIG welded joints were studied. It is found that the microstructure of the untreated weld is composed of γ-austenite and δ- ferrite after heat treatment at 400℃ for 30 min, and δ-ferrite mainly distributes in the Cr-rich zone and appears as a worm, and the content of δ-ferrite decreases to some extent after heat treatment. After heat treatment, the hardness of welded joints is lower than that of untreated ones. The yield strength of welded joints after welding is 189.5 MPa, and the strain is 64.5%. After heat treatment, the yield strength is 221 MPa, the strain is 72.7%, and the yield strength is increased by 16.6%, reach‐ ing the yield strength of base metal. The fracture surface shows ductile fracture characteristics and no significant welding de‐ fects, mainly showing deep dimples, and the dimples are distributed with second phase particles, which hinder the slip and cause stress concentration and produce micro-pits, which become one of the main craters of cracks.
Keywords: SUS304; TIG welding; low temperature heat treatment; microstructure; mechanical properties
引用格式:鮑慶臣,渠懷志,史建強(qiáng),等. 中低溫?zé)崽幚韺?duì)SUS304不銹鋼TIG焊接接頭組織及力學(xué)性能的影響[J]. 電焊機(jī),2022,52(2):63-68.
Citation:BAOQingchen, QU Huaizhi, SHI Jianqiang, et al. Effect of Heat Treatment on Microstructure and Properties of SUS304 Stainless Steel TIG Welded Joint[J]. Electric Welding Machine, 2022, 52(2):63-68.
0? 前言
不銹鋼因其良好的耐腐蝕性、焊接性、低溫塑韌性,以及良好的綜合力學(xué)性能,在工業(yè)各領(lǐng)域得到了非常廣泛的應(yīng)用[1]。室溫下不銹鋼可分為奧氏體不銹鋼、鐵素體不銹鋼、馬氏體不銹鋼、沉淀硬化不銹鋼和奧氏體-鐵素體雙相不銹鋼[2],其中SUS304奧氏體不銹鋼(牌號(hào)06Cr18Ni9)因鉻含量優(yōu)勢(shì)而表現(xiàn)出良好的焊接性、耐腐蝕性、無磁性等特征,被廣泛應(yīng)用在橋梁結(jié)構(gòu)、船舶、航空和軌道交通等眾多領(lǐng)域[3-4]。
目前,耐腐蝕性的要求使得軌交車輛的車下變流器箱體制造多選用SUS304不銹鋼材料。而變流器箱體中結(jié)構(gòu)復(fù)雜的SUS304結(jié)構(gòu)件的連接以TIG焊為主。TIG焊具有熱輸入低、能量密度高、電弧穩(wěn)定性好、能較好控制線能量的優(yōu)點(diǎn),且其保護(hù)氣流具有冷卻作用,可降低熔池表面溫度,提高表面張力,可獲得污染少、焊縫美觀、焊接質(zhì)量高的焊接接頭[5-6]。但是 SUS304導(dǎo)熱系數(shù)小、線膨脹系數(shù)大導(dǎo)致其焊接時(shí)存在殘余應(yīng)力,接頭中易形成結(jié)晶裂紋[7]、晶間腐蝕[8-9]、應(yīng)力腐蝕開裂、焊縫脆化、夾雜氣孔等缺陷[10-11]。適當(dāng)?shù)臒崽幚砜梢蕴岣呓宇^性能。郭國林[12]等對(duì)304不銹鋼板焊接接頭熱處理后組織和性能進(jìn)行研究發(fā)現(xiàn)在1 000℃固溶處理后,焊接接頭的組織和性能良好。楊曉禹[13]等對(duì)S32101 不銹鋼焊接接頭在1 050℃熱處理后,晶界的沉淀相Cr2N會(huì)重新溶解到基體中。SaeidGhorbani[14]等人研究發(fā)現(xiàn),異種不銹鋼焊接接頭在960℃熱處理后得到最佳的拉伸性能。
目前熱處理工藝多是在較高溫度下進(jìn)行[15-16],但在軌道交通行業(yè)生產(chǎn)中,考慮到生產(chǎn)周期短及成本控制,對(duì)焊接接頭中低溫?zé)崽幚硌芯烤哂酗@著意義。在部分高鐵牽引變流器箱內(nèi)水冷系統(tǒng) SUS304 管路支架中采用了TIG焊,但在依據(jù)IEC 61373:1999Ⅰ 類A級(jí)設(shè)備進(jìn)行沖擊振動(dòng)試驗(yàn)的過程中,SUS304管夾的TIG焊接頭處出現(xiàn)了斷裂。參考成本及工藝生產(chǎn)周期等因素,本文對(duì)焊后試驗(yàn)樣件進(jìn)行中低溫?zé)崽幚?,并?duì)焊后及焊后熱處理態(tài)焊接接頭進(jìn)行微觀組織和性能研究,以探究改善焊接接頭質(zhì)量的方法。
1? 試驗(yàn)材料與方法
試驗(yàn)?zāi)覆臑?SUS304(GB/T 3280-2007)板材,試樣尺寸170 mm×35 mm×2 mm,焊絲選用308LSi,直徑 Φ1 mm 。母材及焊材的名義化學(xué)成分和力學(xué)性能分別如表1、表2所示。
采用手工TIG填絲焊制作焊接試板,焊接接頭形式為平板對(duì)接,焊前不開坡口。采用FK 4000-R焊機(jī),焊接電壓為18~25 V,電流為75~95 A,焊接速度為0.8~1.2 mm/s,氬氣流量為8 L/min,熱輸入為995~1260 J/mm 。焊接后試板在300℃、400℃、500℃下分別退火30 min、60 min、90 min。
接頭試樣經(jīng)打磨、拋光后,以焊縫中心為基準(zhǔn),參考 GB/T2654-2008《焊接接頭硬度試驗(yàn)方法》和 GB/T4340.1-2009《金屬材料-維氏硬度試驗(yàn)》,采用 MHV 5Z 硬度計(jì)在母材區(qū)(BZ)、熱影響區(qū)(HAZ)、焊縫區(qū)( WZ)取若干測(cè)量點(diǎn),加載負(fù)荷0.98 N(100 gf)并持續(xù)時(shí)間15 s,進(jìn)行接頭硬度測(cè)試。用電火花線切割的方法沿著焊縫橫截面截取20 mm× 10 mm×2 mm的方形小塊,包含焊縫區(qū)(WZ)和母材區(qū)(BZ),然后用砂紙(400#、600#、800#、1000#、1500#、3000#)由粗到細(xì)的原則對(duì)金相觀察面進(jìn)行打磨,使用2.5μm的金剛石拋光膏進(jìn)行拋光處理,然后采用王水溶液(體積比HCl∶HNO3=3∶1)進(jìn)行晶界腐蝕,腐蝕時(shí)間25~30 s,腐蝕完成后立即用去離子水將試樣清洗干凈并用吹風(fēng)機(jī)將其吹干備用,采用 XRD(SMARTLAB X-ray)、金相顯微鏡(DMI5000M)和掃描電鏡(ZEISS SUPRA 55)對(duì)焊接接頭的微觀組織和斷口進(jìn)行分析。參考 GB/T2649-1989 《焊接接頭機(jī)械性能試驗(yàn)取樣方法》和 GB/T228- 2002《焊接接頭拉伸試驗(yàn)方法》,利用萬能試驗(yàn)機(jī) WDW-3100對(duì)焊接接頭的拉伸性能進(jìn)行分析,加載速度2 mm/min,拉伸樣尺寸如圖1所示。
2? 試驗(yàn)結(jié)果與討論
2.1? 熱處理對(duì)接頭硬度的影響
焊后未處理態(tài)及不同溫度熱處理后焊接接頭的硬度曲線如圖2所示,硬度值如表3所示??梢钥闯觯捕戎迪仍龈吆蠼档?,顯微硬度峰值均出現(xiàn)在WZ,HAZ硬度處于母材與焊縫區(qū)之間。焊接接頭存在焊接應(yīng)力,同時(shí)有富Cr相析出,因此在焊接接頭處有較高的硬度。經(jīng)過不同溫度與時(shí)間的熱處理,硬度值變化趨勢(shì)大致相同。這是因?yàn)殡S著熱處理的進(jìn)行,部分焊接應(yīng)力得到釋放,硬度值表現(xiàn)為不同程度的降低,但是熱處理溫度超過450℃達(dá)到材料敏化區(qū)會(huì)有碳化物Cr23C6形成[17],降低焊接接頭塑韌性,因此在經(jīng)過400℃退火30 min后硬度值小于其他溫度熱處理的硬度(見圖2),焊縫處硬度值降低5.2%,可見在該熱處理?xiàng)l件下,其塑韌性相對(duì)較好。以下討論均以此參數(shù)為熱處理的對(duì)比參數(shù)。
2.2? 熱處理對(duì)焊縫組織的影響
焊接接頭的XRD 圖譜如圖3所示??梢钥闯?,焊縫組織主要為γ-奧氏體和δ-鐵素體,在44°~45°區(qū)間內(nèi)熱處理后焊接接頭衍射峰強(qiáng)度相對(duì)焊態(tài)降低,表明經(jīng)400℃退火30 min后δ-鐵素體含量有一定程度的減少。焊接接頭焊態(tài)及400℃退火30 min 后的金相組織如圖4所示。SUS304母材組織為典型的奧氏體晶粒,但是焊接接頭的結(jié)晶模式主要由 Cr、Ni元素的含量決定,WZ區(qū)主要由γ-奧氏體與δ- 鐵素體組成。這是因?yàn)镹i、Cr 、Fe 三相共晶時(shí),富 Cr 區(qū)域位于三角區(qū)的右側(cè),鐵素體優(yōu)先在富Cr區(qū)形核結(jié)晶,因此焊縫處的金屬凝固時(shí)是以δ-鐵素體作為初始相析出,最終形成蠕蟲狀鐵素體。新的物相和晶粒的變化是熱力學(xué)和動(dòng)力學(xué)綜合作用的結(jié)果,晶粒的長大主要表現(xiàn)為晶界的遷移,實(shí)質(zhì)是晶界處原子跨越界面遷移的擴(kuò)散過程。熱處理過程中促進(jìn)原子的激活、擴(kuò)散與界面反應(yīng)造成δ-鐵素體含量減少[17]。
2.3? 熱處理對(duì)焊接接頭力學(xué)性能的影響
焊態(tài)和400℃熱處理30 min 焊接接頭拉伸后的應(yīng)力應(yīng)變曲線如圖5所示。由圖可知,未熱處理焊接接頭的屈服強(qiáng)度為189.5 MPa,應(yīng)變?yōu)?4.5%,熱處理后接頭屈服強(qiáng)度為221 MPa,較焊態(tài)提升了16.6%,達(dá)到母材的屈服強(qiáng)度,同時(shí)應(yīng)變也提高為72.7%,與熱處理前后硬度的變化趨勢(shì)一致。這是因?yàn)楹笐B(tài) SUS304不銹鋼焊接接頭鐵素體含量較多,硬度較高,且大量的鐵素體分布在奧氏體中,在位錯(cuò)滑移過程中起到釘扎作用,阻礙了滑移系運(yùn)動(dòng)[15],而熱處理后鐵素體分布更加均勻且含量減少,故應(yīng)變有一定程度的提高。
圖6為拉伸試驗(yàn)后焊接接頭的斷口微觀形貌,觀察未發(fā)現(xiàn)顯著的焊接缺陷。其中圖6b斷口的韌窩較圖6a的韌窩更圓、更大、更深,呈等軸韌窩狀,屬于韌性斷裂。從右上角高倍斷口形貌圖中可以觀察到韌窩里分布著第二相粒子,這成為裂紋的主要發(fā)源地之一,即隨著拉伸變形的發(fā)生,不同的滑移帶相交匯集至一處時(shí),會(huì)因第二相阻礙滑移造成應(yīng)力集中而產(chǎn)生微坑,在滑移作用下微孔逐漸長大,相鄰微孔逐漸連接在一起形成大的空洞進(jìn)而擴(kuò)大為微裂紋,最終發(fā)生斷裂[17-18]。
3? 結(jié)論
(1)焊接接頭組織由γ-奧氏體與δ-鐵素體組成,在富 Cr區(qū)形成了蠕蟲狀δ -鐵素體。經(jīng)400℃退火30 min熱處理后,在熱力學(xué)和動(dòng)力學(xué)綜合作用下δ- 鐵素體含量有一定程度的減少。
(2)焊縫熱處理后硬度值整體較焊態(tài)低。焊后焊縫屈服強(qiáng)度為189.5 MPa,應(yīng)變?yōu)?4.5%,熱處理態(tài)屈服強(qiáng)度為221 MPa,應(yīng)變?yōu)?2.7%,屈服強(qiáng)度提升了16.6%,達(dá)到母材的屈服強(qiáng)度。
(3)板厚2 mm的 SUS304不銹鋼TIG焊后能夠獲得致密的焊接組織,對(duì)焊接接頭斷口掃描分析為韌性斷裂,斷口無顯著焊接缺陷,主要呈現(xiàn)出較深的韌窩,韌窩分布著第二相粒子。
參考文獻(xiàn):
[1] Kurt H,Samur R. Study on microstructure,tensile testand hardness 304 stainless steel jointed by TIG welding[J]. International Journal of Science and Technology ,2013,2(2):163-168.
[2]薄鑫濤.常用不銹鋼種類及特點(diǎn)[J].熱處理,2017,32(02):56.
BO Xintao. Types and characteristics of common stain‐ less steel[J]. Heat Treatment,2017,32(02):56.
[3]Erinosho M F,Akinlabi E T,Ogundimu E O. Study onmicrostructure and mechanical properties of 304 stain‐ less steel joints by Tig-Mig hybrid welding[J]. Surface Review & Letters,2018,25(01):1-14.
[4] Li Z,Gobbi S L. Laser welding for lightweight struc‐tures[J]. Journal of Materials Processing Technology,1997,70(1-3):137-144.
[5] Feng L,Yang N. Stainless Steel Welding and Develop‐ment Trend? of Welding Technology[J]. IOP Confer‐ ence? Series? Earth? and? Environmental? Science ,2019(252):022117.
[6] Chidambaram S,Srinivasan R. Study & Optimizationon the effect of welding current & active flux coating thickness in the weld profile of Al-SiC composite weld‐ ment using A-TIG welding[J]. Journal of Advanced Re‐ search in Dynamical and Control Systems,2017,Spe‐ cial Issue(11):409-418.
[7]黃彥良,Brian Kinsella,Thomas Becker,等.原子力顯微鏡評(píng)價(jià)奧氏體不銹鋼晶間腐蝕敏感性的研究[J].材料開發(fā)與應(yīng)用,2008(03):7-11.
HUANG Yan Liang,Brian Kinsella,Thomas Becker, et al. Identification of Sensitization of Austenitic Stain‐less Steel to Intergranular Stress Corrosion Cracking by Atomic Force Microscopy[J]. Development and Appli‐ cation of Materials,2008(03):7-11.
[8]王建.晶間腐蝕的危害及原因分析[J].鑄造技術(shù),2011,32(12):1756-1759.
WANG Jing. Perniciousness and Prevention Measure of? Inter-crystallineErosion [J]. ?FoundryTechnology,2011,32(12):1756-1759.
[9]羅宏,龔敏.奧氏體不銹鋼的晶間腐蝕[J].腐蝕科學(xué)與防護(hù)技術(shù),2006,18(5):357-360.
LUO Hong,GONG Min.On intergranular corrosion of austenitic stainless steel[J]. Corrosion Science and Pro‐ tection Technology,2006,18(5):357-360.
[10] Mishra D,Dakkili M. Gas tungsten and shielded metalarc welding of stainless steel 310 and 304 grades over? single and double‘V’butt joints[J]. Materials Today: Proceedings,2020(27):772-776.
[11]馮小松.應(yīng)變強(qiáng)化技術(shù)在低溫儲(chǔ)罐輕型化設(shè)計(jì)中的應(yīng)用[D].北京:北京化工大學(xué),2012.
FENG Xiaosong. Application of Strain-Streng-Thening technology in the Light-Weight design of Liquefied-gas Cryogenic? Tanks[D]. Beijing:Beijing? University? of Chemical Technology,2012.
[12]郭國林,劉鵬,楊莉,等.熱處理對(duì)304不銹鋼板激光焊接接頭組織和力學(xué)性能的影響[J].熱加工工藝,2016,45(21):194-200.
GUO Guolin,LIU Peng,YANG Li,et al. Effect of Heat Treatment? on? Microstructure? and? Mechanical? Proper‐ ties of Laser Welded Joint of 304 Stainless Steel Plate[J]. Hot Working Technology,2016,45(21):194-200.
[13]楊曉禹,田一清,毛紅奎,等.熱處理工藝對(duì)雙相不銹鋼 S32101焊接接頭力學(xué)性能與微觀組織的影響[J].熱加工工藝,2019,21(48):153-155.
YANG Xiaoyu,TIAN Yiqing,MAO Hongkui,et al. Ef‐ fect of Heat Treatment Process on Mechanical Proper‐ tiesandMicrostructureof? DuplexStainlessSteel? S32101 Welded Joints[J]. Hot Working Technology,2019,21(48):153-155.
[14]SaeidGhorbani, RezaGhasemi, RezaEbrahimi-Kahrizsangi,et? al. The? effect? of heat treatment? after? welding on the microstructure,mechanical properties, and? corrosion? resistance? of dissimilar? stainless? steels[J]. Materials Science & Engineering A,2017(688):470-479.
[15]孫會(huì)蘭,畢子墨,張迪,等.不同熱處理?xiàng)l件下高氮奧氏體不銹鋼冷軋組織與力學(xué)性能研究[J].礦冶工程,2021,41(04):117-120,124.
SUN Huilan,BI Zimo,ZHANG Di,et al. Microstruc‐ ture and Mechanical Properties of High Nitrogen Aus‐ tenitic Stainless Steel After Cold Rolling by Different Heat Treatment[J]. Mining and Metallurgical Engineer‐ ing,2021,41(04):117-120,124.
[16]陳雙建. SUS304拼焊管非均質(zhì)接頭組織力學(xué)行為及塑變性能優(yōu)化[D].黑龍江:哈爾濱工業(yè)大學(xué),2012. CHEN? Shuangjian. Microstructure? evolution? and me‐ chanical behavior of hererogeneous joint and plastic de‐formation optimi-zation of SUS304 tailor-welded tube [D].Heilongjiang:Harbin Institute of Technology,2012.
[17]何遠(yuǎn)靈.? SUS304不銹鋼TIG焊接接頭的組織表征與性能研究[D].山西:山西農(nóng)業(yè)大學(xué),2019.
HE Y L. Microstructure Characterization and Properties Investigation? of? Welded? Joint? of? SUS304 Stainless Steel with TIG Welding[D]. Shanxi:Shanxi Agricul‐ tural University,2019.
[18]許云秀.奧氏體不銹鋼0Cr21Mn17Mo2N0.8腐蝕及疲勞性能研究[D].吉林:長春工業(yè)大學(xué),2019.
XU Y X.Austenitic stainless steel 0cr21mn17mo2n08study? on? corrosion? and? fatigue properties[D]. Jilin: Changchun University of Technology,2019.
編輯部網(wǎng)址:http://www.71dhj.com