国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

低溫影響水稻發(fā)育機(jī)理及調(diào)控途徑研究進(jìn)展

2022-03-17 11:52:02徐青山黃晶孫愛軍洪小智朱練峰曹小闖孔亞麗金千瑜朱春權(quán)張均華
中國水稻科學(xué) 2022年2期
關(guān)鍵詞:早稻秧苗低溫

徐青山 黃晶 孫愛軍 洪小智 朱練峰 曹小闖 孔亞麗 金千瑜 朱春權(quán), * 張均華, *

低溫影響水稻發(fā)育機(jī)理及調(diào)控途徑研究進(jìn)展

徐青山1, #黃晶1, #孫愛軍2洪小智2朱練峰1曹小闖1孔亞麗1金千瑜1朱春權(quán)1, *張均華1, *

(1中國水稻研究所 水稻生物學(xué)國家重點(diǎn)實(shí)驗(yàn)室, 杭州 310006;2蚌埠市億豐生物有機(jī)肥有限公司, 安徽 蚌埠 233300;*通信聯(lián)系人, E-mail: zhuchunquan@caas.cn, zhangjunhua@caas.cn)

早稻育秧期間低溫頻發(fā),嚴(yán)重影響水稻秧苗質(zhì)量,抑制水稻在大田期間的生長發(fā)育,導(dǎo)致水稻減產(chǎn)。深入研究低溫對(duì)水稻生長發(fā)育的影響及適宜的外源調(diào)控途徑對(duì)保障我國早稻生產(chǎn)具有重要意義。本文綜述了低溫對(duì)早稻秧苗期、營養(yǎng)生長期與生殖生長期的影響,概括了水稻響應(yīng)低溫脅迫的生理、生化和分子機(jī)制,包括抗氧化系統(tǒng)、低溫應(yīng)答基因表達(dá)等。最終提出了運(yùn)用耐低溫水稻品種篩選、外源激素施加和合理施肥等提高水稻耐低溫脅迫的措施,并指出未來應(yīng)加強(qiáng)篩選優(yōu)良抗寒水稻品種和集成農(nóng)藝栽培配套技術(shù)等措施提高水稻低溫耐性和擴(kuò)大我國早稻面積。

早稻;低溫;育秧;基因;生長發(fā)育;調(diào)控

我國早稻種植面積約有473萬hm2,產(chǎn)量可達(dá)2729萬t,湖南、湖北、江西等地是我國早稻主產(chǎn)省份。2020年中央“一號(hào)文件”聚焦“三農(nóng)”,鼓勵(lì)稻農(nóng)擴(kuò)大早稻面積,確保我國糧食安全。早稻生產(chǎn)過程中,頻繁的“倒春寒”導(dǎo)致水稻秧苗素質(zhì)降低,引起爛種、爛秧、死苗等現(xiàn)象。隨著全球氣候變化,我國長江中下游及華南地區(qū)早稻和雙季稻的育種時(shí)間普遍前移,甚至部分地區(qū)的育秧時(shí)間由4月中旬提前到3月初,進(jìn)一步增加了水稻育秧期間遭遇低溫的可能。國家統(tǒng)計(jì)局?jǐn)?shù)據(jù)顯示,2014—2018年,我國近一半年份的早稻生產(chǎn)會(huì)遭到大面積低溫冷害,受害面積分別為21.3萬hm2、9.0萬hm2、28.8萬hm2、5.25萬hm2和34.1萬hm2。遭受低溫脅迫時(shí),水稻的吸水能力和蒸騰作用下降,并且吸水受阻程度高于蒸騰作用,破壞水稻植株的水分代謝平衡,導(dǎo)致水稻細(xì)胞失水。同時(shí)低溫會(huì)使水稻體內(nèi)超氧化物歧化酶(SOD)、過氧化氫酶(CAT)、過氧化物酶(POD)活性下降[1],活性氧含量急劇上升,最終導(dǎo)致細(xì)胞膜脂質(zhì)過氧化、蛋白質(zhì)氧化變性、核酸損傷和酶失活,激活細(xì)胞程序性死亡。低溫還間接導(dǎo)致水稻秧苗的株高和根長生長受抑制、光合效率和結(jié)實(shí)率下降,植株能量消耗變大,延長水稻生育期[2],增加了水稻減產(chǎn)的風(fēng)險(xiǎn)。本文綜述了低溫對(duì)水稻全生育期生理生化途徑的影響機(jī)制、水稻低溫信號(hào)傳導(dǎo)途徑以及增強(qiáng)水稻耐低溫性能的外源調(diào)控措施,并對(duì)未來水稻抗寒育種和栽培技術(shù)的發(fā)展做出了展望,以期為我國早稻安全生產(chǎn)和水稻耐低溫育種提供參考。

1 水稻溫度適應(yīng)性

水稻是喜高溫、多濕、短日照的作物。水稻發(fā)芽的最低溫度為10~12℃,最適溫度為18~33℃[3]。溫度過低影響水稻發(fā)芽率和發(fā)芽速度,引起水稻發(fā)芽不齊,同時(shí)增強(qiáng)水稻幼苗呼吸作用,增大對(duì)胚乳消耗,不利于水稻幼苗后期生長。水稻從發(fā)芽至3葉期,31℃屬于最適宜的溫度。早稻育秧期間溫度持續(xù)低于12℃,水稻秧苗會(huì)停止生長,低溫持續(xù)超過3 d,秧苗易感染綿腐病,出現(xiàn)爛秧、死苗現(xiàn)象。在水稻分蘗期,水溫對(duì)植株的影響大于氣溫,這一時(shí)期最適宜的水溫為32~34℃,以最高不超過40℃,最低不低于16℃為宜[4]。適宜溫度范圍內(nèi),溫度越高,水稻分蘗期發(fā)生的時(shí)間越早,分蘗數(shù)量也較多。水稻孕穗期發(fā)育要達(dá)到臨界溫度18℃,如果達(dá)不到該溫度,幼穗的生長發(fā)育將會(huì)停止。水稻灌漿期對(duì)溫度及溫差的要求較高,光合產(chǎn)物運(yùn)輸及轉(zhuǎn)移的最適宜溫度為21~30℃[5]。在適宜溫度范圍內(nèi),隨著溫度升高灌漿天數(shù)縮短。

在水稻生長發(fā)育過程中,低溫脅迫主要發(fā)生在早稻芽期和苗期,晚稻孕穗期、抽穗揚(yáng)花期和灌漿期。低溫會(huì)直接抑制水稻的發(fā)芽[6]。苗期低溫導(dǎo)致秧苗葉片失綠、發(fā)僵,同時(shí)降低水稻分蘗數(shù),延遲水稻生長,降低水稻產(chǎn)量[7]。孕穗期遭受低溫導(dǎo)致水稻花粉敗育,進(jìn)而影響水稻正常開花授粉,造成水稻結(jié)實(shí)率降低,比如孕穗期連續(xù)5 d遭遇15℃低溫使水稻穗粒數(shù)降低13.1%,結(jié)實(shí)率降低5.1%,空殼率上升8%[8, 9]。抽穗揚(yáng)花期遭受低溫導(dǎo)致水稻包頸,花藥不能正常開裂散粉,或者掉落到柱頭上的花粉萌發(fā)授精異常,導(dǎo)致稻株結(jié)實(shí)率下降,比如水稻開花期遭遇15℃低溫導(dǎo)致花藥開裂率降低19.9%~44.0%,花粉萌發(fā)率降低36.9%~74.1%[10]。同時(shí),低溫脅迫還造成花粉可育率降低,水稻受精結(jié)實(shí)差,結(jié)實(shí)率降低,空殼率上升,并且低溫持續(xù)時(shí)間越長,空殼率越高[11]。灌漿期遭受低溫導(dǎo)致水稻光合功能與產(chǎn)物運(yùn)輸功能受到損害,導(dǎo)致籽粒灌漿不佳,產(chǎn)量性狀與品質(zhì)性狀下降[12]。

2 低溫對(duì)水稻生化特征的影響

2.1 低溫對(duì)水稻秧苗素質(zhì)的影響

根系是水稻養(yǎng)分和水分吸收的直接器官,也是多種物質(zhì)的合成與轉(zhuǎn)化場所。低溫條件下,水稻秧苗的最長根長、根數(shù)、根系吸收面積、根系活力等指標(biāo)均會(huì)下降,并且隨著處理時(shí)間延長,各指標(biāo)降低幅度逐漸增大[13]。低溫脅迫導(dǎo)致水稻細(xì)胞失水,細(xì)胞內(nèi)水勢升高,滲透勢降低,同時(shí)導(dǎo)致水稻根尖薄壁細(xì)胞形狀不規(guī)則、維管束結(jié)構(gòu)不清晰、木質(zhì)部排列紊亂,從而引起水稻根系輸導(dǎo)功能障礙,水稻地上部得不到充足的水分和養(yǎng)分供應(yīng),引起水稻地上部失水萎蔫[14]。

低溫情況下,水稻幼苗出現(xiàn)發(fā)芽慢、出苗慢、生長慢、抗性降低、易發(fā)病和秧苗素質(zhì)降低等癥狀。低溫對(duì)水稻光合作用和呼吸作用均有不利影響。低溫導(dǎo)致水稻葉綠體合成受阻、功能紊亂,細(xì)胞膜透性增大,秧苗生長緩慢、矮小,使水稻秧苗生長周期延長,不僅影響秧苗素質(zhì),且對(duì)水稻大田生育進(jìn)程也有較大影響,甚至降低水稻產(chǎn)量。低溫還降低了水稻葉片的凈光合速率、蒸騰速率與氣孔導(dǎo)度,引起葉片初始最小熒光(o)與光合系統(tǒng)Ⅱ非調(diào)控能量耗散系數(shù)升高,葉片光合系統(tǒng)Ⅱ最大潛在光化學(xué)效率(v/m)與光化學(xué)轉(zhuǎn)換的實(shí)際量子效率(PSⅡ)的降低[15]。水稻葉片呼吸速率()與光合速率(o)關(guān)系密切,低溫脅迫下,溫度越低,o/的比值越大,說明呼吸作用降低越明顯,對(duì)水稻秧苗危害也就越大[16]。Jia等[17]研究發(fā)現(xiàn),苗期低溫處理,會(huì)使秧苗葉片葉綠素含量下降,光合速率下降,根系活力下降和分蘗成穗減少,導(dǎo)致水稻植株鮮質(zhì)量及干質(zhì)量均下降,水稻生長停滯。除此之外,低溫易引起水稻根系的營養(yǎng)物質(zhì)大量外滲,為疫霉、霜霉、腐霉和絲核病菌等霉菌的生長和傳播提供有利的條件,引起立枯病和青枯病,導(dǎo)致植株黃化和矮化,甚至死亡,最終影響水稻秧苗的成苗率[18]。

2.2 低溫對(duì)水稻大田生長發(fā)育影響

低溫對(duì)水稻大田營養(yǎng)生長期的影響主要發(fā)生在水稻分蘗期和拔節(jié)期。水稻分蘗期,低溫不僅導(dǎo)致水稻生長受到明顯抑制,株高及其生長速度下降、分蘗減緩、最高分蘗數(shù)減少,而且會(huì)導(dǎo)致水稻后期葉面積指數(shù)和有效葉面積率降低,同時(shí)還影響該時(shí)期葉片干物質(zhì)積累與轉(zhuǎn)運(yùn),延長水稻生長周期,降低產(chǎn)量。在水稻拔節(jié)期,低溫導(dǎo)致莖鞘干質(zhì)量、葉片干質(zhì)量和葉面積下降,使水稻葉片、莖稈干物質(zhì)積累量減少,水稻生育期延長。但也有相關(guān)研究發(fā)現(xiàn),在水稻拔節(jié)期用低于外界5℃的溫度進(jìn)行處理,其稻米蛋白質(zhì)含量增加3.45%,糙米率減少0.7個(gè)百分點(diǎn),堊白粒率減少33.3個(gè)百分點(diǎn),表明適度低溫有利于提高水稻養(yǎng)分含量,減少糙米率,改善稻谷外觀品質(zhì)[19]。

低溫對(duì)水稻生殖生長期的影響主要發(fā)生在孕穗期。水稻幼穗期遭遇低溫,導(dǎo)致葉綠素含量及RuBP酶活性降低、凈光合速率下降、淀粉和蔗糖的累積減少。譚孟祥等[20]研究發(fā)現(xiàn),早稻幼穗分化期對(duì)低溫的耐受能力最弱,可能是該時(shí)期連續(xù)低溫導(dǎo)致水稻花粉母細(xì)胞發(fā)育受阻、穎花退化,造成空殼率增加而造成減產(chǎn)。水稻孕穗期低溫對(duì)產(chǎn)量的影響主要表現(xiàn)為結(jié)實(shí)率降低,比如,水稻孕穗期連續(xù)7 d遭遇13℃低溫,導(dǎo)致水稻47.1%~60.6%的空殼率,同時(shí)葉片枯死率達(dá)50.1%,穗長減少16.2%[21]。水稻花粉母細(xì)胞在減數(shù)分裂期和小孢子形成初期遇低溫冷害,可導(dǎo)致花藥中絨氈層細(xì)胞異常肥大,引起細(xì)胞功能降低和紊亂,花藥不能供給花粉足夠養(yǎng)分,影響受精結(jié)實(shí)。水稻抽穗揚(yáng)花期遇低溫冷害,影響花粉成熟和花粉發(fā)芽,使受精后的合子停止發(fā)育而造成秕粒,降低產(chǎn)量[22]。水稻穗分化期低溫試驗(yàn)發(fā)現(xiàn),在有害低溫范圍內(nèi),連續(xù)5 d內(nèi),水稻穗分化期平均氣溫每降低1℃,空殼率約上升4.3個(gè)百分點(diǎn),引起水稻大幅度減產(chǎn),且低溫持續(xù)時(shí)間越長,冷害減產(chǎn)越嚴(yán)重[23]。

3 低溫對(duì)水稻抗氧化系統(tǒng)影響

正常情況下水稻體內(nèi)活性氧的產(chǎn)生與清除處于動(dòng)態(tài)平衡狀態(tài)。在低溫脅迫下,水稻體內(nèi)活性氧含量急劇上升,導(dǎo)致細(xì)胞膜脂質(zhì)過氧化、蛋白質(zhì)氧化變性、核酸損傷和酶失活[24],并且使POD、CAT、SOD的活性降低,加快細(xì)胞衰老,激活細(xì)胞程序性死亡[25]。長期低溫會(huì)產(chǎn)生大量的膜脂過氧化產(chǎn)物丙二醛(MDA),同時(shí)提高根系相對(duì)電導(dǎo)率,并且隨著低溫時(shí)間的延長,水稻根系MDA含量和相對(duì)電導(dǎo)率增幅逐步增大。

水稻靠兩套活性氧清除系統(tǒng)來清除細(xì)胞內(nèi)的過量活性氧。一是酶促清除系統(tǒng),它是活性氧清除系統(tǒng)的第一道防線,主要靠SOD、POD和CAT起作用。SOD可有效清除水稻體內(nèi)的氧自由基。POD可以防止羥基在水稻體內(nèi)的積累。CAT則是一種酶類清除劑,又稱為觸酶,它是以鐵卟啉為輔基的結(jié)合酶,是生物防御體系的關(guān)鍵酶之一[26]。另一類為非酶促清除系統(tǒng),包括維生素E、A、C,輔酶Q、硒、抗壞血酸、抗壞血酸硫基化合物(谷胱甘肽、半胱氨酸等)。維生素E抗氧化作用機(jī)制是它能給脂類的自由基提供一個(gè)氫離子,與游離的電子發(fā)生作用,抑制自由基,從而制止脂質(zhì)氧化的鏈?zhǔn)椒磻?yīng)[27]。谷胱甘肽過氧化物酶將過氧化物轉(zhuǎn)化為相關(guān)的醇類(或水)并能清除自由基,硒是其重要組成成分[28]??箟难崮芘c活性氧反應(yīng)后形成單脫氫抗壞血酸和脫氫抗壞血酸。脫氫抗壞血酸可分解為酒石酸和草酰乙酸;而單脫氫抗壞血酸還原酶和脫氫抗壞血酸還原酶可以利用還原性輔酶(NADPH)或谷胱甘肽提供的還原力將單脫氫抗壞血酸和脫氫抗壞血酸氧化為抗壞血酸,從而形成抗壞血酸的循環(huán)。谷胱甘肽(glutathione,GSH)能直接作為自由基清除劑與單線態(tài)氧、超氧化物陰離子和羥自由基發(fā)生化學(xué)反應(yīng),能除去過氧化反應(yīng)形成的?;^氧化物而穩(wěn)定膜結(jié)構(gòu),同時(shí)能作為抗壞血酸循環(huán)中的還原劑,使抗壞血酸再生。

4 水稻應(yīng)對(duì)低溫脅迫的內(nèi)在適應(yīng)性

低溫導(dǎo)致水稻細(xì)胞原生質(zhì)流動(dòng)減慢或停止,水分平衡失調(diào)(蒸騰大于吸水),光合速率減弱,呼吸速率起落大,代謝紊亂。水稻在長期進(jìn)化過程中,也產(chǎn)生了一系列感應(yīng)低溫信號(hào)的傳導(dǎo)機(jī)制。水稻感應(yīng)低溫的信號(hào)傳導(dǎo)途徑是由多種途徑相互關(guān)聯(lián)、共同作用的過程。

到目前為止,已經(jīng)發(fā)現(xiàn)了水稻體內(nèi)較多與低溫脅迫相關(guān)的基因,這些基因可以分為兩類。第一類是直接保護(hù)水稻細(xì)胞免受低溫脅迫的功能成分,即代謝途徑中的酶。第二類是在應(yīng)激反應(yīng)中調(diào)控基因表達(dá)的信號(hào)分子,即信號(hào)轉(zhuǎn)導(dǎo)成分和轉(zhuǎn)錄因子(transcription factors, TFs)。TFs可與靶基因共同構(gòu)成調(diào)控因子,參與低溫應(yīng)激反應(yīng)相關(guān)基因的激活或抑制信號(hào)轉(zhuǎn)導(dǎo)。

冷害應(yīng)激反應(yīng)是由細(xì)胞膜上的膜受體感知的,用于信號(hào)轉(zhuǎn)導(dǎo)。來自細(xì)胞膜的信號(hào)通過鈣調(diào)磷酸酶B類蛋白(CBL)、CPKs、CIPKs、CDPKs來誘導(dǎo)cAMP、Ca2+和活性氧(ROS)調(diào)控信號(hào)傳導(dǎo)。CBL、CPKs、CIPKs、CDPKs通過ICECBF/DREB轉(zhuǎn)錄因子調(diào)控路徑傳達(dá)到細(xì)胞核。轉(zhuǎn)錄因子、、、和調(diào)節(jié)基因表達(dá),從而激活應(yīng)激反應(yīng)基因,如等[29]。

同時(shí)CBF/DREB1轉(zhuǎn)錄調(diào)節(jié)子被認(rèn)為在植物忍受低溫脅迫過程中起著重要作用。在低溫條件下,基因的誘導(dǎo)蛋白ICE1受到泛素化修飾,結(jié)合到基因啟動(dòng)子序列中的MYC元件上,誘導(dǎo)基因表達(dá)[30]。類基因的編碼產(chǎn)物能特異性地結(jié)合到包含CRT/DRE順式作用元件的啟動(dòng)子上,啟動(dòng)下游功能基因的表達(dá),從而提高植物的低溫耐性[31]。

脫落酸(ABA)是植物體內(nèi)一種多功能植物激素。在植物抵抗非生物逆境脅迫、衰老、分化發(fā)育等過程中起著重要作用。水稻感受低溫脅迫時(shí),ABA是感受低溫信號(hào)傳導(dǎo)的重要物質(zhì)。ABA信號(hào)傳導(dǎo)通路由ABA受體PYR/PYL/RCAR(pyrabactin resistance/pyrabactin resistance-like/regulatory component of abscisic acid receptor)、負(fù)調(diào)控因子2C類蛋白磷酸酶(type 2C protein phosphatase,PP2C)、正調(diào)控因子SNF1相關(guān)的蛋白激酶(SNFl related protein kinase 2,SnRK2)和轉(zhuǎn)錄因子AREB/ABF等4個(gè)核心組分共同組成一個(gè)雙重負(fù)調(diào)控系統(tǒng)[32],低溫下水稻內(nèi)源ABA升高,與PYR/PYL/RCAR和PP2C相結(jié)合,SnRK2磷酸化下游轉(zhuǎn)錄因子如AREB/ABF等,進(jìn)一步激活下游ABA響應(yīng)低溫應(yīng)答基因表達(dá),從而提高水稻對(duì)低溫的耐受性[33]。

Ca2+在植物生長發(fā)育的整個(gè)生育期及植物對(duì)生物和非生物脅迫響應(yīng)的過程中均起著極其重要的作用。Ca2+通道位于水稻細(xì)胞內(nèi)膜和質(zhì)膜上。當(dāng)水稻感受到低溫時(shí),Ca2+通道打開,使胞外或胞內(nèi)的Ca2+進(jìn)入到胞質(zhì)中,細(xì)胞內(nèi)Ca2+濃度升高,進(jìn)而通過誘導(dǎo)水稻體內(nèi)抗氧化基因的表達(dá)和脫落酸含量的升高等一系列應(yīng)答反應(yīng)來提高水稻植株的低溫抗性。水稻細(xì)胞內(nèi)Ca2+濃度的變化主要是通過體內(nèi)Ca2+轉(zhuǎn)運(yùn)系統(tǒng)調(diào)節(jié)實(shí)現(xiàn)的,Ca2+轉(zhuǎn)運(yùn)系統(tǒng)包括Ca2+通道、Ca2+-ATPase(Ca泵)和Ca2+/H+反向轉(zhuǎn)運(yùn)蛋白等[34]。低溫還誘導(dǎo)水稻細(xì)胞中多個(gè)Ca2+感受器基因或與Ca2+感受器相互作用的編碼基因表達(dá)。在低溫脅迫下,水稻體內(nèi)基因可調(diào)控激活G蛋白和GTPase,而蛋白與G蛋白相互作用可激活Ca2+通道,使水稻根細(xì)胞中的Ca2+流快速增加,激活Ca2+信號(hào)通路,從而增強(qiáng)水稻低溫耐性[35]。

CDPKs家族也存在一些參與水稻低溫應(yīng)答的基因。當(dāng)水稻受到低溫刺激或用赤霉素(GA3)處理時(shí),蛋白基因表達(dá)和蛋白積累量都增多,且轉(zhuǎn)基因水稻品系在受低溫傷害時(shí)植株恢復(fù)率比對(duì)照品系高,表達(dá)的水稻品種低溫耐性比敏感水稻品種強(qiáng),研究結(jié)果也說明可能是水稻低溫應(yīng)答信號(hào)網(wǎng)絡(luò)的重要蛋白[36]。

近些年來,[37]和[38]基因也被發(fā)現(xiàn)在提高水稻耐冷性方面有著重要作用。當(dāng)水稻遇到冷脅迫時(shí),會(huì)誘導(dǎo)bZIP73Jap形成異源二聚體,從而抑制ABA生物合成基因和和激活過氧化物酶基因的表達(dá),最終提高苗期的抗寒性。在生殖期,bZIP71:bZIP73Jap形成異源二聚體,激活、單糖轉(zhuǎn)運(yùn)基因和和細(xì)胞壁轉(zhuǎn)化酶基因的轉(zhuǎn)錄,促進(jìn)可溶性糖從花藥向花粉的轉(zhuǎn)運(yùn),從而提高低溫脅迫下水稻結(jié)實(shí)率[39](圖1)。

除此之外,還有一些基因也被發(fā)現(xiàn)能夠提高水稻低溫耐性?;蚓幋a一種定位于質(zhì)膜和內(nèi)質(zhì)網(wǎng)(ER)的G蛋白信號(hào)調(diào)節(jié)因子。在低溫條件下,它能與G蛋白α亞基相互作用,激活Ca2+低溫感應(yīng)通道,同時(shí)提高G蛋白的GTPase酶活性[40]。是水稻體內(nèi)與編碼Ca2+依賴蛋白激酶(CDPK)有關(guān)的基因,當(dāng)基因過表達(dá)時(shí),顯著緩解水稻遭受的冷脅迫[41]。在水稻遭受冷脅迫時(shí)可以保護(hù)質(zhì)膜在低溫脅迫下的完整性[41]??梢酝ㄟ^增強(qiáng)水稻的抗氧化系統(tǒng)提高水稻對(duì)低溫的耐受性[42]。同時(shí)還有一些在水稻不同生長時(shí)期所表現(xiàn)的耐低溫相關(guān)基因(表1)和調(diào)控水稻低溫代謝類型各種基因(表2)也被逐步發(fā)現(xiàn)。

5 提高水稻低溫耐性途徑

5.1 耐低溫水稻品種篩選

提高水稻在低溫下的抗性,首先要培育抗低溫品種。一方面可以利用傳統(tǒng)雜交、芽變、誘變等常規(guī)育種途徑選育出良好的抗低溫水稻品種。另一方面可以利用基因工程技術(shù)導(dǎo)入耐低溫基因,例如()基因是從擬南芥中克隆到的、能調(diào)節(jié)植株耐冷性的轉(zhuǎn)錄因子,在低溫條件下可以活化ICE1蛋白,進(jìn)而激活基因表達(dá);CBF3蛋白通過調(diào)控基因下游低溫應(yīng)答基因的表達(dá),從而增強(qiáng)擬南芥的抗低溫性能。將擬南芥中的基因轉(zhuǎn)入到水稻細(xì)胞中,水稻過量表達(dá)基因,可通過減輕膜脂過氧化程度與調(diào)整抗氧化酶活性來增強(qiáng)轉(zhuǎn)基因水稻的低溫耐性[85]。同時(shí)還可以向水稻細(xì)胞中導(dǎo)入抗?jié)B透脅迫相關(guān)基因、抗凍蛋白基因、脂肪酸去飽和代謝關(guān)鍵酶基因、SOD等抗氧化系統(tǒng)的基因和與植物激素調(diào)節(jié)有關(guān)的基因,或者使水稻細(xì)胞內(nèi)的抗低溫基因過表達(dá)來提高水稻的耐低溫脅迫能力。例如[86]和[87]都被證明在水稻抗低溫過程中起重要作用,在水稻感受低溫時(shí)過表達(dá)這部分基因,將顯著增強(qiáng)水稻的抗寒性。同時(shí)也可敲除低溫敏感基因使水稻對(duì)低溫的感受能力降低,從而提高水稻的抗寒性,如[88],[62]和[89]。

圖1 bZIP73Jap介導(dǎo)的水稻苗期和繁殖期耐冷性的分子機(jī)制[39]

Fig. 1. Molecular mechanism of-mediated cold tolerance at seedling and breeding stages in rice[39].

表1 水稻不同時(shí)期的耐低溫基因

表2 不同基因調(diào)控水稻低溫耐性代謝類型

5.2 外源激素調(diào)控

水稻低溫耐受性不僅受品種本身遺傳特性影響,與低溫條件下的栽培措施也密切相關(guān)。通過研究抗寒劑,可提高水稻在低溫條件下的抗性。比如,吡咯喹啉醌(PQQ)可通過提高水稻幼苗中抗氧化酶的活性來提高水稻秧苗的抗低溫能力[90];烯唑醇(S08)和水楊酸(SA)復(fù)配可提高水稻秧苗葉片中SOD、CAT和可溶性糖的含量來提高水稻秧苗葉片的抗氧化能力,減輕低溫下細(xì)胞膜過氧化傷害,提高葉片的光合能力,最終增強(qiáng)秧苗的耐冷性[91]。在低溫條件下,用公主嶺霉素處理的水稻秧苗,稻種萌發(fā)的臨界溫度降低4.1%,SOD和多酚氧化酶(PPO)的活性分別比對(duì)照提高57.2%和28.5%,同時(shí)還會(huì)調(diào)控部分抗寒基因(例如、和)的過量表達(dá),加快低溫脅迫的響應(yīng)速度及提高幼苗體內(nèi)防御酶的活性,增強(qiáng)水稻幼苗耐冷性[92]。

低溫條件下,噴施0.001 μmol/L2, 4-表油菜素內(nèi)酯(2, 4-epibrassinolide, EBR)能使水稻的可溶性蛋白含量增加14.2%,根中MDA含量降低22.7%,水稻幼苗根系的SOD、POD和CAT活性較低溫對(duì)照組增加14.88%~73.92%,從而減輕低溫脅迫對(duì)水稻幼苗生長的抑制作用,增強(qiáng)其低溫耐受能力[93]。同時(shí)Bergonci等[94]研究發(fā)現(xiàn)EBR還能通過與生長素互作,調(diào)節(jié)側(cè)根發(fā)育,促進(jìn)細(xì)胞的縱向生長,緩解低溫脅迫對(duì)水稻植株的損傷。對(duì)開花期水稻噴施外源脫落酸發(fā)現(xiàn),水稻開花期噴施外源脫落酸能夠有效增加低溫條件下水稻葉鞘可溶性糖、脯氨酸含量,降低MDA含量和相對(duì)電導(dǎo)率,同時(shí)提高保護(hù)酶活性,從而達(dá)到抵御低溫、降低傷害的作用[95-96]。低溫條件下對(duì)玉米幼苗噴施ABA能夠提高玉米葉片中內(nèi)源ABA含量和基因表達(dá)量?;虮磉_(dá)量的提升,也會(huì)促進(jìn)內(nèi)源ABA的合成,因此認(rèn)為外源ABA可能作為植物體內(nèi)ABA合成過程中的正向調(diào)控因子,從而發(fā)揮抵御低溫的調(diào)節(jié)效應(yīng)[97]。對(duì)煙草施加促進(jìn)乙烯合成的1-氨基-環(huán)丙烷-1-羧酸(ACC,1-aminocyclopropane-1-carboxylic acid),植株的耐低溫性增強(qiáng),施加抑制乙烯合成的2-氨基乙氧基乙烯甘氨酸(AVG,aminoethoxyvinylglycine)或乙烯受體拮抗劑硝酸銀,植株的低溫耐性減弱[98]。

我們在水稻苗期低溫調(diào)控方面也做了很多嘗試。在早稻低溫育秧期間,與營養(yǎng)土育秧相比,無土基質(zhì)育秧和發(fā)酵基質(zhì)育秧會(huì)顯著提高水稻秧苗的氮、磷、鉀養(yǎng)分含量和水稻秧苗葉片中超氧化物歧化酶、過氧化氫酶活性、脯氨酸含量和可溶性蛋白含量,同時(shí)、、和四個(gè)抗寒基因的表達(dá)也明顯提高,表明無土基質(zhì)和發(fā)酵基質(zhì)通過調(diào)控水稻秧苗體內(nèi)的生理生化反應(yīng)和相關(guān)基因表達(dá),提高秧苗耐低溫脅迫能力[99]。在此基礎(chǔ)上,采用發(fā)酵基質(zhì)外源添加植物激素褪黑素和茉莉酸甲酯后顯著增加水稻在低溫條件下的發(fā)芽率,促進(jìn)了水稻幼苗在低溫條件下的生長,進(jìn)一步研究發(fā)現(xiàn)褪黑素和茉莉酸甲酯均能通過調(diào)控水稻體內(nèi)抗氧化系統(tǒng)酶活性、滲透物質(zhì)含量、葉綠素含量、植物激素含量(ABA和GA3)和耐冷基因表達(dá)提高水稻耐低溫脅迫能力(未發(fā)表)。

5.3 合理施肥

肥料的合理利用也是提高水稻抗寒性的途徑之一。有很多研究表明增加礦質(zhì)營養(yǎng)可以有效提高水稻植株的抗寒性。雙季早稻幼穗分化期遭遇低溫,葉面噴施0.3%的磷酸氫二鉀,可使水稻葉片中SOD和POD的活性分別增加23.1%和52.7%,并且每穗總粒數(shù)、結(jié)實(shí)率、千粒重均有明顯提高[100]。在寒冷稻作區(qū)的低溫年,增加氮肥用量,水稻抽穗期與成熟期都適當(dāng)延遲,產(chǎn)量構(gòu)成因素中的穎花量增加,結(jié)實(shí)率下降[101]。在低溫條件下,減施氮肥,增施鉀肥和磷肥,會(huì)減小水稻體內(nèi)脯氨酸增幅并增強(qiáng)水稻根系活力,水稻抽穗加速,提高結(jié)實(shí)率及產(chǎn)量[102]。除此之外,增施鉬肥也可增加水稻植株的抗寒性,其主要原因是鉬通過醛氧化酶(Aldehyde oxidase, AO)調(diào)節(jié)ABA的生物合成,植物激素ABA介導(dǎo)低溫響應(yīng)基因的表達(dá),從而提高水稻植株的抗性[103]。在低溫脅迫條件下,適當(dāng)濃度的Ca2+(0.5~1.0 mmol/L)可降低水稻幼苗電解質(zhì)滲透率和MDA含量,提高SOD、POD和CAT活性,保護(hù)葉綠體、線粒體免遭破壞,從而提高水稻植株的抗寒性[104-105]。

5.4 其他途徑

在易發(fā)低溫冷害區(qū)選育優(yōu)良的抗寒水稻品種,在苗期對(duì)秧苗進(jìn)行低溫鍛煉,誘導(dǎo)相關(guān)抗冷基因的表達(dá),也可以增加低溫條件下水稻抗寒性,降低后期冷害所帶來的危害[106]。地膜覆蓋也是有效減少低溫危害的農(nóng)藝措施之一,用覆膜種植,能使土壤日平均增溫2.8℃,同時(shí)提升土壤肥力,培育壯苗,縮短水稻的生育期[107]。針對(duì)早稻苗期育秧,可采用大棚室內(nèi)秧盤育秧,對(duì)于秧盤基質(zhì)種類的選擇,要選擇保溫保濕性能好,養(yǎng)分均衡的基質(zhì),從而減少早稻育秧期間低溫冷害對(duì)于早稻秧苗的傷害。對(duì)于已經(jīng)播種到大田的秧苗,在遭受低溫時(shí),可采用控制水層的方法來減少低溫對(duì)秧苗的傷害。水的比熱容較大、導(dǎo)熱能力弱,在遇到低溫天氣時(shí)用水調(diào)溫可以有效改變稻田的小氣候。在我國北方寒帶稻作區(qū),秧苗遇到10~12℃低溫時(shí),只要灌薄水就可以防御冷害[108]。溫度越低所需的水層就越高,但最好不要超過葉尖,高水層時(shí)應(yīng)頻繁換水以保證水中的含氧量。當(dāng)氣溫在10℃以下時(shí),灌水深度以葉尖露出水面為宜。在連續(xù)低溫危害時(shí),每隔2~3 d更換田水一次,以補(bǔ)充水中氧氣,天氣轉(zhuǎn)暖后逐漸排除田水。當(dāng)氣溫在16℃以下時(shí),田間灌水4~10 cm,比不灌水的土溫提高3~5℃,對(duì)冷害防御效果十分明顯。

6 研究展望

低溫災(zāi)害頻發(fā)及水稻播種期的前移已成為我國水稻產(chǎn)量的重要限制因素之一。目前雖然對(duì)于水稻低溫信號(hào)傳導(dǎo)機(jī)制研究有了一定進(jìn)展,但對(duì)于水稻低溫信號(hào)傳導(dǎo)的復(fù)雜結(jié)構(gòu)網(wǎng)絡(luò)仍需要有進(jìn)一步的認(rèn)識(shí)。對(duì)低溫信號(hào)傳導(dǎo)的ABA途徑和Ca2+途徑雖然有了較為清晰的認(rèn)識(shí),但對(duì)于低溫信號(hào)如何傳遞到水稻細(xì)胞核和低溫信號(hào)如何調(diào)控水稻細(xì)胞做出生理反應(yīng)的研究仍需要不斷探索。選育耐低溫水稻品種是解決水稻冷害的主要途徑。相關(guān)研究表明,野生稻中含有豐富的耐冷基因,即使環(huán)境溫度在0℃以下,野生稻仍保持有頑強(qiáng)的生命力[109]。因此可以利用對(duì)野生稻耐冷基因的定位與克隆,輔以轉(zhuǎn)基因技術(shù),將其耐冷基因轉(zhuǎn)到傳統(tǒng)水稻上,進(jìn)而提高水稻品種的抗寒性。

除了優(yōu)良抗寒水稻品種,成熟的農(nóng)藝栽培配套技術(shù)也是提高水稻抗寒性的重要措施之一。苗期的抗寒訓(xùn)練,增加磷鉀肥和礦質(zhì)營養(yǎng),都有利于提高水稻的抗寒性。同時(shí)利用遙感技術(shù),對(duì)極端低溫天氣進(jìn)行有效的預(yù)測和預(yù)防,減少低溫對(duì)水稻植株的損傷。新型抗寒劑的使用,也是低溫條件下提高水稻抗性的重要措施之一。目前已有抗寒劑都有一定局限性。以脫落酸為主要成分的抗寒劑雖然調(diào)控效果較好,但價(jià)格昂貴,目前主要用于實(shí)驗(yàn)室研究,難于大面積推廣。以水楊酸為主要成分的抗寒劑,雖然價(jià)格便宜,但抗寒效果不顯著,難以滿足生產(chǎn)需要。一些化學(xué)合成類抗寒劑,對(duì)于環(huán)境和生態(tài)系統(tǒng)會(huì)產(chǎn)生一定負(fù)面作用。因此,尋找一種價(jià)格低廉、效果顯著、綠色環(huán)保的新型抗寒劑也顯得尤為重要。未來抗寒劑要從植物本身去尋找,最大限度地減輕對(duì)環(huán)境的危害。在發(fā)展抗寒劑的同時(shí),注重多功能試劑的研發(fā),以利于水稻在不同逆境中積極做出生理調(diào)整。

[1] 徐偉豪, 柳洪良, 樸雪梅, 韓云哲, 王亮, 張基德, 具紅光. 不同生育時(shí)期低溫脅迫對(duì)水稻保護(hù)酶的影響[J]. 現(xiàn)代農(nóng)業(yè)研究, 2020, 26(5): 49-53.

Xu W H, Liu H L , Pu X M, Han Y Z, Wang L, Zhang J D, Ju H G. Effects of low temperature stress on protective enzymes in rice leaves at different growth stages[J]., 2020, 26(5): 49-53.(in Chinese with English abstract)

[2] 孫擎, 楊再強(qiáng), 高麗娜, 殷劍敏, 王學(xué)林, 李伶俐. 低溫對(duì)早稻幼穗分化期葉片生理特性的影響及其與產(chǎn)量的關(guān)系[J]. 中國生態(tài)農(nóng)業(yè)學(xué)報(bào), 2014, 22(11): 1326-1333.

Sun Q, Yang Z Q, Gao L N, Yin J M, Wang X L, Li L L. Effect of low temperature stress on physiological characteristics of flag leaf and its relationship with grain yield during panicle primordium differentiation stage of early rice[J]., 2014, 22(11): 1326-1333.(in Chinese with English abstract)

[3] 余保生, 王萬福, 謝保忠. 極端溫度對(duì)水稻生產(chǎn)的影響[J]. 現(xiàn)代農(nóng)業(yè)科技, 2010(24): 92, 98.

Yu B S, Wang W F, Xie B Z. Effect of extreme temperature on rice production[J]., 2010(24): 92, 98.(in Chinese)

[4] 王芹. 氣候條件對(duì)水稻生長的影響[J]. 現(xiàn)代農(nóng)業(yè)科技, 2012(22): 242.

Wang Q. Effects of Climatic conditions on the growth of rice[J]., 2012(22): 244.(in Chinese with English abstract)

[5] 陶樂圓, 劉智蕾, 劉婷婷, 于彩蓮, 王偉, 李奕, 彭顯龍. 營養(yǎng)生長期低溫持續(xù)時(shí)間與水稻生長恢復(fù)的關(guān)系[J]. 生態(tài)學(xué)雜志, 2018, 37(12): 3610-3616.

Tao L Y, Liu Z L, Liu T T, Yu C L, Wang W, Li Y, Peng X L. The relationship between low temperature duration and growth recovery of rice during the vegetative growth stage[J]., 2018, 37(12): 3610-3616.(in Chinese with English abstract)

[6] 楊志濤, 李媛, 張少紅, 楊梯豐, 趙均良, 董景芳, 陳光輝, 劉斌. 377份多樣性國際稻種低溫發(fā)芽力評(píng)價(jià)[J]. 廣東農(nóng)業(yè)科學(xué), 2017, 44(4): 1-6.

Yang Z T, Li Y, Zhang S H, Yang D F, Zhao J L, Dong J F, Chem G H, Liu B. Evaluation of low temperature germination ability of 377 diversity international rice varieties[J].2017(4): 1-6.(in Chinese with English abstract)

[7] 肖宇龍, 邱在輝, 林洪鑫, 胡啟鋒, 王曉玲, 雷建國, 王智權(quán), 熊宏亮, 余傳元. 苗期低溫對(duì)早稻品種產(chǎn)量相關(guān)性狀的影響[J]. 江西農(nóng)業(yè)學(xué)報(bào), 2014, 26(7): 1-4.

Xiao Y L, Qiu Z H, Lin H X, Hu Q F, Wang X L, Lei J G, Wang Z Q, Xiong H L, Yu C Y. Effects of low temperature at seedling stage on yield-related traits of early rice varieties[J]., 2014, 26(7): 1-4.(in Chinese with English abstract)

[8] 李健陵, 霍治國, 吳麗姬, 朱慶華, 胡飛. 孕穗期低溫對(duì)水稻產(chǎn)量的影響及其生理機(jī)制[J]. 中國水稻科學(xué), 2014, 28(3): 277-288.

Li L J, Huo Z G, Wu L J, Zhu Q H, Hu F. Effects of low temperature on grain yield of rice and its physiological mechanism at the booting stage[J]., 2014, 28(3): 277-288. (in Chinese with English abstract)

[9] 張金恩, 聶秋生, 李迎春, 田俊, 王尚明, 陸魁東. 穎花分化期低溫處理對(duì)早稻葉片光合能力和產(chǎn)量的影響[J]. 中國農(nóng)業(yè)氣象, 2014, 35(4): 410-416.

Zhang J E, Nie Q S, Li Y C, Tian J, Wang S M, Lu K D. Effects of low temperature stress on the photosynthetic capacity and yield components of early rice at the spikelet differentiation stage[J]., 2014, 35(4): 410-416. (in Chinese with English abstract)

[10] 張榮萍, 馬均, 蔡光澤, 孫永健. 開花期低溫脅迫對(duì)四川攀西稻區(qū)水稻開花結(jié)實(shí)的影響[J]. 作物學(xué)報(bào), 2012, 38(9): 1734-1742.

Zhang R P, Ma J, Cai G Z, Sun Y J. Effects of low temperature stress during flowering stage on flowering and seed setting of rice in Panxi region[J]., 2012, 8(9): 1734-1742. (in Chinese with English abstract)

[11] 鐘楚, 朱穎墨, 朱勇, 朱斌, 張茂松, 徐夢瑩. 云南不同類型一季稻產(chǎn)量形成及其與氣象因子的關(guān)系[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2013, 24(10): 2831-2842.

Zhong C, Zhu Y M, Zhu Y, Zhu B, Zhang M S, Xu M Y. Yield formation of different single-season rice (L.) types and its relationships with meteorological factors in Yunnan Province of Southwest China[J]., 2013,24(10):2831-2842. (in Chinese with English abstract)

[12] 龔金龍, 張洪程, 胡雅杰, 龍厚元, 常勇, 王艷, 邢志鵬, 霍中洋. 灌漿結(jié)實(shí)期溫度對(duì)水稻產(chǎn)量和品質(zhì)形成的影響[J]. 生態(tài)學(xué)雜志, 2013, 32(2): 482-491.

Long J L, Zhang H C, HuY J, Long H Y, Chang Y, Wang Y, Xing Z P, Huo Z Y. Effects of air temperature during rice grain-filing period on the formation of rice grain yield and its quality[J]., 2013, 32(2): 482-491. (in Chinese with English abstract)

[13] 吳立群, 蔡志歡, 張桂蓮, 劉逸童, 趙瑞. 低溫對(duì)不同耐冷性水稻品種秧苗生理特性及根尖解剖結(jié)構(gòu)的影響[J]. 中國農(nóng)業(yè)氣象, 2018, 39(12): 805-813.

Wu L Q, Cai Z H, Zhang G L, Liu Y D, Zhao R. Effects of Low temperature on physiological characteristics of rice seedlings with different cold tolerance and anatomical structure of root tip[J]., 2018, 39(12): 805-813. (in Chinese with English abstract)

[14] 王國莉, 郭振飛. 低溫對(duì)水稻不同耐冷品種幼苗光合速率和葉綠素?zé)晒鈪?shù)的影響[J]. 中國水稻科學(xué), 2005, 19(4): 381-383.

Wang G L, Guo Z F. Effects of chilling stress on photosynthetic rate and the parameters of chlorophyll fluorescence in two rice varieties differing in sensitivity[J]., 2005, 19(4): 381-383. (in Chinese with English abstract)

[15] 王亞男, 范思靜. 低溫脅迫對(duì)水稻幼苗葉片生理生化特性的影響[J]. 安徽農(nóng)業(yè)科學(xué), 2017, 45(5): 8-13.

Wang Y N, Fan S J. Effects of low-temperature stress on the physiological and biochemical characteristics of rice seedling leaves[J]., 2017, 45(5): 8-13. (in Chinese with English abstract)

[16] 王艷春, 王士強(qiáng), 趙海紅. 寒地水稻冷害減產(chǎn)原因與生理機(jī)制的研究進(jìn)展[J]. 現(xiàn)代化農(nóng)業(yè), 2009(9): 7-8.

Wang Y C, Wang S Q, Zhao H H. Research progress on yield reduction causes and physiological mechanism of rice chilling injury in cold regions[J].,2009(9): 7-8. (in Chinese)

[17] Yan J, Zou D T, Wang J G, Sha H J, Li H L, Inayat M A, Sun J. Effects of γ-aminobutyric acid, glutamic acid, and calcium chloride on rice (L.) under cold stress during the early vegetative stage[J]., 2017, 36(1): 240-253.

[18] 黃偉軍. 低溫冷害對(duì)陸豐市水稻秧苗期的影響與病害防治[J]. 中國農(nóng)業(yè)信息, 2013(5): 114.

Hang W J. Effect of low temperature and chilling injury on rice seedling stage and disease control in Lufeng City[J]., 2013(5): 114. (in Chinese with English abstract)

[19] 呂曉, 張兵兵, 楊璐, 戰(zhàn)莘曄, 吳航, 高全, 張慧, 高莉莉. 水稻拔節(jié)期和抽穗期低溫對(duì)稻米品質(zhì)影響[J]. 廣東農(nóng)業(yè)科學(xué), 2020, 47(2): 1-8.

Lv X, Zhang B B, Yang L, Zhan Z Y, Wu H, Gao Q, Zhang H, Gao L L. Effect of low temperature on rice quality at jointing and heading stages[J]., 2020,47(2):1-8. (in Chinese with English abstract)

[20] 譚孟祥, 景元書, 薛楊, 曾文全. 水層深度對(duì)早稻幼穗分化期遭遇低溫過程時(shí)葉片生理特性的影響[J]. 中國農(nóng)業(yè)氣象, 2015, 36(5): 553-560.

Tan M X, Jing Y S, Xue Y , Zeng W Q. Effects of different water depth on leaf physiological characteristics of early rice during panicle primordium suffered to low temperature[J]., 2015, 36(5): 553-560. (in Chinese with English abstract)

[21] 任紅茹, 荊培培, 胡宇翔, 陳雨霏, 陳夢云, 霍中洋. 孕穗期低溫對(duì)水稻生長及產(chǎn)量形成的影響[J]. 中國稻米, 2017, 23(4): 56-62.

Ren H R, Jing P P, Hu Y X, Chen Y F, Chen M Y, Huo Z Y. Effects of low temperature at booting stage on growth and yield formation of rice[J]., 2017, 23(4): 56-62. (in Chinese with English abstract)

[22] 陸魁東, 羅伯良, 黃晚華, 崔偉. 影響湖南早稻生產(chǎn)的五月低溫的風(fēng)險(xiǎn)評(píng)估[J]. 中國農(nóng)業(yè)氣象, 2011, 32(2): 283-289.

Lu K D, Luo B L, Huang W H, Cui W. Risk evaluation of the effects of chilling in may on early rice production in Hunan Province[J]., 2011, 32(2): 283-289. (in Chinese with English abstract)

[23] 馬樹慶, 劉曉航, 鄧奎才, 全虎杰, 佟麗媛, 襲祝香, 柴慶榮, 楊軍. 幼穗形成期低溫對(duì)水稻結(jié)實(shí)的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2018, 29(1): 125-132.

Ma S Q, Liu X H, Deng K C, Quan H J, Long L Y, Xi Z X, Cai Q Z, Yang J. Impact of low temperature in young ear formation stage on rice seed setting[J]., 2018, 29(1): 125-132. (in Chinese with English abstract)

[24] 張夢如, 楊玉梅, 成蘊(yùn)秀, 周滔, 段曉艷, 龔明, 鄒竹榮. 植物活性氧的產(chǎn)生及其作用和危害[J]. 西北植物學(xué)報(bào), 2014, 34(9): 1916-1926.

Zhang M R, Yang Y M, Cheng Y X, Zhou T, Duan X Y, Gong M, Zhou Z Z. Generation of reactive oxygen species and their functions and deleterious effects in plants[J]., 2014, 34(9): 1916-1926. (in Chinese with English abstract)

[25] Iqbal M, Ashraf M, Rehman S U, Rha E S. Does polyamine seed pretreatment modulate growth and levels of some plant growth regulators in Hexaploid wheat (L.) plants under salt stress[J]?, 2006, 47(3): 239-250.

[26] Yang J H, Gao Y, Li Y M, Qi X H, Zhang M F. Salicylic acid-induced enhancement of cold tolerance through activation of antioxidative capacity in watermelon[J]., 2008, 118(3): 200-205.

[27] Kamal-Eldin A, Appelqvist L A. The chemistry and antioxidant properties of tocopherols and tocotrienols[J]., 1996, 31(7): 671-701.

[28] 宋智娟, 趙國先, 張曉云, 李歲寒. 維生素E與硒的抗氧化機(jī)理及其相互關(guān)系[J]. 飼料博覽, 2005(7): 6-9.

Song Z J, Zhao G X, Zhang X Y, Li S H. Antioxidant mechanism and relationship between vitamin E and selenium[J].2005(7): 6-9. (in Chinese)

[29] Sun L, Zhang H, Li D, Huang L, Hong Y, Ding X S, Nelson R S, Zhou X, Song F. Functions of rice NAC transcriptional factors,and, in defense responses against[J]., 2013, 81(1-2): 41-56.

[30] Miura K, Jin J B, Lee J, Yoo C Y, Stirm V, Miura T, Ashworth E N, Bressan R A, Yun D J, Hasegawa P M. SIZ1-mediated sumoylation of ICE1 controls/expression and freezing tolerance in Arabidopsis[J]., 2007, 19(4): 1403-1411.

[31] Wang Y, Hua J. A moderate decrease in temperature inducesexpression through the CBF signaling cascade and enhances freezing tolerance[J]., 2010, 60(2): 340-349.

[32] 高紅秀, 朱琳, 劉天奇, 張忠臣. 水稻植物激素響應(yīng)低溫脅迫反應(yīng)的轉(zhuǎn)錄組分析[J]. 分子植物育種, 2020(4): 1-13.

Gao H X, Zhu L, Liu T Q, Zhang Z C. Transcriptomic analysis of hormone response to low temperature stress in rice plants[J]., 2020(4): 1-13. (in Chinese with English abstract)

[33] Sah S K, Reddy K R, Li J. Abscisic acid and abiotic stress tolerance in crop plants[J]., 2016, 7: 571.

[34] 陳莎莎, 蘭海燕. 植物對(duì)鹽脅迫響應(yīng)的信號(hào)轉(zhuǎn)導(dǎo)途徑[J]. 植物生理學(xué)報(bào), 2011, 47(2): 119-128.

Chen S S, Lan H Y. Signal transduction pathways in response to salt stress in plants[J]., 2011,47(2):119-128. (in Chinese with English abstract)

[35] Shi Y T, Yang S H.: A cold sensor in rice[J]., 2015, 58(4): 1-2.

[36] Abbasi F, Onodera H, Toki S, Tanaka H, Komatsu S., a calcium dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath[J]., 2004, 55 (4): 541-552.

[37] Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X., a bZIP transcription factor, confers salinity and drought tolerance in rice[J]., 2014, 84: 19-36.

[38] Liu C, Ou S, Mao B, Tang J, Wei W. Early selection offacilitated adaptation of japonica rice to cold climates[J]., 2018, 9: 3302.

[39] Liu C, Michael R. Schlppi, Mao B, Wei W, Wang A, Chu C. Thetranscription factor controls rice cold tolerance at the reproductive stage[J]., 2019, 17(9): 1834-1849.

[40] MaY, DaiX, XuY, LuoW, ChongK.confers chilling tolerance in rice[J]., 2015, 6(160): 1209-1221.

[41] SaijoY, HataS, KyozukaJ, ShimamotoK, IzuiK. Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]., 2000, 23: 319-327.

[42] Morsy M R, Almutairi A M, Gibbons J, Song J Y, Reyes B G D L. Thegenes encoding low- molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature[J]., 2005, 344: 171-180.

[43] Xie G, Kato H, Sasaki K, Imai R. A cold-induced thioredoxinh of rice,, negatively regulates kinase activities ofand[J]., 2009, 583: 2734-2738.

[44] Li L, Liu X, Xie K, Wang Y, Liu F, Lin Q, Wang W, Yang C, Lu B, Liu S., a stable quantitative trait locus for low temperature germination in rice (L.)[J]., 2013, 126(9): 2313-2322.

[45] Fujino K, Sekiguchi H, Matsuda Y, Sugimoto K, Ono K. Molecular identification of a major quantitative trait locus,, controlling low-temperature germ inability in rice[J]., 2008, 105(34): 12623-12628.

[46] Andaya V C, Tai T H. Fine mapping of the qCTS4 locus associated with seedling cold tolerance in rice (L.)[J]., 2007, 20(4): 349-358.

[47] Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang Z X, Minobe Y. Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage[J]., 2010, 284(1): 45-54.

[48] Kim S M, Suh J P, Lee C K, Lee J H, Kim Y G, Jena K K. QTL mapping and development of candidate gene derived DNA markers associated with seedling cold tolerance in rice (L.)[J]., 2014, 289(3): 333-343.

[49] Ning X, Huang W N, Li A H, Gao Y, Chen J M. Fine mapping of theandloci associated with chilling stress tolerance of wild rice seedlings[J]., 2015, 128(1): 173-185.

[50] Saika H, Ohtsu K, Hamanaka S, Nakazono M, Tsutsumi N, Hirai A., a novel rice gene for alternative oxidase; comparison with riceand[J]., 2002, 77(1): 31-38.

[51] Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F. Overexpression of, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice[J]., 2007, 226(4): 1007-1016.

[52] Li H B, Wang J, Liu A M, Liu K D, Zhang Q, Zou J S. Genetic basis of low-temperature-sensitive sterility in indica-japonica hybrids of rice as determined by RFLP analysis[J]., 1997, 95(7): 1092-1097.

[53] Dai L, Lin X, Ye C, Ise K, Saito K, Kato A, Xu F, Yu T, Zhang D. Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnan landrace of rice[J]., 2004, 54(3): 253-258.

[54] Chiba B, Sasaki K, Nagano K, Ueda T, Yano M. Mapping of new quantitative trait loci controlling cold tolerance at booting stage on chromosome 7 in rice[J]., 2004, 6(2): 68.

[55] El S. Physiological and molecular responses to abiotic stress in rice () and characterization of an up-regulated gene family[D]. Fayetteville, USA: University of Arkansas, 2005.

[56] Lei Z, Zeng Y, Zheng W, T Bo, Yang S, Zhang H, Li J, Li Z. Fine mapping a QTLfor cold tolerance at the booting stage on rice chromosome 7 using a near-isogenic line[J]., 2010, 121(5): 895-905.

[57] Kuroki M, Saito K, Matsuba S, Yokogami N, Shimizu H, Sato A Y. A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8[J]., 2007, 115(5): 593-600.

[58] Zhu Y, Chen K, Mi X, Chen T, JauharA, Ye G, Xu J, Li Z, Qian Q. Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice[J]., 2015, 10(12): e0145704.

[59] Endo T, Chiba B, Wagatsuma K, Saeki K, Nishio T. Detection of QTLs for cold tolerance of rice cultivar 'Kuchum' and effect of QTL pyramiding[J].2016, 129(3): 631-640

[60] Ji L, Pan Y H, Guo H F, Zhou L, Yang S M. Fine mapping of QTLthat confers cold tolerance at the booting stage in rice[J]., 2018, 131(1): 157-166.

[61] Oliver S N, Dongen J T V, Alfred S C, Mamun E A, Dolferus R. Cold-induced repression of the rice anther-specific cell wall invertase geneis correlated with sucrose accumulation and pollen sterility[J]., 2005, 28(12): 1534-1551.

[62] Zhang J, Li J, Wang X, Chen J. OVP1, a vacuolar H+- translocating inorganic pyrophosphatase (V-PPase), overexpression improved rice cold tolerance[J]., 2011, 49(1): 33-38.

[63] Islam F. 除草劑和鹽脅迫對(duì)水稻和稗草生理生化和分子水平的比較分析研究[D]. 杭州: 浙江大學(xué), 2017.

Islam F. Comparative physio-biochemical and molecular analysis of interaction between herbicides and salinity in rice and barnyard grass[D]. Hangzhou: Zhejiang University, 2017. (in Chinese with English abstract)

[64] Xie G, Kato H, Sasaki K, Imai R. A cold-induced thioredoxin h of rice,, negatively regulates kinase activities ofand[J]., 2009, 583(17): 2734-2738.

[65] Yutaka S, Yukari M, Koji S, Seiji M, Kenjiro O. Enhanced chilling tolerance at the booting stage in rice by transgenic overexpression of the ascorbate peroxidase gene,[J]., 2011, 30(3): 399-406.

[66] Li H W, Zang B S, Deng X W, Wang X P. Overexpression of the trehalose-6-phosphate synthase geneenhances abiotic stress tolerance in rice[J]., 2011, 234(5): 1007-1018.

[67] Liu K M, Wang L, Xu Y Y, Chen N, Ma Q B, Li F, Chong K. Overexpression of OsCOIN, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice., 2007, 226(4): 1007-1016.

[68] Yang A, Dai X Y, Zhang W H. A R2R3-type MYB gene,, is involved in salt, cold, and dehydration tolerance in rice[J]., 2012, 63(7): 2541-2556.

[69] Park M R, Yun K Y, Mohanty B. Supra-optimal expression of the cold-regulatedtranscription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development [J]., 2010, 33(12): 2209-2230.

[70] Vannini C, Locatelli F, Bracale M. Overexpression of the ricegene increases chilling and freezing tolerance ofplants [J]., 2004, 37(1): 115-127.

[71] Ma Q B, Dai X P, Xu Y Y, Guo J, Liu Y J, Chen N, Xiao J, Zhang D J, Xu Z H, Zhang X H, Chong K. Enhanced tolerance to chilling stress intransgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes[J]., 2009, 150(1): 244-256.

[72] Huang J, Sun S J, Xu D Q, Yang X, Bao Y M, Wang Z F, Tang H J, Zhang H S. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the over expression of a gene that encodes the zinc finger protein ZFP245[J]., 2009, 389(3): 556-561.

[73] Du H, Wu N, Chang Y, Li X H, Xiao J H, Xiong L Z. Carotenoid deficiency impairs ABA and IAA biosynthesis and differentially affects drought and cold tolerance in rice[J]., 2013, 83(4-5): 475-488.

[74] Mega R, Meguro-Maoka A, Endo A, Shimosaka E, Murayama S, Nambara E, Seo M, Kanno Y, Abrams S R, Sato Y. Sustained low abscisic acid levels increase seedling vigor under cold stress in rice (L.)[J]., 2015, 5: 13819.

[75] Lee S C, Huh K W, An K, An G, Kim S R. Ectopic expression of a cold-inducible transcription factor,/, in transgenic rice (L.)[J]., 2004, 18(1): 107-114.

[76] Joo J, Lee Y H, Kim Y K, Nahm B H, Song S I. Abiotic stress responsive rice ASR1 and ASR3 exhibit different tissue-dependent sugar and hormone-sensitivities[J]., 2013, 35(5): 421-435.

[77] Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants[J]., 2000, 23(3): 319-327.

[78] Mustafa M R, Almutairi A M, Gibbons J, Yun S J, Reyes B G. Thegenes encoding low- molecularweight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature[J]., 2005, 344: 171-180.

[79] Xie G S, Kato H, Imai R. Biochemical identification of the-signalling pathway for chilling stress tolerance in rice[J]., 2012, 443(1): 95-102.

[80] Nakashima K, Tran L S, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factorinvolved in abiotic and biotic stress-responsive gene expression in rice[J]., 2007, 51(4): 617-630.

[81] Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of rice/-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]., 2006, 47(1): 141-153.

[82] Ge L F, Chao D Y, Shi M, Zhu M Z, Gao J P, Lin H X. Overexpression of the trehalose-6-phosphate phosphatase geneconfers stress tolerance in rice and results in the activation of stress responsive genes[J]., 2008, 228(1): 191-201.

[83] Gothandam K M, Nalini E, Karthikeyan S, Shin J S. OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance[J]., 2010, 72(1-2): 125-135.

[84] Liu Y, Xu C J, Zhu Y F, Zhang L N, Chen T Y, Zhou F, Chen H, Lin Y J. The calcium-dependent kinase OsCPK24 functions in cold stress responses in rice[J]., 2018, 60(2): 173-188.

[85] 向殿軍, 張瑜, 殷奎德. 農(nóng)桿菌介導(dǎo)的轉(zhuǎn)ICE1基因提高水稻的耐寒性[J]. 中國水稻科學(xué), 2001, 21(5): 482-486.

Xiang D J, Zhang Y, Yin KD. Transformation of ICE1 gene mediated by agrobacterium improves cold tolerance in transgenie rice[J]., 2001, 21(5):482-486. (in Chinese with English abstract)

[86] Liu K, Wang L, Xu Y, Chen N, Ma Q, Li F, Chong Z. Overexpression of, a putative cold inducible zinc finger protein, increased tolerance to chilling, salt and drought, and enhanced proline level in rice[J]., 2007, 226(4): 1007-1016.

[87] Yang A, Dai X Y, Zhang W H. AR2R3-type MYB gene,, is involved in salt, cold, and dehydration tolerance in rice[J]., 2012, 63(7): 2541-2556.

[88] Huang L, Hong Y, Zhang H, Li D, Song F. Rice NAC transcription factorplays opposite roles in drought and cold stress tolerance[J]., 2016, 16: 203.

[89] Song S Y, Chen Y, Chen J, Dai X Y, Zhang W H. Physiological mechanisms underlying- dependent tolerance of rice plants to abiotic stress[J]., 2011, 234(2): 331-345.

[90] 何曙光, 李華平, 戴力, 劉洋, 匡煒, 方寶華, 趙楊. PQQ對(duì)低溫脅迫下早稻幼苗生理特性的影響[J]. 湖南農(nóng)業(yè)科學(xué), 2020(5): 17-20.

He S G, Li H P, Dai L, Liu Y, Kuang W, Fang B H, Zhao Y. Effects of PQQ on physiological characteristics of early rice seedlings under low temperature stress[J]., 2020(5):17-20. (in Chinese with English abstract)

[91] 郁平慧, 符衛(wèi)蒙, 符冠富, 陶龍興. 水楊酸與烯唑醇復(fù)配對(duì)水稻秧苗耐冷性的影響[J]. 中國稻米, 2020, 26(3): 28-31.

Yu P H, Fu W M, Fu G F, Tao L X. Effects of salicylic acid and diniconazole combination on the cold tolerance of rice seedlings[J]., 2020,26(3):28-31. (in Chinese with English abstract)

[92] 安俊霞, 趙宇, 張正坤, 史海鵬, 紀(jì)東銘, 曹洪翼, 杜茜, 李啟云. 公主嶺霉素誘導(dǎo)對(duì)育苗期水稻耐冷性的影響[J]. 中國農(nóng)業(yè)科學(xué), 2020, 53(11): 2195-2206.

An J X, Zhao Y, Zhang Z K, Shi H P, Ji D M, Cao H Y, Du X, Li Q Y. Induction of cold tolerance in rice at the breeding stage by Gongzhulingmycin[J]., 2020, 53(11): 2195-2206. (in Chinese with English abstract)

[93] 吳旺嬪, 周偉江, 唐才寶, 劉坤, 曾紅麗, 王悅. 2, 4-表油菜素內(nèi)酯對(duì)低溫脅迫下水稻種子萌發(fā)及生理特性的影響[J]. 分子植物育種, 2020, 18(13): 4427-4434.

Wu W B, Zhou W J, Tang C B, Liu K, Zeng H L, Wang Y. Effects of exogenous 2,4-epibrassinolide on germination and physiological characteristics of rice seeds under chilling stress[J]., 2020,18(13):4427-4434. (in Chinese with English abstract)

[94] Tábata B, Bianca R, Ceciliato P H O, Carlos G A J, Silva-Filho M C, Moura D S.RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation[J]., 2014(8): 2219.

[95] 項(xiàng)洪濤, 齊德強(qiáng), 李琬, 鄭殿峰, 王月溪, 王彤彤, 王立志, 曾憲楠, 楊純杰, 周行, 趙海東. 低溫脅迫下外源ABA對(duì)開花期水稻葉鞘激素含量及抗寒生理的影響[J]. 草業(yè)學(xué)報(bào), 2019, 28(4): 81-94.

Xiang H T, Qi D Q, Li W, Zheng D F, Wang Y X, Wang D D, Wang L Z, Zeng X N, Yang C J, Zhou X, Zhao H D. Effect of exogenous ABA on the endogenous hormone levels and physiology of chilling resistance in the leaf sheath of rice at the flowering stage under low temperature stress[J]., 2019, 28(4):81-94. (in Chinese with English abstract)

[96] 項(xiàng)洪濤, 王彤彤, 鄭殿峰, 王立志, 洛育, 李琬. 孕穗期低溫條件下ABA對(duì)水稻結(jié)實(shí)率及葉片生理特性的影響[J]. 中國農(nóng)學(xué)通報(bào), 2016, 32(36): 16-23.

Xiang H T, Wang D D, Wang L Z, Luo Y, Li W. Effect of ABA on seed-setting rate and physiological characteristics of rice leaves under low temperature stress at booting stage[J]., 2016, 32(36): 16-23. (in Chinese with English abstract)

[97] 李馨園, 楊曄, 張麗芳, 左師宇, 李麗杰, 焦健, 李晶. 外源ABA對(duì)低溫脅迫下玉米幼苗內(nèi)源激素含量及Asr1基因表達(dá)的調(diào)節(jié)[J]. 作物學(xué)報(bào), 2017, 43(1): 141-148.

Li Q Y, Yang Y, Zhang L F, Zuo S Y, Li L J, Jiao J, Li J. Regulation on contents of endogenous hormones and asr1 gene expression of maize seedling by exogenous ABA under low-temperature stress[J].,2017, 43(1):141-148. (in Chinese with English abstract)

[98] Zhang Z, Huang R. Enhanced tolerance to freezing in tobacco and tomato overexpressing transcription factor TERF2/LeERF2 is modulated by ethylene biosynthesis[J]., 2010, 73(3): 241-249.

[99] 朱春權(quán), 徐青山, 曹小闖, 朱練峰, 孔亞麗, 金千瑜, 張均華. 不同屬性特征基質(zhì)對(duì)早稻秧苗耐低溫的影響[J]. 中國水稻科學(xué), 2021, 35(5): 503-512.

Zhu C Q, Xu Q S, Cao X C, Zhu L F, Kong Y L, Jin Q Y, Zhang J H. Effects of substrates with different properties on chilling tolerance of early rice seedlings[J]., 2021, 35(5): 503-512. (in Chinese with English abstract)

[100] 曹娜, 陳小榮, 賀浩華, 朱昌蘭, 才碩, 徐濤, 謝亨旺, 劉方平. 幼穗分化期噴施磷鉀肥對(duì)早稻抵御低溫及產(chǎn)量和生理特性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2017, 28(11): 3562-3570.

Cao N, Chen X R, He H H, Zhu C L, Cai S, Xu T, Xie H W, Liu F P. Effects of spraying P and K fertilizers during panicle primordium differentiation stage on cold resistance, yield and physiological characteristics of early rice[J]., 2017, 28(11):3562-3570. (in Chinese with English abstract)

[101] 房玉軍. 淺談水稻栽培條件與冷害的關(guān)系[J]. 現(xiàn)代化農(nóng)業(yè), 2008(8): 43-44.

Fang Y J. A brief discussion on the relationship between rice cultivation conditions and chilling injury[J]., 2008(8):43-44. (in Chinese with English abstract)

[102] 李海波, 于廣星, 陳盈, 趙琦, 付亮, 馬亮, 代貴金, 侯守貴. 氮磷鉀不同施用比例對(duì)抽穗開花期水稻低溫傷害的預(yù)防效果研究. 中國作物學(xué)會(huì). 2014年全國青年作物栽培與生理學(xué)術(shù)研討會(huì)論文集[C]. 揚(yáng)州: 中國作物學(xué)會(huì), 2014: 1.

Li H B, Yu G X, Chen Y, Zhao Q, Fu L, Dai J G, Hou S H. Study on the preventive effect of different application ratio of nitrogen, phosphorus and potassium on low temperature injury of rice at heading and flowering stage[C].Yangzhou: Crop Society of China, 2014:1. (in Chinese with English abstract)

[103] SunX C, Hu C X, Tan Q L, Liu J S, Liu H G. Effects of molybdenum on expression of cold-responsive genes in abscisic acid (ABA)-dependent and ABA-independent pathways in winter wheat under low-temperature stress[J]., 2009(2): 345-356.

[104] 梁穎, 王三根. Ca2+對(duì)低溫下水稻幼苗膜的保護(hù)作用[J]. 作物學(xué)報(bào), 2001(1): 59-64.

Liang Y, Wang S Y. Protective effect of Ca2+on membrane of Rice seedlings at low temperature[J]., 2001,27(1): 59-64. (in Chinese with English abstract)

[105] 康麗敏. 低溫與CaCl2處理對(duì)水稻幼苗的影響[J]. 農(nóng)業(yè)科技通訊, 2011(3): 48-50.

Kang L M. Effects of low temperature and CaCl2treatment on rice seedlings[J]., 2011(3): 48-50. (in Chinese)

[106] 王笑, 蔡劍, 周琴, 戴廷波, 姜東. 非生物逆境鍛煉提高作物耐逆性的生理機(jī)制研究進(jìn)展[J]. 中國農(nóng)業(yè)科學(xué), 2021, 54(11): 2287-2301.

Wang X, Cai J, Zhou Q, Dai T B, Jiang D. Physiological mechanisms of abiotic stress priming induced the crops stress tolerance: A review[J]., 2021, 54(11): 2287-2301. (in Chinese with English abstract)

[107] 胡國輝. 生物可降解膜覆蓋對(duì)機(jī)插水稻生長及甲烷排放的影響[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2020.

Hu G H. Effects of biodegradable film mulching on growth and methane emission of mechanically implanted rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020. (in Chinese with English abstract)

[108] 王洪軍, 賀萍. 低溫冷害對(duì)水稻生育的影響及防御措施[J]. 黑龍江氣象, 2012, 29(1): 37-38.

Wang H J, He P. Effects of chilling injury on rice growth and preventive measures[J]., 2012, 29(1): 37-38. (in Chinese)

[109] 陳大洲, 肖葉青, 趙社香, 皮勇華, 熊煥金, 羅利軍. 東鄉(xiāng)野生稻苗期耐寒性的遺傳研究[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào), 1997, 19(4): 58-61.

Chen D Z, Ye X Q, Zhao S X, Pi Y H, Xiong H J, Luo L J. Genetic study on cold tolerance of dongxiang wild rice at seedling stage[J]., 1997, 19(4): 58-61. (in Chinese with English abstract)

Effects of Low Temperature on the Growth and Development of Rice Plants and the Advance of Regulation Pathways: A Review

XU Qingshan1, #, HUANG Jing1, #, SUN Aijun2, HONG Xiaozhi2, ZHU Lianfeng1, CAO Xiaochuang1, KONG Yali1, JIN Qianyu1, ZHU Chunquan1, *, ZHANG Junhua1, *

( State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; Bengbu Yifeng Bio-organic Fertlizer Co. Ltd, Bengbu 233300, China; Corresponding authors, E-mail: zhuchunquan@caas.cn, zhangjunhua@caas.cn)

Early rice often suffers from low temperature during rice seedling raising, which seriously affects the quality of rice seedlings, and the growth and development of rice in paddy field, and reduces rice yield. It is of great significance to study the effect of low temperature on rice growth and development and the appropriate exogenous regulation pathways to ensure the production of early rice in China. In this work, the effects of low temperature on early rice seedlings, vegetative growth and reproductive growth were reviewed, and the physiological, biochemical and molecular mechanisms of rice responding to low temperature stress were summarized, including antioxidant system and the expression of low temperature induced genes. Finally, we put forward the measurements to improve the tolerance of rice to low temperature stress, such as screening of rice varieties with low temperature tolerance, application of exogenous hormones and reasonable fertilization. The research prospects of improving the tolerance of rice to low temperature and expanding the area of early rice in China were also put forward, such as screening of excellent rice varieties with low temperature tolerance and integrated agronomic cultivation technology.

early rice; low temperature; seedling raising; gene; growth and development; regulation

10.16819/j.1001-7216.2022.210602

2021-06-03;

2021-11-03。

國家自然科學(xué)基金資助項(xiàng)目(31872857,31771733,31901452);浙江省重點(diǎn)研發(fā)計(jì)劃資助項(xiàng)目(2021C02063-3)。

猜你喜歡
早稻秧苗低溫
《真空與低溫》征稿說明
真空與低溫(2022年6期)2023-01-06 07:33:20
早稻迎豐收
DA-6對(duì)番茄秧苗生長的影響
2021年全國早稻總產(chǎn)量2802萬噸增長2.7%
2021年全國早稻總產(chǎn)量2802萬噸 比2020年增產(chǎn)72.3萬噸
宋代早稻若干問題探討
基于低溫等離子體修飾的PET/PVC浮選分離
農(nóng)民
詩潮(2019年1期)2019-01-25 01:34:34
零下低溫引發(fā)的火災(zāi)
基于Meanshift和Hough變換的秧苗行中心線提取
萨嘎县| 长丰县| 万源市| 屏东市| 盈江县| 漳浦县| 乌兰县| 绥中县| 汉源县| 永吉县| 峨眉山市| 丰顺县| 聂荣县| 乡宁县| 武平县| 博白县| 色达县| 班玛县| 岗巴县| 沙湾县| 和静县| 离岛区| 莎车县| 来凤县| 安阳县| 凉城县| 会泽县| 安化县| 东阳市| 九龙城区| 巫山县| 桓台县| 漾濞| 丹阳市| 澄江县| 桐庐县| 建始县| 榆中县| 沙田区| 台湾省| 山丹县|