胡鋮燁 馬金星 周歆如 劉永坤 韓瀟 洪劍寒 趙曉曼
摘要: 針對單一納米纖維紗力學性能較差、進一步后加工困難、應用受限等問題,本文采用靜電紡絲法在水浴表面收集納米纖維,制備以芳綸1414(PPTA)長絲為芯層、聚酰胺6(PA6)納米纖維為皮層的PPTA/PA6納米纖維包芯紗,并分析了納米纖維包芯紗和外層納米纖維包覆層的結構與性能。結果表明:納米纖維均勻地包覆在芯紗外層,納米纖維的直徑范圍主要分布在90~110 nm,平均直徑為98.81 nm;納米纖維包覆層的熔點為223.16 ℃,結晶度為1855%,與常規(guī)PA6纖維接近;納米纖維包芯紗的力學性能與芯紗接近,且納米纖維包覆層也具備一定的力學性能,平均強度為0.57 cN/dtex,平均伸長率為33.30%;納米纖維包覆層具有一定的耐摩性,經棉織物摩擦600次后其形態(tài)結構基本未發(fā)生變化。
關鍵詞: 靜電紡絲;水浴法;納米纖維包芯紗;熱-結晶性能;耐摩性能
中圖分類號: TS101.921;TQ340.64 ? ?文獻標志碼: A ? ?文章編號: 1001-7003(2022)01-0031-07
引用頁碼: 011105DOI: 10.3969/j.issn.1001-7003.2022.01.005
通過靜電紡絲技術能夠制備納米纖維,納米纖維的不同堆積排列可以得到不同形式的納米纖維集合體,其中包括納米纖維膜、納米纖維束、納米纖維包芯紗等[1]。納米纖維通過沉積在常規(guī)平面狀接收裝置上,得到無規(guī)堆砌的納米纖維膜,可以用于過濾、傷口包扎材料等領域,但是由于納米纖維在膜中的無規(guī)取向排列與雜亂堆砌,導致纖維膜的力學性能差,影響了后道加工。
通過改進納米纖維的收集裝置、添加輔助電極等方法,在一定區(qū)域內獲得非定向/定向排列的納米纖維束,并通過集束和加捻可以獲得納米纖維紗線,從而擴寬納米纖維的應用范圍[2]。Li等[3]將收集裝置制作成了漏斗狀,用于納米纖維的定向集束,但需要處理集束、加捻和卷繞之間的平衡,以保證穩(wěn)定的纖維“錐體”形成和纖維捻度的控制。Liu等[4]采用了圓盤靜電紡集束裝置,納米纖維集束在環(huán)形圓盤上,通過加捻獲得納米纖維紗線。采用圓盤進行集束的靜電紡絲方法設備較簡單,適用于各種高聚物溶液,但因為紡絲液集束在圓盤上的位置有不可控性,會影響后續(xù)的紗線收集。Fakhrali等[5]在距離兩個噴嘴中心一定距離處垂直放置一個接地鋁筒,納米纖維集束在鋁筒表面形成納米纖維紗。但該靜電紡絲方法需要注意紡絲三角區(qū)的位置與形狀,要不斷調整噴絲頭與鋁筒之間的距離,才能制備出具有較好力學性能的納米纖維紗線。目前,有通過水浴法制備納米纖維集合體的方法,即利用水浴的表面張力及導電性能,促進納米纖維的緊密有序排列,提高可紡性[6]。如Smit等[7]采用水浴法制備了無捻度的納米纖維束;劉紅波等[8]通過在液體的表面收集靜電紡納米纖維,得到連續(xù)的尼龍6納米纖維紗;Yousefzadeh等[9]采用渦流形式的動態(tài)液體系統(tǒng)制備連續(xù)加捻的納米纖維紗。
完全由納米纖維組成的紗線力學性能較差,耐摩性、抗剪切等性能難以達到后續(xù)加工織造的要求,限制了應用范圍。將納米尺度的纖維與微米尺度的纖維按照一定的結構需求復合形成納米纖維包芯紗,既能保持普通紗線的機械性能,又具備納米纖維的表面效應、小尺寸效應等特性,擴大了納米纖維的應用領域,提高其應用價值[6,10-11]。Dabirian等[12]在電場的中間放置一個中性圓板,納米纖維沉積在芯紗表面,并拉向金屬板,得到連續(xù)的納米纖維包芯紗;Liu等[13-14]采用兩塊平行鋁板作為接收裝置,制備出具有芯-鞘結構的納米纖維包芯紗;Bazbouz等[15]利用兩個相互垂直的圓盤制備納米纖維包芯紗;何建新等[16]利用旋轉的金屬喇叭對納米纖維進行集束,從而制備納米纖維包芯紗;Tong等[17]則開發(fā)了一種以金屬漏斗集束的納米纖維包芯紗靜電紡絲裝置。Zhou等[18]提出了一種新型的階梯氣流-靜電紡絲法,利用階梯氣流場有效地控制納米纖維的運動,實現(xiàn)了納米纖維包芯紗的連續(xù)紡絲。上述制備方法雖然都能連續(xù)制備納米纖維包芯紗,但因納米纖維在負極的沉積,造成納米纖維利用率低。王怡婷等[19]則利用水渦的旋轉對納米纖維進行包覆加捻制備納米纖維包芯紗,通過水浴法制備得到的納米纖維能夠消除纖維上的電荷并使紗線更加緊密,提高力學性能;且水浴加捻成紗對納米纖維的利用率高,沉積于水浴表面的納米纖維幾乎可100%包覆于芯紗表面,但需要依靠水浴的連續(xù)流動和形成旋渦才能完成納米纖維的包纏,可控性較差。
因此,本文采用自主開發(fā)的一種無須水浴連續(xù)流動和形成旋渦的改進型水浴靜電紡絲方法,利用紗線自身旋轉,使噴射于水浴表面的聚酰胺6(PA6)納米纖維包覆在芳綸1414(PPTA)長絲表面,以制備PPTA/PA6納米纖維包芯紗,并對其結構與性能進行分析研究。1 試 驗
1.1 材 料
線密度為1 036.5 dtex/395 f的PPTA長絲紗(煙臺泰和新材料股份有限公司),相對分子質量為100 000的PA6粉末(Dupont Chemicals Co. , Ltd. ,美國),88%甲酸(上?;瘜W試劑有限公司)、平平加O(江蘇嘉豐化學股份有限公司),均為分析純。
1.2 PA6納米纖維包芯紗的制備
1.2.1 靜電紡絲液的配置
將適量PA6粉末溶解于甲酸中,經充分攪拌后制得15%的紡絲液。取適量的平平加O溶解于一定的去離子水中,配制成0.8%的平平加O浴液,作為納米纖維的接收浴。
1.2.2 納米纖維包芯紗制備
圖1為納米纖維包芯紗的制備裝置,由數(shù)字注射泵、高壓電源、水浴槽、夾持裝置、往復平臺等部分組成。PPTA作為芯紗固定于夾頭1、2上,并平行橫跨于水浴槽表面。注射器由注射泵控制流速,并通過軟管與往復平臺上的針頭相連。針頭中注入的聚合物溶液在高壓作用下拉伸牽引形成納米纖維,直接噴射于平平加O接收浴表面,芯紗旋轉使納米纖維牽引并包覆于芯紗表面。針頭隨往復平臺勻速運動,使得納米纖維能夠均勻、完全地沉積在接收浴表面。試驗中,電壓20 kV,紡絲液流速0.1 mL/h,針頭與接收浴表面的距離5 cm,芯紗旋轉速度280 r/min,往復平臺移速50 mm/min,紡絲時間10 min。
1.3 測試與表征
1.3.1 表面形貌
采用Sigma 300場發(fā)射掃描電鏡(Carl Zeiss Co. , Ltd. ,德國)對納米纖維包芯紗的外觀形貌進行觀察。
1.3.2 熱-結晶性能
將納米纖維包覆層從芯紗上分離,剪碎后放入DSC-1型差示掃描量熱儀(Mettler Toledo Co. , Ltd. ,瑞士)中進行熱學性能和結晶度分析。熱學性能測試時試驗溫度為60~300 ℃,升溫速率為10 ℃/min,結晶度分析時試驗溫度為300~60 ℃,降溫速率為10 ℃/min,在氮氣氣氛下進行。按下式計算出納米纖維包覆層的結晶度:
θ/%=ΔHfΔH*f×100(1)
式中:θ為結晶度,ΔHf為被測試樣的熔融熱,ΔH*f為被測試樣結晶度達到100%時的熔融熱。
1.3.3 力學性能
用Instron 3365型萬能材料試驗機(Instron Co. , Ltd. ,美國)分別對芯紗、納米纖維包芯紗和納米纖維包覆層進行拉伸力學性能測試。試樣夾持長度20 mm,拉伸速度20 mm/min,初始張力0.2 cN,每組測20次取平均值。
1.3.4 耐摩擦性能
采用FFZ622型紗線耐摩性能試驗儀(溫州方圓儀器有限公司)對PA6納米纖維包芯紗進行耐摩性測試。納米纖維包芯紗一端固定于紗夾中,另一端懸掛5 g重錘。包覆600目標準砂紙或平紋棉織物的磨輥沿負有一定載荷的納米纖維包芯紗作勻速直線往復運動。
2 結果與分析
2.1 表面形貌
圖2為不同時間下制得的PPTA/PA6納米纖維包芯紗的外觀結構。當紡絲時間為30 s時,有少量的納米纖維包覆在芯紗表面,但因為時間短,納米纖維包芯紗外觀較為松散,能看出內部的芯紗結構,如圖2(a)所示。當紡絲時間逐漸增加,可以看出納米纖維在芯紗表面的厚度逐漸增加,納米纖維包芯紗的結構逐漸緊密,但仍能看出內部芳綸芯紗的底色,如圖2(b)(c)所示。當紡絲時間達到10 min后,納米纖維完全包覆在芯紗表面,結構緊密,納米纖維包覆均勻,沒有出現(xiàn)露芯、毛羽等現(xiàn)象,且達到了一定的厚度,完全看不出內部芯紗的底色,如圖2(d)所示。
圖3為納米纖維包芯紗的縱向和橫截面結構。由圖3(a)可以看出,大量納米纖維包覆在芯紗表面,纖維之間沒有黏結現(xiàn)象,但納米取向度不高,排列較為雜亂無序;其中的溝壑是由于芯紗為多根單纖維復合而成,纖維之間存在一定的空隙,一部分納米纖維會沉積在空隙中,造成一定的溝壑。由圖3(b)可以看出,納米纖維形成了包覆層,包覆層結構完整,可完全將芯紗包覆其中,其厚度約為25 μm。
根據(jù)電鏡照片,本文隨機挑選100根納米纖維,并用Image-Pro Plus圖像分析軟件測量其直徑。圖4為納米纖維直徑分布。由圖4可以看出,納米纖維的最大直徑為134.62 nm,最小為65.38 nm,平均為98.81 nm;其中66%的納米纖維直徑分布于在90~110 nm,CV值為0.15,說明包芯紗表面納米纖維的直徑分布較為均勻。
2.2 熱-結晶性能
圖5為納米纖維包覆層的DSC曲線。由圖5可以看出,納米纖維的熔點為223.16 ℃,與常規(guī)聚酰胺6纖維熔點220 ℃接近,說明該納米纖維為純的PA6溶液經過靜電紡絲制備而成。
另外,從圖5可知,納米纖維包覆層的熔融熱為42.69 J/g,已知純PA6結晶度達到100%時的熔融熱為230.1 J/g。因此,根據(jù)式(1)可得納米纖維的結晶度為18.55%,較常規(guī)聚酰胺6纖維的20%~25%的結晶度稍有差異,但不明顯。納米纖維的結晶度不高很大原因在于針頭與接收浴表面的距離較短造成,結晶度的大小根據(jù)成型冷卻速度和相對分子質量而不同,接受距離短則電場強度大,聚合物在電場中的噴射速度快,噴出時間短,導致在到達水浴表面之前沒有足夠時間讓溶劑揮發(fā),聚合物分子沒有足夠的時間排列就沉降下來,使得納米纖維沒有得到充分的取向牽伸,因此納米纖維結晶度不高[20]。這需要在后續(xù)研究中調整工藝參數(shù),從而提高其結晶度。
2.3 力學性能
圖6為芳綸芯紗、納米纖維包芯紗、納米纖維包覆層的應力-應變曲線。從圖6可知,納米纖維包芯紗的力學性能接近于PPAT芯紗,且遠高于納米纖維包覆層,說明通過水浴法制備得到的納米纖維包芯紗能夠兼具納米纖維的特性和芯紗的力學性能。常規(guī)聚酰胺6纖維的斷裂強度、斷裂伸長率與初始模量分別為3.50~5.20 cN/dtex、25%~40%和0.71~2.65 cN/dtex,而納米纖維包覆層的斷裂強度僅為0.57 cN/dtex,遠低于常規(guī)的聚酰胺6纖維。這是由于靜電紡絲過程中,納米纖維的堆砌不是連續(xù)的,分布與排列存在隨機性。同時也和納米纖維結晶度低有一定的關系,結晶度的提高有利于分子鏈排列。但斷裂伸長率和初始模量分別為33.3%和2.15 cN/dtex,均在常規(guī)聚酰胺6纖維的范圍內。
2.4 耐摩擦性能
圖7為砂紙的摩擦作用對納米纖維包芯紗表觀形貌的影響。由圖7可以看出,在粗糙度和硬度更高的磨料作用下,納米纖維包芯紗表面出現(xiàn)較多的磨損,納米纖維有一定的脫落情況。但因為納米纖維包覆層具有一定的厚度,因此雖然外層受到了磨損,內部的納米纖維仍然包覆在芯紗外層,說明納米纖維包覆層具有一定的耐摩性。
圖8為棉織物摩擦作用對納米纖維包芯紗的表觀形貌影響。由圖8可以看出,粗糙度和硬度較低的磨料對納米纖維包覆層的破壞作用較小。在摩擦100次之后表面略微有磨損,但是對于整個納米纖維包芯紗的結構而言沒有太大影響,只有部分納米纖維有黏結情況,可能因為摩擦過程中納米纖維位置的移動造成,總體還是保持與未摩擦時一樣。當摩擦600次后,納米纖維包芯紗表面有一定的脫落與磨損,且對于納米纖維有一定的損傷,較多納米纖維出現(xiàn)了黏附情況,且有些納米纖維聚集成為一根粗的納米纖維條。但總體來看,納米纖維包芯紗結構仍能得到保持,具有一定的耐摩性能。
3 結 論
基于納米纖維的超高比表面積、小尺寸等特性,結合普通纖維的優(yōu)良力學性能,將納米纖維包覆于普通纖維上制備成納米纖維包芯紗,是擴寬納米纖維應用范圍的有效途徑。本文通過自制的水浴法靜電紡絲裝置,制備了以PPTA為芯層、PA6納米纖維為皮層的PPTA/PA6納米纖維包芯紗,并研究其結構與性能,得出以下結論:
1) 制備得到的納米纖維能夠均勻地包覆在芯紗表面,不存在露芯、毛羽等現(xiàn)象。納米纖維直徑范圍主要分布在90~110 nm,平均直徑為98.81 nm,納米纖維包覆層的厚度大約為25 μm,結構完整、均勻。
2) 納米纖維包覆層的熔點在223 ℃,與常規(guī)制備的聚酰胺6纖維熔點接近;結晶度在18.55%,與聚酰胺6纖維的結晶度范圍較為接近,且與工藝參數(shù)的設置有關,需要在后續(xù)調整工藝參數(shù),提高其結晶度。
3) 納米纖維包芯紗的力學性能接近于PPAT,且斷裂伸長率要優(yōu)于PPAT。納米纖維包覆層的斷裂強度為0.57 cN/dtex,較傳統(tǒng)的聚酰胺6纖維低,但斷裂伸長率33.30%和模量2.15 cN/dtex都在聚酰胺6纖維的范圍內。納米纖維的非連續(xù)堆積、無序排列、低結晶度等都會影響其力學性能。
4) 納米纖維包芯紗具有一定的耐摩性,用棉織物摩擦600次后,仍能保持原有的形貌結構;在砂紙的摩擦作用下,納米纖維包覆層磨損較大,但因為納米纖維的包覆,使得內部的芯紗沒有受到損傷。
《絲綢》官網下載
中國知網下載
參考文獻:
[1]譚耀紅, 劉呈坤, 毛雪. 靜電紡制備定向納米纖維集合體的研究現(xiàn)狀[J]. 高分子材料科學與工程, 2018, 34(11): 183-190.
TAN Yaohong, LIU Chengkun, MAO Xue. Research status of electrospun aligned nanofiber array[J]. Polymer Materials Science and Engineering, 2018, 34(11): 183-190.
[2]蒲叢叢, 何建新, 崔世忠, 等. 靜電紡納米纖維成紗方法的新進展[J]. 材料導報, 2012, 26(3): 153-157.
PU Congcong, HE Jianxin, CUI Shizhong, et al. New development of spinning continuous twisted nanofiber yarns[J]. Materials Reports, 2012, 26(3): 153-157.
[3]LI N, HUI Q, XUE H, et al. Electrospun polyacrylonitrile nanofiber yarn prepared by funnel-shape collector[J]. Materials Letters, 2012, 79: 245-247.
[4]LIU C K, SUN R J, LAI K, et al. Preparation of short submicron-fiber yarn by an annular collector through electrospinning[J]. Materials Letters, 2008, 62(29): 4467-4469.
[5]FAKHRALI A, EBADI S V, GHAREHAGHAJI A A, et al. Analysis of twist level and take-up speed impact on the tensile properties of PVA/PA6 hybrid nanofiber yarns[J]. E-Polymers, 2016, 16(2): 125-135.
[6]楊宇晨, 覃小紅, 俞建勇. 靜電紡納米纖維功能性紗線的研究進展[J]. 紡織學報, 2021, 42(1): 1-9.
YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of transforming electrospun nanofibers into functional yarns[J]. Journal of Textile Research, 2021, 42(1): 1-9.
[7]SMIT E, BUTTNER U, SANDERSON R D. Continuous yarns from eletrospun fiber[J]. Polymer Engineering & Science, 2005, 46(8): 2419-2423.
[8]劉紅波, 潘志娟, 王建民. 靜電法紡制尼龍6/66納米纖維紗[J]. 蘇州大學學報, 2007, 27(2): 36-39.
LIU Hongbo, PAN Zhijuan, WANG Jianmin. Fabrication of continuous nylon6/66 nano-scale fiber yarns by electrospinning[J]. Journal of Soochow University, 2007, 27(2): 36-39.
[9]YOUSEFZADEH M, LATIF M, TEO W E, et al. Producing continuous twisted yarn from well-aligned[J]. Polymer Engineering & Science, 2011, 51: 323-329.
[10]SHUAKAT M N, LIN T. Recent developments in electrospinning of nanofiber yarns[J]. Journal of Nanoscience Nanotechnolgy, 2014, 14(2): 1389-1408.
[11]GOKTEPE F, MULAYIM B B. Long path towards to success in electrospun nanofiber yarn production since 1930’s: A critical review[J]. Autex Research Journal, 2018, 18(2): 87-109.
[12]DABIRIAN F, RAVANDI S A H, HINESTROZA J P, et al. Conformal coating of yarns and wires with electrospun nanofibers[J]. Polymer Engineering & Science, 2012, 52(8): 1724-1732.
[13]LIU C K, HE J X, SUN R J, et al. Preparation of continuous nanofiber core-spun yarn by a novel covering method[J]. Materials & Design, 2016, 112: 456-461.
[14]劉呈坤, 賀海軍, 孫潤軍, 等. 紡絲工藝對靜電紡納米纖維包芯紗覆蓋性能的影響[J]. 高分子材料科學與工程, 2016, 32(12): 82-86.
LIU Chengkun, HE Haijun, SUN Runjun, et al. Effect of spinning process on the coating performance of electrostatically spun nanofiber core-spun yarn[J]. Polymer Materials Science and Engineering, 2016, 32(12): 82-86.
[15]BAZBOUZ M B, STYLIOS G K. A new mechanism for the electrospinning of nanoyarns[J]. Journal of Applied Polymer Science, 2012, 124(1): 195-201.
[16]何健新, 張明軍, 崔世忠, 等. 納米纖維包芯紗的制備與表征[J]. 上海紡織科技, 2014, 42(8): 54-56.
HE Jianxin, ZHANG Mingjun, CUI Shizhong, et al. Preparation and characterization of nanofiber core-spun yarn[J]. Shanghai Textile Science & Technology, 2014, 42(8): 54-56.
[17]TONG X, BIN J X. Preparation and characterization of polyester staple yarns nanowrapped with polysulfone amide fibers[J]. Industrial & Engineering Chemistry Research, 2015, 54(49): 12303-12312.
[18]ZHOU Y M, WANG H B, HE J X, et al. Highly stretchable nanofiber-coated hybrid yarn with wavy structure fabricated by novel airflow-electrospinning method[J]. Materials Letters, 2019, 239: 1-4.
[19]王怡婷, 詹建朝, 王迎. 靜電紡制備聚氨酯-Fe3O4納米纖維包芯紗[J]. 上海紡織科技, 2018, 46(6): 41-43.
WANG Yiting, ZHAN Jianchao, WANG Ying. Electorspun of polyurethane-Fe3O4 nanofiber core spun yarn[J]. Shanghai Textile Science & Technology, 2018, 46(6): 41-43.
[20]拉馬克瑞斯納·西拉姆. 靜電紡絲與納米纖維導論[M]. 上海: 東華大學出版社, 2012.
Abstract: With the in-depth studies on nanofiber technology, nanomaterials play an important role in more and more fields. Electrospinning technology, as one of the main methods of nanofiber preparation, can produce nanofibers through electrification and drawing by applying high voltage to the polymer melt or solution. It has the advantages of simple process, convenient operation and fast manufacturing speed. However, in the process of electrospinning, due to the extremely fast speed of the medium polymer jet and the unstable whip in the high-voltage electric field, the morphology and movement state of the nanofiber receiving device will affect the structure of nanofiber aggregates. Although conventional static receivers can collect random and disorderly arranged nanofiber films, the films with low strength can hardly be used for further textile processing, limiting its application and development. By preparing one-dimensional nanofiber tows or nanofiber yarns through the improvement of the receiving device, the strength of nanofiber aggregates can be effectively enhanced. However, due to the low crystallinity of nanofibers and low orientation along the length of the yarn, compared with traditionalyarns, there is still a certain gap in the mechanical properties of such yarns entirely composed of nanofibers.
Therefore, the preparation of nanofiber aggregates which have surface properties of nanofibers and maintain excellent mechanical properties of traditional fibers is beneficial to expand the application field of nanofibers and improve the application value. Preparing nanofiber core-spun yarns with traditional yarn as the core and nanofibers coating on the surface of the core yarn is a simple and feasible method to achieve the above goals, which has been extensively studied. At present, mechanical bundling method, water bath method and air-assisted method are common preparation methods of nanofiber core-spun yarns. Among them, in the process of preparing nanofiber core-spun yarns by the mechanical bundling method and the air-assisted method, due to the unstable jet of nanofibers, they cannot be completely coated on the surface of the core yarn, resulting in low utilization rate of nanofibers and affecting the yield. By using water bath method, all the nanofibers deposited on the surface of water can be coated on the core yarn, greatly enhancing the utilization rate of nanofibers. On this basis, PPTA/PA6 nanofiber core-spun yarn was prepared via a self-developed water bath electrospinning method in this article, with aramide 1414 (PPTA) filament as the core layer and polyamide 6 (PA6) nanofiber as the cortex. The structure and properties of the nanofiber core-spun yarn were studied. The results indicated that the nanofibers were evenly coated in the outer layer of the core yarn without exposing the core and hairiness. The diameter of the nanofibers mainly ranged from 90 nm to 110 nm, with an average diameter of 98.81 nm. The thickness of nanofiber coating was about 25 μm, and the structure was complete and uniform. The melting point of the nanofiber coating was 223.16 ℃, and the crystallinity was 18.55%, similar with those of conventionally prepared PA6 fibers. The strength of nanofiber coating was 0.57 cN/dtex, lower than the conventional PA6 fiber, but the elongation of 33.30% and the modulus of 2.15 cN/dtex were both within the range of conventional PA6 fibers, indicating that the nanofiber core-spun yarn has the characteristics of nanofibers and mechanical properties of core yarn. The nanofiber coating has certain wear resistance without changes in its surface morphology and structure after being rubbed by cotton fabric for 600 times.
The nanofiber core-spun yarn prepared by the water bath electrospinning technology not only enables traditional yarns to obtain a larger specific surface area but also enhances the mechanical properties of nanofibers, thus expanding nanofiber application to the biological scaffold, flexible sensor, electronic devices, fuel cell and other fields. Especially, with the continuous development of smart textiles, nanofiber core-spun yarn as a flexible sensor can effectively and quickly transmit external information and respond, thereby obtaining more wide application.
Key words: electrospinning; water bath method; nanofiber core-spun yarn; thermal-crystallization property; wear-resistance performance