許琳 劉躍東 高加明 李方明 彭玉龍 劉明宏 林偉 徐茜 孫朝輝 張繼光
摘 ?要:為明確鎘(Cd)脅迫對(duì)不同植煙土壤的硝化速率及氧化亞氮(N2O)排放的影響,采用外源鎘添加試驗(yàn),設(shè)置兩個(gè)Cd濃度梯度(10和100 mg/kg),以探究Cd脅迫下中性(中性土1和2)和酸性(酸性土1和2)植煙土壤的凈硝化速率以及N2O排放特征。結(jié)果表明:1)隨培養(yǎng)時(shí)間增加,植煙土壤銨態(tài)氮含量逐漸減少,而硝態(tài)氮含量逐漸增加,且低Cd脅迫和高Cd脅迫均未顯著改變這一變化趨勢(shì);2)植煙土壤凈硝化速率在培養(yǎng)前期(1~7 d)發(fā)生較大波動(dòng)變化,Cd脅迫明顯增加了酸性土1在第1天的凈硝化速率;3)整體上各處理酸性土的N2O排放速率和累積排放量高于中性土,高Cd脅迫增加了酸性土1的N2O初始排放速率,培養(yǎng)結(jié)束后酸性土1的N2O累積排放量達(dá)355.42 μg/kg;4)各植煙土壤N2O排放速率和累積排放量與土壤pH和全氮含量極顯著負(fù)相關(guān),而與有機(jī)質(zhì)和銨態(tài)氮含量極顯著正相關(guān)。本研究結(jié)果表明植煙土壤的N2O排放受土壤酸堿性和氮底物的影響,酸性土的N2O累積排放量高于中性土,且高Cd脅迫增加其N2O排放量,后續(xù)可通過(guò)土壤酸化改良以達(dá)到N2O減排目的。
關(guān)鍵詞:植煙土壤;氧化亞氮;鎘脅迫;凈硝化速率
Abstract: In order to determine the effect of cadmium stress on nitrification rate and N2O emission traits of different tobacco planting soils, an incubation experiment of acid and neutral soils under two concentrations (10 and 100 mg/kg) of Cd addition were conducted. The results showed that, 1) The concentration of ammonium in acid and neutral tobacco soils decreased gradually with the extension of incubation time, while the concentration of nitrate increased throughout the whole incubation periods, and this tendency was not affected by low and high concentrations of Cd stress; 2) Soil net nitrification rate fluctuated strongly during the 1-7 d of incubation and Cd stress could stimulate net nitrification rate of acid soil type 1 on the 1st day; 3) The maximum of N2O emission rate and cumulative emission of acid soils were higher than that of neutral soils in general, and the high Cd stress could stimulate the initial N2O emission rate of acid soil 1, and the cumulative N2O emission of acid soil 1 was 355.42 μg/kg at the end of the incubation; 4) Soil pH and total nitrogen had significantly negative correlations with soil N2O emission rate and cumulative emission, but soil organic matter and ammonium had significantly positive correlations with soil N2O emission rate and the cumulative emission. These results indicated that N2O emission of tobacco planting soils was affected by soil pH and N substrate. The N2O cumulative emission of acid soils was much higher than neutral soils and they could be stimulated by the high Cd stress. So, the reduction of N2O emission could be achieved by improving soil acidification in the future.
Keywords: tobacco planting soil; nitrous oxide; cadmium stress; net nitrification rate
溫室氣體排放增加是導(dǎo)致全球氣溫上升的主要原因。在所有溫室氣體中,氧化亞氮(N2O)的增溫效應(yīng)和增溫潛勢(shì)最大[1]。農(nóng)田土壤是農(nóng)業(yè)N2O的最大排放源[2],農(nóng)田土壤中的硝化和反硝化反應(yīng)所釋放的N2O約占生物圈釋放到大氣中N2O總量的70%。煙草是我國(guó)重要的經(jīng)濟(jì)作物之一[3],近年來(lái),不合理施肥與土壤管理及產(chǎn)地環(huán)境問(wèn)題制約著煙草農(nóng)業(yè)的可持續(xù)發(fā)展[4],如植煙土壤長(zhǎng)期大量施用氮肥導(dǎo)致土壤酸化、土壤板結(jié)和營(yíng)養(yǎng)流失等問(wèn)題[5],同時(shí)也增加煙田生態(tài)系統(tǒng)N2O排放,加劇溫室效應(yīng)[6]。
N2O產(chǎn)生途徑主要包括硝化和反硝化過(guò)程,主要受土壤理化性質(zhì)、微生物和重金屬等因素的影響[7-8]。其中土壤有機(jī)碳增加可增強(qiáng)土壤反硝化作用,從而促進(jìn)N2O排放[9],土壤硝態(tài)氮含量增加也會(huì)促進(jìn)酸性土壤N2O排放[10];在高銨態(tài)氮條件下,中性土壤的硝化作用由氨氧化細(xì)菌主導(dǎo)[11],而在低銨態(tài)氮條件下,酸性土壤的硝化作用則由氨氧化古菌主導(dǎo)[12]。在一定pH范圍內(nèi),土壤N2O排放量會(huì)隨著pH增加而逐漸降低[13],過(guò)量施氮導(dǎo)致農(nóng)田土壤酸化會(huì)增加土壤N2O排放[14-15]。而在堿性土壤中,因反硝作用產(chǎn)物變化導(dǎo)致N2O排放降低[15]。此外,重金屬等環(huán)境脅迫,可以通過(guò)影響參與硝化/反硝化過(guò)程的細(xì)菌從而影響N2O排放[16]。有研究認(rèn)為,重金屬對(duì)N2O反硝化還原過(guò)程中微生物的抑制作用強(qiáng)于生成作用,一定濃度范圍內(nèi)可促進(jìn)N2O排放[17-19]。Cd作為我國(guó)農(nóng)田土壤最主要的無(wú)機(jī)污染物之一,前期研究發(fā)現(xiàn)[20],不同程度Cd脅迫對(duì)土壤氮轉(zhuǎn)化過(guò)程的影響并不一致,低濃度(2~5 mg/kg)Cd脅迫可顯著促進(jìn)氨氧化作用和硝化作用,而當(dāng)Cd濃度達(dá)10~20 mg/kg時(shí),對(duì)兩個(gè)過(guò)程具有抑制作用。因此,農(nóng)田土壤N2O排放受不同土壤條件及Cd脅迫的重要影響。
當(dāng)前,受地質(zhì)背景、施肥管理及人類活動(dòng)的影響,部分煙區(qū)存在土壤酸化及不同程度的Cd污染[21],而Cd污染脅迫對(duì)不同植煙土壤的硝化作用和N2O排放的影響尚不清楚。因此,本研究通過(guò)外源Cd添加試驗(yàn),以不同酸堿性的植煙土壤(中性及酸性)為研究對(duì)象,探究Cd脅迫下不同植煙土壤的硝化作用、N2O排放特征及其影響因素,以期為植煙土壤N2O減排管理提供理論依據(jù)。
1 ?材料與方法
1.1 ?供試材料
供試土壤采集時(shí)間為2017年6月至10月,采自全國(guó)4個(gè)典型優(yōu)質(zhì)煙葉產(chǎn)區(qū),分別為濰坊諸城、南平邵武、恩施宣恩和遵義湄潭,按照土壤酸堿屬性可劃分為2種中性土和2種酸性土(表1)。為了減少自然環(huán)境及耕作措施對(duì)土壤樣品的影響,土壤樣品采集均在晴天且未開(kāi)展農(nóng)藝活動(dòng)時(shí)進(jìn)行。每個(gè)產(chǎn)區(qū)均選擇當(dāng)?shù)赝粎^(qū)域的3塊代表性煙田,采用“S”型取樣法,取土深度為0~20 cm,每塊樣地取10~15點(diǎn),并混合均勻作為一個(gè)混合土樣,每個(gè)土壤類型采集3個(gè)混合土樣(約50 kg)。將采集的土壤樣品立刻帶回實(shí)驗(yàn)室,并剔除可見(jiàn)的石塊及動(dòng)植物殘?bào)w,自然風(fēng)干并過(guò)2 mm篩備用。供試土壤的基本理化性質(zhì)如表1所示。
1.2 ?試驗(yàn)設(shè)計(jì)
脅迫培養(yǎng)試驗(yàn)在中國(guó)農(nóng)業(yè)科學(xué)院煙草研究所進(jìn)行,采用預(yù)培養(yǎng)后的植煙土壤開(kāi)展試驗(yàn)。鎘在土壤中具有較強(qiáng)的積累和遷移特征,我國(guó)部分區(qū)域農(nóng)田土壤的鎘含量最高達(dá)25.7 mg/kg,而礦區(qū)土壤的最高量還要高一個(gè)數(shù)量級(jí)[22],因此本試驗(yàn)設(shè)置10 mg/kg與100 mg/kg兩個(gè)外源鎘濃度梯度,分別模擬兩個(gè)污染場(chǎng)景的情況,并描述為低濃度Cd脅迫處理與高濃度鎘脅迫處理。不同Cd濃度梯度通過(guò)向土壤中添加乙酸Cd溶液來(lái)實(shí)現(xiàn),且每種土壤均設(shè)置對(duì)照處理(CK,0 mg/kg)。每個(gè)處理設(shè)置3個(gè)重復(fù),在25 ℃恒溫條件下培養(yǎng)28 d,并在Cd添加后的第1、4、7、14、28 天等5個(gè)時(shí)間節(jié)點(diǎn)采集N2O氣體。在采集完氣體后,土壤樣品進(jìn)行破壞性采樣處理,并密封保存于?40 ℃冰箱中用于土壤銨態(tài)氮和硝態(tài)氮含量測(cè)定。
1.3 ?試驗(yàn)方法
1.3.1 ?試驗(yàn)操作 ?預(yù)培養(yǎng):測(cè)定風(fēng)干土樣的含水率,稱取相當(dāng)于40 g干土的樣品加入錐形瓶中,用去離子水調(diào)節(jié)土壤含水量為最大田間持水量(WHC)的45%,在瓶口套上封口膜并固定(以減少水分的蒸發(fā)),同時(shí)在封口膜上扎幾個(gè)小孔使土壤與外界進(jìn)行氣體交換。將錐形瓶放入25 ℃恒溫室進(jìn)行預(yù)培養(yǎng)7 d,采用重量法定期加水以維持土壤含水量。
Cd脅迫培養(yǎng)試驗(yàn):預(yù)培養(yǎng)后按照試驗(yàn)設(shè)計(jì)加入不同濃度的乙酸鎘溶液,并調(diào)節(jié)土壤含水量為最大田間持水量的60%,對(duì)土壤進(jìn)行稱重記錄,將土壤樣品繼續(xù)放入25 ℃恒溫室中進(jìn)行為期28 d的培養(yǎng),培養(yǎng)期間添加去離子水保持土壤含水量為60% WHC,并定期進(jìn)行氣體采樣。
氣體采集:取樣前24 h將瓶口塑料膜換成丁基橡膠塞進(jìn)行密封,24 h后用帶有三通閥的注射器垂直插入丁基橡膠塞,來(lái)回推拉以使瓶?jī)?nèi)氣體混勻,抽取30 mL氣體垂直打入18 mL的真空頂空瓶,將收集好的氣體樣品于48 h內(nèi)上機(jī)測(cè)定。
1.3.2 ?指標(biāo)測(cè)定 ?土壤的基礎(chǔ)理化性質(zhì)指標(biāo)按鮑士旦方法測(cè)定[23]。土壤銨態(tài)氮和硝態(tài)氮含量采用2 mol/L的KCl溶液浸提,振蕩30 min后過(guò)濾,通過(guò)AA3流動(dòng)注射分析儀(Skalar,Breda,荷蘭)分析測(cè)定[24]。N2O氣體采用氣相色譜儀(7890A,安捷倫公司)測(cè)定。
1.3.3 ?土壤凈硝化速率計(jì)算[25]
NR=(C1-C2)/(t1-t2)
NR為土壤凈硝化速率[mg/(kg·d)],C1和C2分別為培養(yǎng)t2 d與t1 d時(shí)NO3--N含量(mg/kg)。
1.3.4 ?N2O累積排放量計(jì)算[10,26]
C樣品=C標(biāo)準(zhǔn)×PA樣品/PA標(biāo)準(zhǔn)
C樣品為N2O濃度(cm3/m3);C標(biāo)準(zhǔn)為N2O標(biāo)準(zhǔn)氣體樣品濃度;PA標(biāo)準(zhǔn)為氣相色譜儀測(cè)定出的峰面積;PA樣品為氣體樣品的峰面積。
F為培養(yǎng)瓶?jī)?nèi)N2O排放速率[μg N/(kg·d)];Cs為N2O濃度(cm3/m3);Ca為室外新鮮空氣中N2O濃度(空白培養(yǎng)瓶?jī)?nèi)N2O濃度);ρ(N2O)為N2O在25 ℃時(shí)的密度,其值為1.12 kg/m3;V為培養(yǎng)瓶體積(mL);m為培養(yǎng)瓶?jī)?nèi)相當(dāng)于干土的土壤質(zhì)量(g);T為兩個(gè)相鄰采樣時(shí)間間隔(d)。
CE為N2O累積排放量(μg/kg);i為第i次氣體采樣;F為N2O排放速率[μg N/(kg·d)];ti+1-ti為兩個(gè)相鄰采樣日期間隔(d);n為累積排放量觀測(cè)時(shí)間內(nèi)總的測(cè)定次數(shù)。
1.4 ?數(shù)據(jù)分析
采用SPSS 22.0軟件對(duì)數(shù)據(jù)進(jìn)行方差分析(ANOVA),采用Duncan法進(jìn)行多重比較,運(yùn)用Origin9.0軟件繪圖,圖中數(shù)據(jù)均為平均值±標(biāo)準(zhǔn)誤。
2 ?結(jié) ?果
2.1 ?Cd脅迫下不同植煙土壤銨態(tài)氮和硝態(tài)氮含量變化
如圖1所示,各處理土壤銨態(tài)氮含量隨培養(yǎng)時(shí)間呈快速下降并趨于平緩趨勢(shì)。在整個(gè)培養(yǎng)時(shí)段,在無(wú)脅迫CK下,酸性土1銨態(tài)氮含量顯著高于酸性土2和中性土1,除培養(yǎng)第1天及第4天外,其銨態(tài)氮與中性土2差異不顯著。培養(yǎng)結(jié)束時(shí),各土壤銨態(tài)氮的減少量表現(xiàn)為:酸性土1(11.74 mg/kg)>酸性土2(10.51 mg/kg)>中性土1(8.05 mg/kg)>中性土2(4.25 mg/kg)(圖1 a)。在低Cd脅迫下,各土壤銨態(tài)氮的變化與CK處理趨勢(shì)一致,培養(yǎng)結(jié)束時(shí),酸性土1的銨態(tài)氮減少量(12.84 mg/kg)分別是酸性土2和中性土1、2的1.11、1.61和2.13倍(圖1 b)。在高Cd脅迫下,酸性土1在培養(yǎng)后期(14~28 d)的銨態(tài)氮含量顯著高于其他3種土壤,且培養(yǎng)結(jié)束時(shí),各土壤銨態(tài)氮減少量表現(xiàn)為:酸性土1(11.03 mg/kg)>酸性土2(10.10 mg/kg)>中性土1(6.12 mg/kg)>中性土2(5.04 mg/kg)(圖1 c)。
與銨態(tài)氮變化趨勢(shì)相反,在培養(yǎng)前期(1~7 d),各處理土壤的硝態(tài)氮含量呈快速增加,并在培養(yǎng)后期(14~28 d)趨于平緩(圖1 d-f)。在CK處理下,各土壤硝態(tài)氮含量整體呈現(xiàn):中性土2>酸性土2>中性土1>酸性土1。在培養(yǎng)結(jié)束時(shí),各土壤硝態(tài)氮
的增加量表現(xiàn)為:酸性土2(24.92 mg/kg)>中性土2(24.30 mg/kg)>中性土1(18.34 mg/kg)>酸性土1(11.00 mg/kg)(圖1 d)。低Cd脅迫下各土壤硝態(tài)氮的變化趨勢(shì)與CK處理一致(圖1 e);而在高Cd脅迫下,與CK相比,中性土1、中性土2和酸性土2硝態(tài)氮增加量減少,而酸性土1增加量變大。
2.2 ?Cd脅迫下不同植煙土壤凈硝化速率變化
如圖2所示,各處理土壤的凈硝化速率隨培養(yǎng)時(shí)間總體呈波動(dòng)降低趨勢(shì),其中在培養(yǎng)前期(1~7 d)波動(dòng)較大并在培養(yǎng)結(jié)束趨于一致。在CK處理中,整個(gè)培養(yǎng)階段2個(gè)中性土的凈硝化速率始終呈降低趨勢(shì),在第1天達(dá)最大值,分別為1.78 mg/(kg·d)和2.19 mg/(kg·d),隨后降低;而2個(gè)酸性土的凈硝化速率均呈波動(dòng)降低趨勢(shì),其中酸性土1和2的凈硝化速率最大值分別出現(xiàn)在第1天[1.77 mg/(kg·d)]和第7天2.36 mg/(kg·d)](圖2 a)。在低Cd脅迫下,中性土1和2分別在第1天和4天達(dá)最大值,分別是2.83 mg/(kg·d)和2.67 mg/(kg·d),酸性土1和2分別在第1天和第7天達(dá)到最大值,分別為3.31 mg/(kg·d)和3.20 mg/(kg·d)。與CK相比,低Cd脅迫后第1天明顯降低了中性土2的凈硝化速率,但增加了中性土1和2個(gè)酸性土的凈硝化速率,培養(yǎng)結(jié)束時(shí)4個(gè)土壤的凈硝化速率無(wú)顯著差異(圖2 a和b)。在高Cd脅迫下,中性土和酸性土的凈硝化速率變化趨勢(shì)與低Cd脅迫類似,與CK相比,高Cd脅迫后第1天,中性土1和酸性土2的凈硝化速率明顯降低,而中性土2和酸性土1的凈硝化速率明顯增加(圖2 a和c)。
2.3 ?Cd脅迫下不同植煙土壤N2O排放速率變化
由圖3可知,各處理土壤的N2O排放速率隨培養(yǎng)時(shí)間逐漸降低并趨于平緩,且酸性土的N2O排放速率整體高于中性土。低Cd脅迫下對(duì)N2O排放速率的影響與CK處理一致,各土壤的N2O排放速率在第1天達(dá)最大值,且4種土壤的N2O排放速率大小為:酸性土1>酸性土2>中性土1>中性土1(圖3 a~b)。在高Cd脅迫下,中性土1和2及酸性土1和2的N2O排放速率均在第1天達(dá)最大值,分別為7.04、5.12、53.05和10.97 μg/(kg·d),其中酸性土1在整個(gè)培養(yǎng)時(shí)段內(nèi)的N2O排放速率顯著高于其他3種土壤。酸性土1在Cd脅迫后第1天的N2O排放速率顯著增加,分別是CK和低Cd脅迫處理的2.41和2.54倍。
2.4 ?Cd脅迫下不同植煙土壤N2O累積排放量變化
在培養(yǎng)時(shí)段內(nèi),4種土壤的N2O累積排放量隨著培養(yǎng)時(shí)間而逐漸增加,酸性土的N2O累積排放量始終高于中性土,且酸性土1的N2O累積排放量顯著高于其他3種土壤(圖4 a-c)。此外,高Cd脅迫促進(jìn)酸性土1在各取樣時(shí)段的N2O累積排放量(53.05~355.42 μg/kg)增加,分別是同期CK和低Cd脅迫處理的1.16~2.43倍和1.17~2.54倍。
2.5 ?植煙土壤理化性質(zhì)與凈硝化速率及N2O排放特征的相關(guān)性
如表2所示,土壤凈硝化速率僅與硝態(tài)氮含量呈顯著正相關(guān),N2O排放速率和累積排放量與土壤pH和全氮含量呈極顯著負(fù)相關(guān),與土壤硝態(tài)氮含量呈顯著負(fù)相關(guān),而與土壤有機(jī)質(zhì)和銨態(tài)氮含量均呈極顯著正相關(guān)。此外,N2O排放速率還與土壤的有效磷呈顯著正相關(guān)。
3 ?討 ?論
在農(nóng)田土壤中,由反硝化作用產(chǎn)生的N2O占主要地位[27],其中N2O還原酶對(duì)N2O的產(chǎn)生具有關(guān)鍵調(diào)控作用,該酶通常在中性環(huán)境下起作用并在酸性環(huán)境具有較強(qiáng)活性[28]。彭艷等[17]研究發(fā)現(xiàn),酸性土壤中初始硝態(tài)氮含量增加會(huì)促進(jìn)N2O排放,與該研究結(jié)果相似,本研究中酸性土的N2O排放速率在培養(yǎng)初期(1~7 d)明顯高于中性土,由于土壤pH
下降會(huì)抑制反硝化過(guò)程中N2O還原酶形成,進(jìn)而促進(jìn)N2O的積累[29]。此外,在酸性土壤條件下,真菌反硝化作用對(duì)N2O排放也產(chǎn)生重要促進(jìn)作用[30-32]。許多研究已表明[10,13,33],土壤硝態(tài)氮和銨態(tài)氮含量同樣影響土壤N2O排放。隨著土壤硝化作用進(jìn)程,土壤銨態(tài)氮不斷向硝態(tài)氮轉(zhuǎn)化,硝態(tài)氮不斷累積。本研究中2個(gè)中性土的銨態(tài)氮含量處于較低水平,而土壤硝態(tài)氮含量始終處于較高水平,而且同期土壤N2O排放速率降低。KHALIQ等[33]研究表明,在一定pH范圍內(nèi)(4.78~6.83)硝態(tài)氮含量增加后土壤N2O排放反而減少,這主要原因是在高硝態(tài)氮條件下,微生物不需要耗能產(chǎn)生N2O還原酶,進(jìn)而促使N2O向N2轉(zhuǎn)變[13]。此外,本研究中發(fā)現(xiàn)酸性土1的N2O累積排放量最高,這可能與其較高的有機(jī)質(zhì)含量有關(guān),低pH可增加土壤有機(jī)碳的可利用性,進(jìn)而增強(qiáng)土壤反硝化潛勢(shì),導(dǎo)致N2O排放增加[34-35]。
重金屬脅迫也對(duì)土壤氮轉(zhuǎn)化及N2O排放具有重要影響,GUI等[20]研究表明,低濃度的Cd(2~5 mg/kg)可以顯著促進(jìn)土壤氨氧化作用和硝化作用,使得土壤銨態(tài)氮含量和硝態(tài)氮含量增加,而Cd濃度達(dá)10~20 mg/kg時(shí),則對(duì)這兩個(gè)過(guò)程具有明顯抑制作用。本研究結(jié)果顯示,低Cd脅迫(10 mg/kg)和高Cd脅迫(100 mg/kg)對(duì)培養(yǎng)初期不同土壤凈硝化速率的影響不一致,低Cd脅迫明顯降低了中性土2的初始凈硝化速率(第1 d),但增加了中性土1和兩種酸性土的凈硝化速率,而高Cd脅迫則明顯降低了中性土1和酸性土2的初始凈硝化速率,但增加了中性土2和酸性土1的凈硝化速率。目前,有關(guān)重金屬脅迫對(duì)土壤N2O排放的影響及機(jī)制尚未有一致結(jié)論。一般認(rèn)為隨著重金屬濃度增加,反硝化功能基因nosZ表達(dá)受到抑制,需氧反硝化活動(dòng)降低,導(dǎo)致硝酸鹽離子不斷積累和N2O排放速率增強(qiáng)[36]。與其他重金屬相比,Cd對(duì)土壤反硝化作用的抑制最強(qiáng)[37]。本研究中發(fā)現(xiàn),高Cd脅迫更明顯促進(jìn)酸性土N2O累積排放量增加,這是由于在酸性土壤環(huán)境中,土壤Cd的有效性增加[38],從而加劇了Cd對(duì)N2O轉(zhuǎn)化過(guò)程的關(guān)鍵微生物的抑制作用,如抑制了N2O反硝化還原酶活性[9,18],進(jìn)而促進(jìn)N2O在土壤中的積累。因此,后續(xù)針對(duì)一些具有Cd污染風(fēng)險(xiǎn)的酸性植煙土壤,可以通過(guò)施用生石灰、白云石粉及堿性肥料等酸化改良措施,來(lái)改善土壤酸堿性以降低Cd的有效性,從而起到減少土壤氮素?fù)p失及N2O減排的目的[14,39]。
4 ?結(jié) ?論
隨Cd脅迫培養(yǎng)進(jìn)程,4個(gè)植煙土壤的銨態(tài)氮含量減少,硝態(tài)氮含量逐漸增加,且低Cd和高Cd脅迫均未顯著改變這一變化趨勢(shì)。Cd脅迫對(duì)不同土壤培養(yǎng)初期(1~7 d)的硝化速率影響不一致,低Cd脅迫增加了2個(gè)酸性土和中性土1的凈硝化速率,而高Cd脅迫增加了酸性土1和中性土2的凈硝化速率。酸性土N2O排放潛力最大,高Cd脅迫促進(jìn)酸性土N2O的累積排放量的增加,而且土壤N2O排放速率和累積排放量與土壤pH、全氮及硝態(tài)氮含量呈顯著負(fù)相關(guān)。因此,為減少植煙特別是酸化及Cd污染風(fēng)險(xiǎn)植煙的土壤N2O排放,進(jìn)行土壤酸化改良是行之有效的重要措施。
參考文獻(xiàn)
[1]AMELOOT N, MAENHOUT P, DE N, et al. Biochar-induced N2O emission reductions after field incorporation in a loam soil[J]. Geoderma, 2016, 267: 10-16.
[2]GRIGGS D J, NOGUER M. Climate change 2001: the scientific basis. contribution of working group I to the third assessment report of the intergovernmental panel on climate change[J]. Weather, 2002, 57: 267-269.
[3]王成己,唐莉娜,胡忠良,等. 生物炭和炭基肥在煙草農(nóng)業(yè)的應(yīng)用及展望[J]. 核農(nóng)學(xué)報(bào),2021, 35(4): 997-1007.
WANG C J, TANG L N, HU Z L, et al. The application and prospect of biochar and carbon-based fertilizer in tobacco agriculture[J]. Journal of Nuclear Agriculture, 2021, 35(4): 997-1007.
[4]趙永超,李振杰,劉志華,等. 基于循環(huán)經(jīng)濟(jì)理念指導(dǎo)下的現(xiàn)代煙草農(nóng)業(yè)發(fā)展分析[J]. 山西農(nóng)經(jīng),2020(9):20-21.
ZHAO Y C, LI Z J, LIU Z H, et al. Analysis of the development of modern tobacco agriculture based on the concept of circular economy[J]. Shanxi Agricultural Economics, 2020(9): 20-21.
[5]MIAO Y, STEWART B A, ZHANG F. Long-term experiments for sustainable nutrient management in China. A review[J]. Agronomy for Sustainable Development, 2011, 31(2): 397-414.
[6]ZHU X, BURGER M, DOANE T A, et al. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability[J]. Proceedings of the National Academy of Sciences, 2013, 110(16): 6328-6333.
[7]符春敏,尹黎燕,鄧燕,等. 施肥模式對(duì)菠蘿產(chǎn)量及農(nóng)田氧化亞氮排放的影響[J]. 熱帶生物學(xué)報(bào),2020,11(3):331-340.
FU C M, YIN L Y, DENG Y, et al. Effects of fertilization patterns on pineapple yield and farmland nitrous oxide emissions[J]. Chinese Journal of Tropical Biology, 2020, 11(3): 331-340.
[8]SHAABAN M, PENG Q, BASHIR S, et al. Restoring effect of soil acidity and Cu on N2O emissions from an acidic soil[J]. Journal of Environmental Management, 2019, 250: 109535.
[9]CHEN Z, TU X, MENG H, et al. Microbial process-oriented understanding of stimulation of soil N2O emission following the input of organic materials[J]. Environmental Pollution, 2021, 284: 117176.
[10]彭艷,朱健,楊成,等. 酸性土壤中的碳氮耦合作用與N2O流失研究[J]. 環(huán)境科學(xué)與技術(shù),2019,42(6):57-63.
PENG Y, ZHU J, YANG C, et al. Carbon and nitrogen coupling and N2O emission in acidic soils among different vegetation types[J]. Environmental Science & Technology, 2019, 42(6): 57-63.
[11]JIA Z J, CONRAD R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 2009, 11: 1658-1671.
[12]LU L, JUA Z J. Urease gene-containing archaea dominate autotrophic ammonia oxidation in two acid soils[J]. Environmental Microbiology, 2013, 15: 1795-1809.
[13]QU Z, WANG J, ALMOY T, et al. Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils[J]. Global change biology, 2014, 20(5): 1685-1698.
[14]GUO J H, LIU X J, ZHANG Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327: 1008-1010.
[15]曹文超,宋賀,王婭靜,等. 農(nóng)田土壤N2O排放的關(guān)鍵過(guò)程及影響因素[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào),2019,25(10):1781-1798.
CAO W C, SONG H, WANG Y J, et al. The key process and influencing factors of N2O emission from farmland soil[J]. Journal of Plant Nutrition and Fertilizer, 2019, 25(10): 1781-1798.
[16]劉永卓. 重金屬污染稻田土壤溫室氣體產(chǎn)生相關(guān)的微生物群落結(jié)構(gòu)及活性變化[D]. 南京:南京農(nóng)業(yè)大學(xué),2012.
LIU Y Z. Changes in soil microbial community structure and activity with special reference to greenhouse gases production from rice paddies with heavy metal pollution across south China[D]. Nanjing: Nanjing Agricultural University, 2012.
[17]MAGALHAES C M, MACHADO A, MATOS R, et al. Impact of copper on the diversity, abundance and transcription of nitrte and nitrous oxide reductase genes in an urban European estuary[J]. FEMS Microbiology ecology, 2011, 77: 274-284.
[18]周通. 重金屬污染對(duì)稻田土壤有機(jī)碳礦化、秸稈分解及溫室氣體排放的影響[D]. 南京:南京農(nóng)業(yè)大學(xué),2013.
ZHOU T. The impact of heavy metal pollution on rice soil organic carbon mineralization, straw decomposition and greenhouse gas emissions[D]. Nanjing: Nanjing Agricultural University, 2013.
[19]趙迪. 重金屬脅迫對(duì)潮灘沉積物反硝化作用影響機(jī)制的初步研究[D]. 上海:華東師范大學(xué),2013.
ZHAO D. A preliminary study on the mechanism of heavy metal stress on the denitrification of tidal flat sediments[D]. Shanghai: East China Normal University, 2013.
[20]GUI M, CHEN Q, MA T, et al. Effects of heavy metals on aerobic denitrification by strain Pseudomonas stutzeri PCN-1[J]. Applied Microbiology and Biotechnology, 2017, 101(4): 1717-1727.
[21]孔祥方,魏樹(shù)和,趙繼蓉,等. 旺盛期煙草對(duì)鎘富集敏感性研究[J]. 中國(guó)環(huán)境科學(xué),2021,41(10):4872-4877.
KONG X F, WEI S H, ZHAO J R, et al. Study on the susceptibility of tobacco to cadmium enrichment in the vigorous period[J]. China Environmental Science, 2021, 41(10): 4872-4877.
[22]宋波,楊子杰,張?jiān)葡? 廣西西江流域土壤鎘含量特征及風(fēng)險(xiǎn)評(píng)估[J]. 環(huán)境科學(xué),2018,39(4):1889-1900.
SONG B, YANG Z J, ZHANG Y X. Characteristics and risk assessment of soil cadmium in the Xijiang River Basin, Guangxi[J]. Environmental Science, 2018, 39(4): 1889-1900.
[23]鮑士旦. 土壤農(nóng)化分析[M]. 北京:中國(guó)農(nóng)業(yè)出版社,2000.
BAO S D. Soil agrochemical analysis[M]. Beijing: China Agriculture Press, 2000.
[24]CAI X, LIN Z, PENTTINEN P, et al. Effects of conversion from a natural evergreen broadleaf forest to a Moso bamboo plantation on the soil nutrient pools, microbial biomass and enzyme activities in a subtropical area[J]. Forest Ecology and Management, 2018, 422: 161-171.
[25]KHANOM A, AZAD M A K, ALI M M, et al. Plants and microbes' responses to the net nitrification rates of chemical fertilizers in vegetable soils[J]. Applied Soil Ecology, 2021, 158: 103783.
[26]劉杏認(rèn),趙光昕,張晴雯,等. 生物炭對(duì)華北農(nóng)田土壤N2O通量及相關(guān)功能基因豐度的影響[J]. 環(huán)境科學(xué),2018,39(8):3816-3825.
LIU X R, ZHAO G X, ZHANG Q W, et al. The effect of biochar on soil N2O flux and related functional gene abundance in North China farmland[J]. Environmental Science, 2018, 39(8): 3816-3825.
[27]ZHANG J B, MüLLER C, CAI Z C. Heterotrophic nitrification of organic N and its contribution to nitrous oxide emissions in soils[J]. Soil Biology and Biochemistry, 2015, 84: 199-209.
[28]BERGAUST L, MAO Y J, BAKKEN L R, et al. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide reductase in Paracoccus denitrificans[J]. Applied and Environmental Microbiology, 2010, 76: 6387-6396.
[29]LIU B, FROSTEG?RD ?, BAKKEN L R. Impaired reduction of N2O to N2 in acid soils is due to a posttranscriptional interference with the expression of nosZ[J]. Mbio, 2014, 5(3): e01383-14.
[30]STRICKLAND M S, ROUSK J. Considering fungal: bacterial dominance in soils-methods, controls, and ecosystem implications[J]. Soil Biology & Biochemistry, 2010, 42: 1385-1395.
[31]RüTTING T, HUYGENS D, BOECKXP P, et al. Increased fungal dominance in N2O emission hotspots along a natural pH gradient in organic forest soil[J]. Biology and Fertility of Soils, 2013, 49: 715-721.
[32]HUANG Y, XIAO X, LONG X. Fungal denitrification contributes significantly to N2O production in a highly acidic tea soil[J]. Journal of Soils & Sediments, 2017, 17(6): 1599-1606.
[33]KHALIQ M A, TARIN M W K, JING X G, et al. Soil liming effects on CH4, N2O emission and Cd, Pb accumulation in upland and paddy rice[J]. Environmental Pollution, 2019, 248: 408-420.
[34]SENBAYRAM M, CHEN R, BUDAIA A, et al. N2O emission and the N2O/(N2O+N2) product ratio of denitrification as controlled by available carbon substrates and nitrate concentrations[J]. Agriculture, Ecosystems and Environment, 2012, 147: 4-12.
[35]BADAGLIACCA G, BENíTEZ E, AMATO G, et al. Long-term effects of contrasting tillage on soil organic carbon, nitrous oxide and ammonia emissions in a Mediterranean Vertisol under different crop sequences[J]. Science of The Total Environment, 2018, 619: 18-27.
[36]CHEN Y X, WANG K X, LIN Q, et al. Effects of heavy metals on ammonification, nitrification and denitrification in maize rhizosphere[J]. Pedosphere, 2001, 11(2): 115-122.
[37]HOLTAN-HARTWIG L, BECHMANN M, H?Y?S T R, et al. Heavy metals tolerance of soil denitrifying communities: N2O dynamics[J]. Soil Biology & Biochemistry, 2002, 34(8): 1181-1190.
[38]ANDERSSON A, NILSSON K O. Influence of lime and soil pH on Cd availability to plants[J]. Ambio, 1974: 198-200.
[39]SHAABAN M, PENG Q A, HU R G, et al. Dolomite application to acidic soils: a promising option for mitigating N2O emissions[J]. Environmental Science and Pollution Research, 2015, 22(24): 19961-19970.
2761501186297